]>
Commit | Line | Data |
---|---|---|
6465356a A |
1 | /* $NetBSD: rb.c,v 1.11 2011/06/20 09:11:16 mrg Exp $ */ |
2 | ||
3 | /*- | |
4 | * Copyright (c) 2001 The NetBSD Foundation, Inc. | |
5 | * All rights reserved. | |
6 | * | |
7 | * Portions Copyright (c) 2012 Apple Inc. All rights reserved. | |
8 | * | |
9 | * This code is derived from software contributed to The NetBSD Foundation | |
10 | * by Matt Thomas <matt@3am-software.com>. | |
11 | * | |
12 | * Redistribution and use in source and binary forms, with or without | |
13 | * modification, are permitted provided that the following conditions | |
14 | * are met: | |
15 | * 1. Redistributions of source code must retain the above copyright | |
16 | * notice, this list of conditions and the following disclaimer. | |
17 | * 2. Redistributions in binary form must reproduce the above copyright | |
18 | * notice, this list of conditions and the following disclaimer in the | |
19 | * documentation and/or other materials provided with the distribution. | |
20 | * | |
21 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS | |
22 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED | |
23 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
24 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS | |
25 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
26 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
27 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
28 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
29 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
30 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
31 | * POSSIBILITY OF SUCH DAMAGE. | |
32 | */ | |
33 | ||
34 | #include <sys/types.h> | |
35 | #include <stddef.h> | |
36 | #include <assert.h> | |
37 | #include <stdbool.h> | |
38 | #include <stdlib.h> | |
39 | ||
40 | #undef RBSMALL | |
41 | #undef RBDEBUG | |
42 | #undef RBSTATS | |
43 | #undef RBTEST | |
44 | ||
45 | #define _RBTREE_NO_OPAQUE_STRUCTS_ | |
46 | ||
47 | #ifdef RBTEST | |
48 | #include "rbtree.h" | |
49 | #else | |
50 | #include <sys/rbtree.h> | |
51 | #endif | |
52 | ||
53 | #ifndef __predict_false | |
54 | #ifdef __GNUC__ | |
55 | #define __predict_false(x) ((typeof(x))__builtin_expect((long)(x), 0l)) | |
56 | #else | |
57 | #define __predict_false(x) (x) | |
58 | #endif | |
59 | #endif | |
60 | ||
61 | #define RB_DIR_OTHER RB_DIR_RIGHT | |
62 | ||
63 | #define rb_left rb_nodes[RB_DIR_LEFT] | |
64 | #define rb_right rb_nodes[RB_DIR_RIGHT] | |
65 | ||
66 | #define RB_FLAG_POSITION 0x2 | |
67 | #define RB_FLAG_RED 0x1 | |
68 | #define RB_FLAG_MASK (RB_FLAG_POSITION|RB_FLAG_RED) | |
69 | #define RB_FATHER(rb) \ | |
70 | ((struct rb_node *)((rb)->rb_info & ~RB_FLAG_MASK)) | |
71 | #define RB_SET_FATHER(rb, father) \ | |
72 | ((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK))) | |
73 | ||
74 | #define RB_SENTINEL_P(rb) ((rb) == NULL) | |
75 | #define RB_LEFT_SENTINEL_P(rb) RB_SENTINEL_P((rb)->rb_left) | |
76 | #define RB_RIGHT_SENTINEL_P(rb) RB_SENTINEL_P((rb)->rb_right) | |
77 | #define RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb))) | |
78 | #define RB_CHILDLESS_P(rb) \ | |
79 | (RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb))) | |
80 | #define RB_TWOCHILDREN_P(rb) \ | |
81 | (!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb)) | |
82 | ||
83 | #define RB_POSITION(rb) \ | |
84 | (((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT) | |
85 | #define RB_RIGHT_P(rb) (RB_POSITION(rb) == RB_DIR_RIGHT) | |
86 | #define RB_LEFT_P(rb) (RB_POSITION(rb) == RB_DIR_LEFT) | |
87 | #define RB_RED_P(rb) (!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0) | |
88 | #define RB_BLACK_P(rb) (RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0) | |
89 | #define RB_MARK_RED(rb) ((void)((rb)->rb_info |= RB_FLAG_RED)) | |
90 | #define RB_MARK_BLACK(rb) ((void)((rb)->rb_info &= ~RB_FLAG_RED)) | |
91 | #define RB_INVERT_COLOR(rb) ((void)((rb)->rb_info ^= RB_FLAG_RED)) | |
92 | #define RB_ROOT_P(rbt, rb) ((rbt)->rbt_root == (rb)) | |
93 | #define RB_SET_POSITION(rb, position) \ | |
94 | ((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \ | |
95 | ((rb)->rb_info &= ~RB_FLAG_POSITION))) | |
96 | #define RB_ZERO_PROPERTIES(rb) ((void)((rb)->rb_info &= ~RB_FLAG_MASK)) | |
97 | #define RB_COPY_PROPERTIES(dst, src) \ | |
98 | ((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK)) | |
99 | #define RB_SWAP_PROPERTIES(a, b) do { \ | |
100 | uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \ | |
101 | (a)->rb_info ^= xorinfo; \ | |
102 | (b)->rb_info ^= xorinfo; \ | |
103 | } while (/*CONSTCOND*/ 0) | |
104 | ||
105 | #ifndef static_assert | |
106 | #define _static_assert_concat_(a,b) a##b | |
107 | #define _static_assert_concat(a,b) _static_assert_concat_(a,b) | |
108 | #define static_assert(c, m) struct _static_assert_concat(static_assert_failure_, __LINE__) { int _static_assert_concat(static_assert_failure_, __LINE__)[(c)? 1 : -1]; } | |
109 | #endif | |
110 | ||
111 | /* The size of struct_rbnode must match: | |
112 | * sizeof(struct rb_node { void * opaque[3] }) | |
113 | */ | |
114 | typedef struct rb_node { | |
115 | struct rb_node *rb_nodes[2]; | |
116 | ||
117 | /* | |
118 | * rb_info contains the two flags and the parent back pointer. | |
119 | * We put the two flags in the low two bits since we know that | |
120 | * rb_node will have an alignment of 4 or 8 bytes. | |
121 | */ | |
122 | uintptr_t rb_info; | |
123 | } rb_node_t; | |
124 | ||
125 | static_assert(sizeof(struct { void * opaque[3]; }) == sizeof(rb_node_t), | |
126 | "Mismatch in size between opaque and internal rb_node_t"); | |
127 | ||
128 | typedef struct rb_tree { | |
129 | struct rb_node *rbt_root; | |
130 | const rb_tree_ops_t *rbt_ops; | |
131 | struct rb_node *rbt_minmax[2]; | |
132 | uintptr_t rbt_count; | |
133 | void *unused[3]; // Unused padding for possible future use | |
134 | } rb_tree_t; | |
135 | ||
136 | static_assert(sizeof(struct { void * opaque[8]; }) == sizeof(rb_tree_t), | |
137 | "Mismatch in size between opaque and internal rb_tree_t"); | |
138 | ||
139 | static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *); | |
140 | static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *, | |
141 | unsigned int); | |
142 | #ifdef RBDEBUG | |
143 | static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *, | |
144 | const struct rb_node *, const unsigned int); | |
145 | static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *, | |
146 | const struct rb_node *, bool); | |
147 | ||
148 | TAILQ_HEAD(rb_node_qh, rb_node); | |
149 | ||
150 | #define RB_TAILQ_REMOVE(a, b, c) TAILQ_REMOVE(a, b, c) | |
151 | #define RB_TAILQ_INIT(a) TAILQ_INIT(a) | |
152 | #define RB_TAILQ_INSERT_HEAD(a, b, c) TAILQ_INSERT_HEAD(a, b, c) | |
153 | #define RB_TAILQ_INSERT_BEFORE(a, b, c) TAILQ_INSERT_BEFORE(a, b, c) | |
154 | #define RB_TAILQ_INSERT_AFTER(a, b, c, d) TAILQ_INSERT_AFTER(a, b, c, d) | |
155 | ||
156 | #define KASSERT(s) assert(s) | |
157 | #else | |
158 | ||
159 | #define rb_tree_check_node(a, b, c, d) true | |
160 | ||
161 | #define RB_TAILQ_REMOVE(a, b, c) do { } while (/*CONSTCOND*/0) | |
162 | #define RB_TAILQ_INIT(a) do { } while (/*CONSTCOND*/0) | |
163 | #define RB_TAILQ_INSERT_HEAD(a, b, c) do { } while (/*CONSTCOND*/0) | |
164 | #define RB_TAILQ_INSERT_BEFORE(a, b, c) do { } while (/*CONSTCOND*/0) | |
165 | #define RB_TAILQ_INSERT_AFTER(a, b, c, d) do { } while (/*CONSTCOND*/0) | |
166 | ||
167 | #define KASSERT(s) do { } while (/*CONSTCOND*/ 0) | |
168 | #endif | |
169 | ||
170 | #ifdef RBSTATS | |
171 | #define RBSTAT_INC(v) ((void)((v)++)) | |
172 | #define RBSTAT_DEC(v) ((void)((v)--)) | |
173 | #else | |
174 | #define RBSTAT_INC(v) do { } while (/*CONSTCOND*/0) | |
175 | #define RBSTAT_DEC(v) do { } while (/*CONSTCOND*/0) | |
176 | #endif | |
177 | ||
178 | #define RB_NODETOITEM(rbto, rbn) \ | |
179 | ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset)) | |
180 | #define RB_ITEMTONODE(rbto, rbn) \ | |
181 | ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset)) | |
182 | ||
183 | #define RB_SENTINEL_NODE NULL | |
184 | ||
185 | void | |
186 | rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops) | |
187 | { | |
188 | ||
189 | rbt->rbt_ops = ops; | |
190 | rbt->rbt_root = RB_SENTINEL_NODE; | |
191 | RB_TAILQ_INIT(&rbt->rbt_nodes); | |
192 | #ifndef RBSMALL | |
193 | rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */ | |
194 | rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */ | |
195 | #endif | |
196 | rbt->rbt_count = 0; | |
197 | #ifdef RBSTATS | |
198 | rbt->rbt_insertions = 0; | |
199 | rbt->rbt_removals = 0; | |
200 | rbt->rbt_insertion_rebalance_calls = 0; | |
201 | rbt->rbt_insertion_rebalance_passes = 0; | |
202 | rbt->rbt_removal_rebalance_calls = 0; | |
203 | rbt->rbt_removal_rebalance_passes = 0; | |
204 | #endif | |
205 | } | |
206 | ||
207 | void * | |
208 | rb_tree_find_node(struct rb_tree *rbt, const void *key) | |
209 | { | |
210 | const rb_tree_ops_t *rbto = rbt->rbt_ops; | |
211 | rbto_compare_key_fn compare_key = rbto->rbto_compare_key; | |
212 | struct rb_node *parent = rbt->rbt_root; | |
213 | ||
214 | while (!RB_SENTINEL_P(parent)) { | |
215 | void *pobj = RB_NODETOITEM(rbto, parent); | |
216 | const signed int diff = (*compare_key)(rbto->rbto_context, | |
217 | pobj, key); | |
218 | if (diff == 0) | |
219 | return pobj; | |
220 | parent = parent->rb_nodes[diff < 0]; | |
221 | } | |
222 | ||
223 | return NULL; | |
224 | } | |
225 | ||
226 | void * | |
227 | rb_tree_find_node_geq(struct rb_tree *rbt, const void *key) | |
228 | { | |
229 | const rb_tree_ops_t *rbto = rbt->rbt_ops; | |
230 | rbto_compare_key_fn compare_key = rbto->rbto_compare_key; | |
231 | struct rb_node *parent = rbt->rbt_root, *last = NULL; | |
232 | ||
233 | while (!RB_SENTINEL_P(parent)) { | |
234 | void *pobj = RB_NODETOITEM(rbto, parent); | |
235 | const signed int diff = (*compare_key)(rbto->rbto_context, | |
236 | pobj, key); | |
237 | if (diff == 0) | |
238 | return pobj; | |
239 | if (diff > 0) | |
240 | last = parent; | |
241 | parent = parent->rb_nodes[diff < 0]; | |
242 | } | |
243 | ||
5f125488 | 244 | return last == NULL ? NULL : RB_NODETOITEM(rbto, last); |
6465356a A |
245 | } |
246 | ||
247 | void * | |
248 | rb_tree_find_node_leq(struct rb_tree *rbt, const void *key) | |
249 | { | |
250 | const rb_tree_ops_t *rbto = rbt->rbt_ops; | |
251 | rbto_compare_key_fn compare_key = rbto->rbto_compare_key; | |
252 | struct rb_node *parent = rbt->rbt_root, *last = NULL; | |
253 | ||
254 | while (!RB_SENTINEL_P(parent)) { | |
255 | void *pobj = RB_NODETOITEM(rbto, parent); | |
256 | const signed int diff = (*compare_key)(rbto->rbto_context, | |
257 | pobj, key); | |
258 | if (diff == 0) | |
259 | return pobj; | |
260 | if (diff < 0) | |
261 | last = parent; | |
262 | parent = parent->rb_nodes[diff < 0]; | |
263 | } | |
264 | ||
5f125488 | 265 | return last == NULL ? NULL : RB_NODETOITEM(rbto, last); |
6465356a A |
266 | } |
267 | ||
268 | void * | |
269 | rb_tree_insert_node(struct rb_tree *rbt, void *object) | |
270 | { | |
271 | const rb_tree_ops_t *rbto = rbt->rbt_ops; | |
272 | rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes; | |
273 | struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object); | |
274 | unsigned int position; | |
275 | bool rebalance; | |
276 | ||
277 | RBSTAT_INC(rbt->rbt_insertions); | |
278 | ||
279 | tmp = rbt->rbt_root; | |
280 | /* | |
281 | * This is a hack. Because rbt->rbt_root is just a struct rb_node *, | |
282 | * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to | |
283 | * avoid a lot of tests for root and know that even at root, | |
284 | * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will | |
285 | * update rbt->rbt_root. | |
286 | */ | |
287 | parent = (struct rb_node *)(void *)&rbt->rbt_root; | |
288 | position = RB_DIR_LEFT; | |
289 | ||
290 | /* | |
291 | * Find out where to place this new leaf. | |
292 | */ | |
293 | while (!RB_SENTINEL_P(tmp)) { | |
294 | void *tobj = RB_NODETOITEM(rbto, tmp); | |
295 | const signed int diff = (*compare_nodes)(rbto->rbto_context, | |
296 | tobj, object); | |
297 | if (__predict_false(diff == 0)) { | |
298 | /* | |
299 | * Node already exists; return it. | |
300 | */ | |
301 | return tobj; | |
302 | } | |
303 | parent = tmp; | |
304 | position = (diff < 0); | |
305 | tmp = parent->rb_nodes[position]; | |
306 | } | |
307 | ||
308 | #ifdef RBDEBUG | |
309 | { | |
310 | struct rb_node *prev = NULL, *next = NULL; | |
311 | ||
312 | if (position == RB_DIR_RIGHT) | |
313 | prev = parent; | |
314 | else if (tmp != rbt->rbt_root) | |
315 | next = parent; | |
316 | ||
317 | /* | |
318 | * Verify our sequential position | |
319 | */ | |
320 | KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); | |
321 | KASSERT(next == NULL || !RB_SENTINEL_P(next)); | |
322 | if (prev != NULL && next == NULL) | |
323 | next = TAILQ_NEXT(prev, rb_link); | |
324 | if (prev == NULL && next != NULL) | |
325 | prev = TAILQ_PREV(next, rb_node_qh, rb_link); | |
326 | KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); | |
327 | KASSERT(next == NULL || !RB_SENTINEL_P(next)); | |
328 | KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context, | |
329 | RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0); | |
330 | KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context, | |
331 | RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0); | |
332 | } | |
333 | #endif | |
334 | ||
335 | /* | |
336 | * Initialize the node and insert as a leaf into the tree. | |
337 | */ | |
338 | RB_SET_FATHER(self, parent); | |
339 | RB_SET_POSITION(self, position); | |
340 | if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) { | |
341 | RB_MARK_BLACK(self); /* root is always black */ | |
342 | #ifndef RBSMALL | |
343 | rbt->rbt_minmax[RB_DIR_LEFT] = self; | |
344 | rbt->rbt_minmax[RB_DIR_RIGHT] = self; | |
345 | #endif | |
346 | rebalance = false; | |
347 | } else { | |
348 | KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT); | |
349 | #ifndef RBSMALL | |
350 | /* | |
351 | * Keep track of the minimum and maximum nodes. If our | |
352 | * parent is a minmax node and we on their min/max side, | |
353 | * we must be the new min/max node. | |
354 | */ | |
355 | if (parent == rbt->rbt_minmax[position]) | |
356 | rbt->rbt_minmax[position] = self; | |
357 | #endif /* !RBSMALL */ | |
358 | /* | |
359 | * All new nodes are colored red. We only need to rebalance | |
360 | * if our parent is also red. | |
361 | */ | |
362 | RB_MARK_RED(self); | |
363 | rebalance = RB_RED_P(parent); | |
364 | } | |
365 | KASSERT(RB_SENTINEL_P(parent->rb_nodes[position])); | |
366 | self->rb_left = parent->rb_nodes[position]; | |
367 | self->rb_right = parent->rb_nodes[position]; | |
368 | parent->rb_nodes[position] = self; | |
369 | KASSERT(RB_CHILDLESS_P(self)); | |
370 | ||
371 | /* | |
372 | * Insert the new node into a sorted list for easy sequential access | |
373 | */ | |
374 | rbt->rbt_count++; | |
375 | #ifdef RBDEBUG | |
376 | if (RB_ROOT_P(rbt, self)) { | |
377 | RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link); | |
378 | } else if (position == RB_DIR_LEFT) { | |
379 | KASSERT((*compare_nodes)(rbto->rbto_context, | |
380 | RB_NODETOITEM(rbto, self), | |
381 | RB_NODETOITEM(rbto, RB_FATHER(self))) < 0); | |
382 | RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link); | |
383 | } else { | |
384 | KASSERT((*compare_nodes)(rbto->rbto_context, | |
385 | RB_NODETOITEM(rbto, RB_FATHER(self)), | |
386 | RB_NODETOITEM(rbto, self)) < 0); | |
387 | RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self), | |
388 | self, rb_link); | |
389 | } | |
390 | #endif | |
391 | KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance)); | |
392 | ||
393 | /* | |
394 | * Rebalance tree after insertion | |
395 | */ | |
396 | if (rebalance) { | |
397 | rb_tree_insert_rebalance(rbt, self); | |
398 | KASSERT(rb_tree_check_node(rbt, self, NULL, true)); | |
399 | } | |
400 | ||
401 | /* Succesfully inserted, return our node pointer. */ | |
402 | return object; | |
403 | } | |
404 | ||
405 | /* | |
406 | * Swap the location and colors of 'self' and its child @ which. The child | |
407 | * can not be a sentinel node. This is our rotation function. However, | |
408 | * since it preserves coloring, it great simplifies both insertion and | |
409 | * removal since rotation almost always involves the exchanging of colors | |
410 | * as a separate step. | |
411 | */ | |
412 | /*ARGSUSED*/ | |
413 | static void | |
414 | rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father, | |
415 | const unsigned int which) | |
416 | { | |
417 | const unsigned int other = which ^ RB_DIR_OTHER; | |
418 | struct rb_node * const grandpa = RB_FATHER(old_father); | |
419 | struct rb_node * const old_child = old_father->rb_nodes[which]; | |
420 | struct rb_node * const new_father = old_child; | |
421 | struct rb_node * const new_child = old_father; | |
422 | ||
423 | KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); | |
424 | ||
425 | KASSERT(!RB_SENTINEL_P(old_child)); | |
426 | KASSERT(RB_FATHER(old_child) == old_father); | |
427 | ||
428 | KASSERT(rb_tree_check_node(rbt, old_father, NULL, false)); | |
429 | KASSERT(rb_tree_check_node(rbt, old_child, NULL, false)); | |
430 | KASSERT(RB_ROOT_P(rbt, old_father) || | |
431 | rb_tree_check_node(rbt, grandpa, NULL, false)); | |
432 | ||
433 | /* | |
434 | * Exchange descendant linkages. | |
435 | */ | |
436 | grandpa->rb_nodes[RB_POSITION(old_father)] = new_father; | |
437 | new_child->rb_nodes[which] = old_child->rb_nodes[other]; | |
438 | new_father->rb_nodes[other] = new_child; | |
439 | ||
440 | /* | |
441 | * Update ancestor linkages | |
442 | */ | |
443 | RB_SET_FATHER(new_father, grandpa); | |
444 | RB_SET_FATHER(new_child, new_father); | |
445 | ||
446 | /* | |
447 | * Exchange properties between new_father and new_child. The only | |
448 | * change is that new_child's position is now on the other side. | |
449 | */ | |
450 | #if 0 | |
451 | { | |
452 | struct rb_node tmp; | |
453 | tmp.rb_info = 0; | |
454 | RB_COPY_PROPERTIES(&tmp, old_child); | |
455 | RB_COPY_PROPERTIES(new_father, old_father); | |
456 | RB_COPY_PROPERTIES(new_child, &tmp); | |
457 | } | |
458 | #else | |
459 | RB_SWAP_PROPERTIES(new_father, new_child); | |
460 | #endif | |
461 | RB_SET_POSITION(new_child, other); | |
462 | ||
463 | /* | |
464 | * Make sure to reparent the new child to ourself. | |
465 | */ | |
466 | if (!RB_SENTINEL_P(new_child->rb_nodes[which])) { | |
467 | RB_SET_FATHER(new_child->rb_nodes[which], new_child); | |
468 | RB_SET_POSITION(new_child->rb_nodes[which], which); | |
469 | } | |
470 | ||
471 | KASSERT(rb_tree_check_node(rbt, new_father, NULL, false)); | |
472 | KASSERT(rb_tree_check_node(rbt, new_child, NULL, false)); | |
473 | KASSERT(RB_ROOT_P(rbt, new_father) || | |
474 | rb_tree_check_node(rbt, grandpa, NULL, false)); | |
475 | } | |
476 | ||
477 | static void | |
478 | rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self) | |
479 | { | |
480 | struct rb_node * father = RB_FATHER(self); | |
481 | struct rb_node * grandpa = RB_FATHER(father); | |
482 | struct rb_node * uncle; | |
483 | unsigned int which; | |
484 | unsigned int other; | |
485 | ||
486 | KASSERT(!RB_ROOT_P(rbt, self)); | |
487 | KASSERT(RB_RED_P(self)); | |
488 | KASSERT(RB_RED_P(father)); | |
489 | RBSTAT_INC(rbt->rbt_insertion_rebalance_calls); | |
490 | ||
491 | for (;;) { | |
492 | KASSERT(!RB_SENTINEL_P(self)); | |
493 | ||
494 | KASSERT(RB_RED_P(self)); | |
495 | KASSERT(RB_RED_P(father)); | |
496 | /* | |
497 | * We are red and our parent is red, therefore we must have a | |
498 | * grandfather and he must be black. | |
499 | */ | |
500 | grandpa = RB_FATHER(father); | |
501 | KASSERT(RB_BLACK_P(grandpa)); | |
502 | KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0); | |
503 | which = (father == grandpa->rb_right); | |
504 | other = which ^ RB_DIR_OTHER; | |
505 | uncle = grandpa->rb_nodes[other]; | |
506 | ||
507 | if (RB_BLACK_P(uncle)) | |
508 | break; | |
509 | ||
510 | RBSTAT_INC(rbt->rbt_insertion_rebalance_passes); | |
511 | /* | |
512 | * Case 1: our uncle is red | |
513 | * Simply invert the colors of our parent and | |
514 | * uncle and make our grandparent red. And | |
515 | * then solve the problem up at his level. | |
516 | */ | |
517 | RB_MARK_BLACK(uncle); | |
518 | RB_MARK_BLACK(father); | |
519 | if (__predict_false(RB_ROOT_P(rbt, grandpa))) { | |
520 | /* | |
521 | * If our grandpa is root, don't bother | |
522 | * setting him to red, just return. | |
523 | */ | |
524 | KASSERT(RB_BLACK_P(grandpa)); | |
525 | return; | |
526 | } | |
527 | RB_MARK_RED(grandpa); | |
528 | self = grandpa; | |
529 | father = RB_FATHER(self); | |
530 | KASSERT(RB_RED_P(self)); | |
531 | if (RB_BLACK_P(father)) { | |
532 | /* | |
533 | * If our greatgrandpa is black, we're done. | |
534 | */ | |
535 | KASSERT(RB_BLACK_P(rbt->rbt_root)); | |
536 | return; | |
537 | } | |
538 | } | |
539 | ||
540 | KASSERT(!RB_ROOT_P(rbt, self)); | |
541 | KASSERT(RB_RED_P(self)); | |
542 | KASSERT(RB_RED_P(father)); | |
543 | KASSERT(RB_BLACK_P(uncle)); | |
544 | KASSERT(RB_BLACK_P(grandpa)); | |
545 | /* | |
546 | * Case 2&3: our uncle is black. | |
547 | */ | |
548 | if (self == father->rb_nodes[other]) { | |
549 | /* | |
550 | * Case 2: we are on the same side as our uncle | |
551 | * Swap ourselves with our parent so this case | |
552 | * becomes case 3. Basically our parent becomes our | |
553 | * child. | |
554 | */ | |
555 | rb_tree_reparent_nodes(rbt, father, other); | |
556 | KASSERT(RB_FATHER(father) == self); | |
557 | KASSERT(self->rb_nodes[which] == father); | |
558 | KASSERT(RB_FATHER(self) == grandpa); | |
559 | self = father; | |
560 | father = RB_FATHER(self); | |
561 | } | |
562 | KASSERT(RB_RED_P(self) && RB_RED_P(father)); | |
563 | KASSERT(grandpa->rb_nodes[which] == father); | |
564 | /* | |
565 | * Case 3: we are opposite a child of a black uncle. | |
566 | * Swap our parent and grandparent. Since our grandfather | |
567 | * is black, our father will become black and our new sibling | |
568 | * (former grandparent) will become red. | |
569 | */ | |
570 | rb_tree_reparent_nodes(rbt, grandpa, which); | |
571 | KASSERT(RB_FATHER(self) == father); | |
572 | KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa); | |
573 | KASSERT(RB_RED_P(self)); | |
574 | KASSERT(RB_BLACK_P(father)); | |
575 | KASSERT(RB_RED_P(grandpa)); | |
576 | ||
577 | /* | |
578 | * Final step: Set the root to black. | |
579 | */ | |
580 | RB_MARK_BLACK(rbt->rbt_root); | |
581 | } | |
582 | ||
583 | static void | |
584 | rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance) | |
585 | { | |
586 | const unsigned int which = RB_POSITION(self); | |
587 | struct rb_node *father = RB_FATHER(self); | |
588 | #ifndef RBSMALL | |
589 | const bool was_root = RB_ROOT_P(rbt, self); | |
590 | #endif | |
591 | ||
592 | KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self))); | |
593 | KASSERT(!rebalance || RB_BLACK_P(self)); | |
594 | KASSERT(RB_CHILDLESS_P(self)); | |
595 | KASSERT(rb_tree_check_node(rbt, self, NULL, false)); | |
596 | ||
597 | /* | |
598 | * Since we are childless, we know that self->rb_left is pointing | |
599 | * to the sentinel node. | |
600 | */ | |
601 | father->rb_nodes[which] = self->rb_left; | |
602 | ||
603 | /* | |
604 | * Remove ourselves from the node list, decrement the count, | |
605 | * and update min/max. | |
606 | */ | |
607 | RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); | |
608 | rbt->rbt_count--; | |
609 | #ifndef RBSMALL | |
610 | if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) { | |
611 | rbt->rbt_minmax[RB_POSITION(self)] = father; | |
612 | /* | |
613 | * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is | |
614 | * updated automatically, but we also need to update | |
615 | * rbt->rbt_minmax[RB_DIR_RIGHT]; | |
616 | */ | |
617 | if (__predict_false(was_root)) { | |
618 | rbt->rbt_minmax[RB_DIR_RIGHT] = father; | |
619 | } | |
620 | } | |
621 | RB_SET_FATHER(self, NULL); | |
622 | #endif | |
623 | ||
624 | /* | |
625 | * Rebalance if requested. | |
626 | */ | |
627 | if (rebalance) | |
628 | rb_tree_removal_rebalance(rbt, father, which); | |
629 | KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true)); | |
630 | } | |
631 | ||
632 | /* | |
633 | * When deleting an interior node | |
634 | */ | |
635 | static void | |
636 | rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self, | |
637 | struct rb_node *standin) | |
638 | { | |
639 | const unsigned int standin_which = RB_POSITION(standin); | |
640 | unsigned int standin_other = standin_which ^ RB_DIR_OTHER; | |
641 | struct rb_node *standin_son; | |
642 | struct rb_node *standin_father = RB_FATHER(standin); | |
643 | bool rebalance = RB_BLACK_P(standin); | |
644 | ||
645 | if (standin_father == self) { | |
646 | /* | |
647 | * As a child of self, any childen would be opposite of | |
648 | * our parent. | |
649 | */ | |
650 | KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); | |
651 | standin_son = standin->rb_nodes[standin_which]; | |
652 | } else { | |
653 | /* | |
654 | * Since we aren't a child of self, any childen would be | |
655 | * on the same side as our parent. | |
656 | */ | |
657 | KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which])); | |
658 | standin_son = standin->rb_nodes[standin_other]; | |
659 | } | |
660 | ||
661 | /* | |
662 | * the node we are removing must have two children. | |
663 | */ | |
664 | KASSERT(RB_TWOCHILDREN_P(self)); | |
665 | /* | |
666 | * If standin has a child, it must be red. | |
667 | */ | |
668 | KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son)); | |
669 | ||
670 | /* | |
671 | * Verify things are sane. | |
672 | */ | |
673 | KASSERT(rb_tree_check_node(rbt, self, NULL, false)); | |
674 | KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); | |
675 | ||
676 | if (__predict_false(RB_RED_P(standin_son))) { | |
677 | /* | |
678 | * We know we have a red child so if we flip it to black | |
679 | * we don't have to rebalance. | |
680 | */ | |
681 | KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true)); | |
682 | RB_MARK_BLACK(standin_son); | |
683 | rebalance = false; | |
684 | ||
685 | if (standin_father == self) { | |
686 | KASSERT(RB_POSITION(standin_son) == standin_which); | |
687 | } else { | |
688 | KASSERT(RB_POSITION(standin_son) == standin_other); | |
689 | /* | |
690 | * Change the son's parentage to point to his grandpa. | |
691 | */ | |
692 | RB_SET_FATHER(standin_son, standin_father); | |
693 | RB_SET_POSITION(standin_son, standin_which); | |
694 | } | |
695 | } | |
696 | ||
697 | if (standin_father == self) { | |
698 | /* | |
699 | * If we are about to delete the standin's father, then when | |
700 | * we call rebalance, we need to use ourselves as our father. | |
701 | * Otherwise remember our original father. Also, sincef we are | |
702 | * our standin's father we only need to reparent the standin's | |
703 | * brother. | |
704 | * | |
705 | * | R --> S | | |
706 | * | Q S --> Q T | | |
707 | * | t --> | | |
708 | */ | |
709 | KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); | |
710 | KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other])); | |
711 | KASSERT(self->rb_nodes[standin_which] == standin); | |
712 | /* | |
713 | * Have our son/standin adopt his brother as his new son. | |
714 | */ | |
715 | standin_father = standin; | |
716 | } else { | |
717 | /* | |
718 | * | R --> S . | | |
719 | * | / \ | T --> / \ | / | | |
720 | * | ..... | S --> ..... | T | | |
721 | * | |
722 | * Sever standin's connection to his father. | |
723 | */ | |
724 | standin_father->rb_nodes[standin_which] = standin_son; | |
725 | /* | |
726 | * Adopt the far son. | |
727 | */ | |
728 | standin->rb_nodes[standin_other] = self->rb_nodes[standin_other]; | |
729 | RB_SET_FATHER(standin->rb_nodes[standin_other], standin); | |
730 | KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other); | |
731 | /* | |
732 | * Use standin_other because we need to preserve standin_which | |
733 | * for the removal_rebalance. | |
734 | */ | |
735 | standin_other = standin_which; | |
736 | } | |
737 | ||
738 | /* | |
739 | * Move the only remaining son to our standin. If our standin is our | |
740 | * son, this will be the only son needed to be moved. | |
741 | */ | |
742 | KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]); | |
743 | standin->rb_nodes[standin_other] = self->rb_nodes[standin_other]; | |
744 | RB_SET_FATHER(standin->rb_nodes[standin_other], standin); | |
745 | ||
746 | /* | |
747 | * Now copy the result of self to standin and then replace | |
748 | * self with standin in the tree. | |
749 | */ | |
750 | RB_COPY_PROPERTIES(standin, self); | |
751 | RB_SET_FATHER(standin, RB_FATHER(self)); | |
752 | RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin; | |
753 | ||
754 | /* | |
755 | * Remove ourselves from the node list, decrement the count, | |
756 | * and update min/max. | |
757 | */ | |
758 | RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); | |
759 | rbt->rbt_count--; | |
760 | #ifndef RBSMALL | |
761 | if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) | |
762 | rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self); | |
763 | RB_SET_FATHER(self, NULL); | |
764 | #endif | |
765 | ||
766 | KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); | |
767 | KASSERT(RB_FATHER_SENTINEL_P(standin) | |
768 | || rb_tree_check_node(rbt, standin_father, NULL, false)); | |
769 | KASSERT(RB_LEFT_SENTINEL_P(standin) | |
770 | || rb_tree_check_node(rbt, standin->rb_left, NULL, false)); | |
771 | KASSERT(RB_RIGHT_SENTINEL_P(standin) | |
772 | || rb_tree_check_node(rbt, standin->rb_right, NULL, false)); | |
773 | ||
774 | if (!rebalance) | |
775 | return; | |
776 | ||
777 | rb_tree_removal_rebalance(rbt, standin_father, standin_which); | |
778 | KASSERT(rb_tree_check_node(rbt, standin, NULL, true)); | |
779 | } | |
780 | ||
781 | /* | |
782 | * We could do this by doing | |
783 | * rb_tree_node_swap(rbt, self, which); | |
784 | * rb_tree_prune_node(rbt, self, false); | |
785 | * | |
786 | * But it's more efficient to just evalate and recolor the child. | |
787 | */ | |
788 | static void | |
789 | rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self, | |
790 | unsigned int which) | |
791 | { | |
792 | struct rb_node *father = RB_FATHER(self); | |
793 | struct rb_node *son = self->rb_nodes[which]; | |
794 | #ifndef RBSMALL | |
795 | const bool was_root = RB_ROOT_P(rbt, self); | |
796 | #endif | |
797 | ||
798 | KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); | |
799 | KASSERT(RB_BLACK_P(self) && RB_RED_P(son)); | |
800 | KASSERT(!RB_TWOCHILDREN_P(son)); | |
801 | KASSERT(RB_CHILDLESS_P(son)); | |
802 | KASSERT(rb_tree_check_node(rbt, self, NULL, false)); | |
803 | KASSERT(rb_tree_check_node(rbt, son, NULL, false)); | |
804 | ||
805 | /* | |
806 | * Remove ourselves from the tree and give our former child our | |
807 | * properties (position, color, root). | |
808 | */ | |
809 | RB_COPY_PROPERTIES(son, self); | |
810 | father->rb_nodes[RB_POSITION(son)] = son; | |
811 | RB_SET_FATHER(son, father); | |
812 | ||
813 | /* | |
814 | * Remove ourselves from the node list, decrement the count, | |
815 | * and update minmax. | |
816 | */ | |
817 | RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); | |
818 | rbt->rbt_count--; | |
819 | #ifndef RBSMALL | |
820 | if (__predict_false(was_root)) { | |
821 | KASSERT(rbt->rbt_minmax[which] == son); | |
822 | rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son; | |
823 | } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) { | |
824 | rbt->rbt_minmax[RB_POSITION(self)] = son; | |
825 | } | |
826 | RB_SET_FATHER(self, NULL); | |
827 | #endif | |
828 | ||
829 | KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true)); | |
830 | KASSERT(rb_tree_check_node(rbt, son, NULL, true)); | |
831 | } | |
832 | ||
833 | void | |
834 | rb_tree_remove_node(struct rb_tree *rbt, void *object) | |
835 | { | |
836 | const rb_tree_ops_t *rbto = rbt->rbt_ops; | |
837 | struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object); | |
838 | unsigned int which; | |
839 | ||
840 | KASSERT(!RB_SENTINEL_P(self)); | |
841 | RBSTAT_INC(rbt->rbt_removals); | |
842 | ||
843 | /* | |
844 | * In the following diagrams, we (the node to be removed) are S. Red | |
845 | * nodes are lowercase. T could be either red or black. | |
846 | * | |
847 | * Remember the major axiom of the red-black tree: the number of | |
848 | * black nodes from the root to each leaf is constant across all | |
849 | * leaves, only the number of red nodes varies. | |
850 | * | |
851 | * Thus removing a red leaf doesn't require any other changes to a | |
852 | * red-black tree. So if we must remove a node, attempt to rearrange | |
853 | * the tree so we can remove a red node. | |
854 | * | |
855 | * The simpliest case is a childless red node or a childless root node: | |
856 | * | |
857 | * | T --> T | or | R --> * | | |
858 | * | s --> * | | |
859 | */ | |
860 | if (RB_CHILDLESS_P(self)) { | |
861 | const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self); | |
862 | rb_tree_prune_node(rbt, self, rebalance); | |
863 | return; | |
864 | } | |
865 | KASSERT(!RB_CHILDLESS_P(self)); | |
866 | if (!RB_TWOCHILDREN_P(self)) { | |
867 | /* | |
868 | * The next simpliest case is the node we are deleting is | |
869 | * black and has one red child. | |
870 | * | |
871 | * | T --> T --> T | | |
872 | * | S --> R --> R | | |
873 | * | r --> s --> * | | |
874 | */ | |
875 | which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT; | |
876 | KASSERT(RB_BLACK_P(self)); | |
877 | KASSERT(RB_RED_P(self->rb_nodes[which])); | |
878 | KASSERT(RB_CHILDLESS_P(self->rb_nodes[which])); | |
879 | rb_tree_prune_blackred_branch(rbt, self, which); | |
880 | return; | |
881 | } | |
882 | KASSERT(RB_TWOCHILDREN_P(self)); | |
883 | ||
884 | /* | |
885 | * We invert these because we prefer to remove from the inside of | |
886 | * the tree. | |
887 | */ | |
888 | which = RB_POSITION(self) ^ RB_DIR_OTHER; | |
889 | ||
890 | /* | |
891 | * Let's find the node closes to us opposite of our parent | |
892 | * Now swap it with ourself, "prune" it, and rebalance, if needed. | |
893 | */ | |
894 | standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which)); | |
895 | rb_tree_swap_prune_and_rebalance(rbt, self, standin); | |
896 | } | |
897 | ||
898 | static void | |
899 | rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent, | |
900 | unsigned int which) | |
901 | { | |
902 | KASSERT(!RB_SENTINEL_P(parent)); | |
903 | KASSERT(RB_SENTINEL_P(parent->rb_nodes[which])); | |
904 | KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); | |
905 | RBSTAT_INC(rbt->rbt_removal_rebalance_calls); | |
906 | ||
907 | while (RB_BLACK_P(parent->rb_nodes[which])) { | |
908 | unsigned int other = which ^ RB_DIR_OTHER; | |
909 | struct rb_node *brother = parent->rb_nodes[other]; | |
910 | ||
911 | RBSTAT_INC(rbt->rbt_removal_rebalance_passes); | |
912 | ||
913 | KASSERT(!RB_SENTINEL_P(brother)); | |
914 | /* | |
915 | * For cases 1, 2a, and 2b, our brother's children must | |
916 | * be black and our father must be black | |
917 | */ | |
918 | if (RB_BLACK_P(parent) | |
919 | && RB_BLACK_P(brother->rb_left) | |
920 | && RB_BLACK_P(brother->rb_right)) { | |
921 | if (RB_RED_P(brother)) { | |
922 | /* | |
923 | * Case 1: Our brother is red, swap its | |
924 | * position (and colors) with our parent. | |
925 | * This should now be case 2b (unless C or E | |
926 | * has a red child which is case 3; thus no | |
927 | * explicit branch to case 2b). | |
928 | * | |
929 | * B -> D | |
930 | * A d -> b E | |
931 | * C E -> A C | |
932 | */ | |
933 | KASSERT(RB_BLACK_P(parent)); | |
934 | rb_tree_reparent_nodes(rbt, parent, other); | |
935 | brother = parent->rb_nodes[other]; | |
936 | KASSERT(!RB_SENTINEL_P(brother)); | |
937 | KASSERT(RB_RED_P(parent)); | |
938 | KASSERT(RB_BLACK_P(brother)); | |
939 | KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); | |
940 | KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); | |
941 | } else { | |
942 | /* | |
943 | * Both our parent and brother are black. | |
944 | * Change our brother to red, advance up rank | |
945 | * and go through the loop again. | |
946 | * | |
947 | * B -> *B | |
948 | * *A D -> A d | |
949 | * C E -> C E | |
950 | */ | |
951 | RB_MARK_RED(brother); | |
952 | KASSERT(RB_BLACK_P(brother->rb_left)); | |
953 | KASSERT(RB_BLACK_P(brother->rb_right)); | |
954 | if (RB_ROOT_P(rbt, parent)) | |
955 | return; /* root == parent == black */ | |
956 | KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); | |
957 | KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); | |
958 | which = RB_POSITION(parent); | |
959 | parent = RB_FATHER(parent); | |
960 | continue; | |
961 | } | |
962 | } | |
963 | /* | |
964 | * Avoid an else here so that case 2a above can hit either | |
965 | * case 2b, 3, or 4. | |
966 | */ | |
967 | if (RB_RED_P(parent) | |
968 | && RB_BLACK_P(brother) | |
969 | && RB_BLACK_P(brother->rb_left) | |
970 | && RB_BLACK_P(brother->rb_right)) { | |
971 | KASSERT(RB_RED_P(parent)); | |
972 | KASSERT(RB_BLACK_P(brother)); | |
973 | KASSERT(RB_BLACK_P(brother->rb_left)); | |
974 | KASSERT(RB_BLACK_P(brother->rb_right)); | |
975 | /* | |
976 | * We are black, our father is red, our brother and | |
977 | * both nephews are black. Simply invert/exchange the | |
978 | * colors of our father and brother (to black and red | |
979 | * respectively). | |
980 | * | |
981 | * | f --> F | | |
982 | * | * B --> * b | | |
983 | * | N N --> N N | | |
984 | */ | |
985 | RB_MARK_BLACK(parent); | |
986 | RB_MARK_RED(brother); | |
987 | KASSERT(rb_tree_check_node(rbt, brother, NULL, true)); | |
988 | break; /* We're done! */ | |
989 | } else { | |
990 | /* | |
991 | * Our brother must be black and have at least one | |
992 | * red child (it may have two). | |
993 | */ | |
994 | KASSERT(RB_BLACK_P(brother)); | |
995 | KASSERT(RB_RED_P(brother->rb_nodes[which]) || | |
996 | RB_RED_P(brother->rb_nodes[other])); | |
997 | if (RB_BLACK_P(brother->rb_nodes[other])) { | |
998 | /* | |
999 | * Case 3: our brother is black, our near | |
1000 | * nephew is red, and our far nephew is black. | |
1001 | * Swap our brother with our near nephew. | |
1002 | * This result in a tree that matches case 4. | |
1003 | * (Our father could be red or black). | |
1004 | * | |
1005 | * | F --> F | | |
1006 | * | x B --> x B | | |
1007 | * | n --> n | | |
1008 | */ | |
1009 | KASSERT(RB_RED_P(brother->rb_nodes[which])); | |
1010 | rb_tree_reparent_nodes(rbt, brother, which); | |
1011 | KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]); | |
1012 | brother = parent->rb_nodes[other]; | |
1013 | KASSERT(RB_RED_P(brother->rb_nodes[other])); | |
1014 | } | |
1015 | /* | |
1016 | * Case 4: our brother is black and our far nephew | |
1017 | * is red. Swap our father and brother locations and | |
1018 | * change our far nephew to black. (these can be | |
1019 | * done in either order so we change the color first). | |
1020 | * The result is a valid red-black tree and is a | |
1021 | * terminal case. (again we don't care about the | |
1022 | * father's color) | |
1023 | * | |
1024 | * If the father is red, we will get a red-black-black | |
1025 | * tree: | |
1026 | * | f -> f --> b | | |
1027 | * | B -> B --> F N | | |
1028 | * | n -> N --> | | |
1029 | * | |
1030 | * If the father is black, we will get an all black | |
1031 | * tree: | |
1032 | * | F -> F --> B | | |
1033 | * | B -> B --> F N | | |
1034 | * | n -> N --> | | |
1035 | * | |
1036 | * If we had two red nephews, then after the swap, | |
1037 | * our former father would have a red grandson. | |
1038 | */ | |
1039 | KASSERT(RB_BLACK_P(brother)); | |
1040 | KASSERT(RB_RED_P(brother->rb_nodes[other])); | |
1041 | RB_MARK_BLACK(brother->rb_nodes[other]); | |
1042 | rb_tree_reparent_nodes(rbt, parent, other); | |
1043 | break; /* We're done! */ | |
1044 | } | |
1045 | } | |
1046 | KASSERT(rb_tree_check_node(rbt, parent, NULL, true)); | |
1047 | } | |
1048 | ||
1049 | void * | |
1050 | rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction) | |
1051 | { | |
1052 | const rb_tree_ops_t *rbto = rbt->rbt_ops; | |
1053 | const unsigned int other = direction ^ RB_DIR_OTHER; | |
1054 | struct rb_node *self; | |
1055 | ||
1056 | KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT); | |
1057 | ||
1058 | if (object == NULL) { | |
1059 | #ifndef RBSMALL | |
1060 | if (RB_SENTINEL_P(rbt->rbt_root)) | |
1061 | return NULL; | |
1062 | return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction == RB_DIR_LEFT ? RB_DIR_RIGHT : RB_DIR_LEFT]); | |
1063 | #else | |
1064 | self = rbt->rbt_root; | |
1065 | if (RB_SENTINEL_P(self)) | |
1066 | return NULL; | |
1067 | while (!RB_SENTINEL_P(self->rb_nodes[direction == RB_DIR_LEFT ? RB_DIR_RIGHT : RB_DIR_LEFT])) | |
1068 | self = self->rb_nodes[direction == RB_DIR_LEFT ? RB_DIR_RIGHT : RB_DIR_LEFT]; | |
1069 | return RB_NODETOITEM(rbto, self); | |
1070 | #endif /* !RBSMALL */ | |
1071 | } | |
1072 | self = RB_ITEMTONODE(rbto, object); | |
1073 | KASSERT(!RB_SENTINEL_P(self)); | |
1074 | /* | |
1075 | * We can't go any further in this direction. We proceed up in the | |
1076 | * opposite direction until our parent is in direction we want to go. | |
1077 | */ | |
1078 | if (RB_SENTINEL_P(self->rb_nodes[direction])) { | |
1079 | while (!RB_ROOT_P(rbt, self)) { | |
1080 | if (other == RB_POSITION(self)) | |
1081 | return RB_NODETOITEM(rbto, RB_FATHER(self)); | |
1082 | self = RB_FATHER(self); | |
1083 | } | |
1084 | return NULL; | |
1085 | } | |
1086 | ||
1087 | /* | |
1088 | * Advance down one in current direction and go down as far as possible | |
1089 | * in the opposite direction. | |
1090 | */ | |
1091 | self = self->rb_nodes[direction]; | |
1092 | KASSERT(!RB_SENTINEL_P(self)); | |
1093 | while (!RB_SENTINEL_P(self->rb_nodes[other])) | |
1094 | self = self->rb_nodes[other]; | |
1095 | return RB_NODETOITEM(rbto, self); | |
1096 | } | |
1097 | ||
1098 | #ifdef RBDEBUG | |
1099 | static const struct rb_node * | |
1100 | rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self, | |
1101 | const unsigned int direction) | |
1102 | { | |
1103 | const unsigned int other = direction ^ RB_DIR_OTHER; | |
1104 | KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT); | |
1105 | ||
1106 | if (self == NULL) { | |
1107 | #ifndef RBSMALL | |
1108 | if (RB_SENTINEL_P(rbt->rbt_root)) | |
1109 | return NULL; | |
1110 | return rbt->rbt_minmax[direction]; | |
1111 | #else | |
1112 | self = rbt->rbt_root; | |
1113 | if (RB_SENTINEL_P(self)) | |
1114 | return NULL; | |
1115 | while (!RB_SENTINEL_P(self->rb_nodes[direction])) | |
1116 | self = self->rb_nodes[direction]; | |
1117 | return self; | |
1118 | #endif /* !RBSMALL */ | |
1119 | } | |
1120 | KASSERT(!RB_SENTINEL_P(self)); | |
1121 | /* | |
1122 | * We can't go any further in this direction. We proceed up in the | |
1123 | * opposite direction until our parent is in direction we want to go. | |
1124 | */ | |
1125 | if (RB_SENTINEL_P(self->rb_nodes[direction])) { | |
1126 | while (!RB_ROOT_P(rbt, self)) { | |
1127 | if (other == RB_POSITION(self)) | |
1128 | return RB_FATHER(self); | |
1129 | self = RB_FATHER(self); | |
1130 | } | |
1131 | return NULL; | |
1132 | } | |
1133 | ||
1134 | /* | |
1135 | * Advance down one in current direction and go down as far as possible | |
1136 | * in the opposite direction. | |
1137 | */ | |
1138 | self = self->rb_nodes[direction]; | |
1139 | KASSERT(!RB_SENTINEL_P(self)); | |
1140 | while (!RB_SENTINEL_P(self->rb_nodes[other])) | |
1141 | self = self->rb_nodes[other]; | |
1142 | return self; | |
1143 | } | |
1144 | ||
1145 | static unsigned int | |
1146 | rb_tree_count_black(const struct rb_node *self) | |
1147 | { | |
1148 | unsigned int left, right; | |
1149 | ||
1150 | if (RB_SENTINEL_P(self)) | |
1151 | return 0; | |
1152 | ||
1153 | left = rb_tree_count_black(self->rb_left); | |
1154 | right = rb_tree_count_black(self->rb_right); | |
1155 | ||
1156 | KASSERT(left == right); | |
1157 | ||
1158 | return left + RB_BLACK_P(self); | |
1159 | } | |
1160 | ||
1161 | static bool | |
1162 | rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self, | |
1163 | const struct rb_node *prev, bool red_check) | |
1164 | { | |
1165 | const rb_tree_ops_t *rbto = rbt->rbt_ops; | |
1166 | rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes; | |
1167 | ||
1168 | KASSERT(!RB_SENTINEL_P(self)); | |
1169 | KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context, | |
1170 | RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0); | |
1171 | ||
1172 | /* | |
1173 | * Verify our relationship to our parent. | |
1174 | */ | |
1175 | if (RB_ROOT_P(rbt, self)) { | |
1176 | KASSERT(self == rbt->rbt_root); | |
1177 | KASSERT(RB_POSITION(self) == RB_DIR_LEFT); | |
1178 | KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self); | |
1179 | KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root); | |
1180 | } else { | |
1181 | int diff = (*compare_nodes)(rbto->rbto_context, | |
1182 | RB_NODETOITEM(rbto, self), | |
1183 | RB_NODETOITEM(rbto, RB_FATHER(self))); | |
1184 | ||
1185 | KASSERT(self != rbt->rbt_root); | |
1186 | KASSERT(!RB_FATHER_SENTINEL_P(self)); | |
1187 | if (RB_POSITION(self) == RB_DIR_LEFT) { | |
1188 | KASSERT(diff < 0); | |
1189 | KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self); | |
1190 | } else { | |
1191 | KASSERT(diff > 0); | |
1192 | KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self); | |
1193 | } | |
1194 | } | |
1195 | ||
1196 | /* | |
1197 | * Verify our position in the linked list against the tree itself. | |
1198 | */ | |
1199 | { | |
1200 | const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT); | |
1201 | const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT); | |
1202 | KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link)); | |
1203 | KASSERT(next0 == TAILQ_NEXT(self, rb_link)); | |
1204 | #ifndef RBSMALL | |
1205 | KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]); | |
1206 | KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]); | |
1207 | #endif | |
1208 | } | |
1209 | ||
1210 | /* | |
1211 | * The root must be black. | |
1212 | * There can never be two adjacent red nodes. | |
1213 | */ | |
1214 | if (red_check) { | |
1215 | KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self)); | |
1216 | (void) rb_tree_count_black(self); | |
1217 | if (RB_RED_P(self)) { | |
1218 | const struct rb_node *brother; | |
1219 | KASSERT(!RB_ROOT_P(rbt, self)); | |
1220 | brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER]; | |
1221 | KASSERT(RB_BLACK_P(RB_FATHER(self))); | |
1222 | /* | |
1223 | * I'm red and have no children, then I must either | |
1224 | * have no brother or my brother also be red and | |
1225 | * also have no children. (black count == 0) | |
1226 | */ | |
1227 | KASSERT(!RB_CHILDLESS_P(self) | |
1228 | || RB_SENTINEL_P(brother) | |
1229 | || RB_RED_P(brother) | |
1230 | || RB_CHILDLESS_P(brother)); | |
1231 | /* | |
1232 | * If I'm not childless, I must have two children | |
1233 | * and they must be both be black. | |
1234 | */ | |
1235 | KASSERT(RB_CHILDLESS_P(self) | |
1236 | || (RB_TWOCHILDREN_P(self) | |
1237 | && RB_BLACK_P(self->rb_left) | |
1238 | && RB_BLACK_P(self->rb_right))); | |
1239 | /* | |
1240 | * If I'm not childless, thus I have black children, | |
1241 | * then my brother must either be black or have two | |
1242 | * black children. | |
1243 | */ | |
1244 | KASSERT(RB_CHILDLESS_P(self) | |
1245 | || RB_BLACK_P(brother) | |
1246 | || (RB_TWOCHILDREN_P(brother) | |
1247 | && RB_BLACK_P(brother->rb_left) | |
1248 | && RB_BLACK_P(brother->rb_right))); | |
1249 | } else { | |
1250 | /* | |
1251 | * If I'm black and have one child, that child must | |
1252 | * be red and childless. | |
1253 | */ | |
1254 | KASSERT(RB_CHILDLESS_P(self) | |
1255 | || RB_TWOCHILDREN_P(self) | |
1256 | || (!RB_LEFT_SENTINEL_P(self) | |
1257 | && RB_RIGHT_SENTINEL_P(self) | |
1258 | && RB_RED_P(self->rb_left) | |
1259 | && RB_CHILDLESS_P(self->rb_left)) | |
1260 | || (!RB_RIGHT_SENTINEL_P(self) | |
1261 | && RB_LEFT_SENTINEL_P(self) | |
1262 | && RB_RED_P(self->rb_right) | |
1263 | && RB_CHILDLESS_P(self->rb_right))); | |
1264 | ||
1265 | /* | |
1266 | * If I'm a childless black node and my parent is | |
1267 | * black, my 2nd closet relative away from my parent | |
1268 | * is either red or has a red parent or red children. | |
1269 | */ | |
1270 | if (!RB_ROOT_P(rbt, self) | |
1271 | && RB_CHILDLESS_P(self) | |
1272 | && RB_BLACK_P(RB_FATHER(self))) { | |
1273 | const unsigned int which = RB_POSITION(self); | |
1274 | const unsigned int other = which ^ RB_DIR_OTHER; | |
1275 | const struct rb_node *relative0, *relative; | |
1276 | ||
1277 | relative0 = rb_tree_iterate_const(rbt, | |
1278 | self, other); | |
1279 | KASSERT(relative0 != NULL); | |
1280 | relative = rb_tree_iterate_const(rbt, | |
1281 | relative0, other); | |
1282 | KASSERT(relative != NULL); | |
1283 | KASSERT(RB_SENTINEL_P(relative->rb_nodes[which])); | |
1284 | #if 0 | |
1285 | KASSERT(RB_RED_P(relative) | |
1286 | || RB_RED_P(relative->rb_left) | |
1287 | || RB_RED_P(relative->rb_right) | |
1288 | || RB_RED_P(RB_FATHER(relative))); | |
1289 | #endif | |
1290 | } | |
1291 | } | |
1292 | /* | |
1293 | * A grandparent's children must be real nodes and not | |
1294 | * sentinels. First check out grandparent. | |
1295 | */ | |
1296 | KASSERT(RB_ROOT_P(rbt, self) | |
1297 | || RB_ROOT_P(rbt, RB_FATHER(self)) | |
1298 | || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self)))); | |
1299 | /* | |
1300 | * If we are have grandchildren on our left, then | |
1301 | * we must have a child on our right. | |
1302 | */ | |
1303 | KASSERT(RB_LEFT_SENTINEL_P(self) | |
1304 | || RB_CHILDLESS_P(self->rb_left) | |
1305 | || !RB_RIGHT_SENTINEL_P(self)); | |
1306 | /* | |
1307 | * If we are have grandchildren on our right, then | |
1308 | * we must have a child on our left. | |
1309 | */ | |
1310 | KASSERT(RB_RIGHT_SENTINEL_P(self) | |
1311 | || RB_CHILDLESS_P(self->rb_right) | |
1312 | || !RB_LEFT_SENTINEL_P(self)); | |
1313 | ||
1314 | /* | |
1315 | * If we have a child on the left and it doesn't have two | |
1316 | * children make sure we don't have great-great-grandchildren on | |
1317 | * the right. | |
1318 | */ | |
1319 | KASSERT(RB_TWOCHILDREN_P(self->rb_left) | |
1320 | || RB_CHILDLESS_P(self->rb_right) | |
1321 | || RB_CHILDLESS_P(self->rb_right->rb_left) | |
1322 | || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left) | |
1323 | || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right) | |
1324 | || RB_CHILDLESS_P(self->rb_right->rb_right) | |
1325 | || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left) | |
1326 | || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right)); | |
1327 | ||
1328 | /* | |
1329 | * If we have a child on the right and it doesn't have two | |
1330 | * children make sure we don't have great-great-grandchildren on | |
1331 | * the left. | |
1332 | */ | |
1333 | KASSERT(RB_TWOCHILDREN_P(self->rb_right) | |
1334 | || RB_CHILDLESS_P(self->rb_left) | |
1335 | || RB_CHILDLESS_P(self->rb_left->rb_left) | |
1336 | || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left) | |
1337 | || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right) | |
1338 | || RB_CHILDLESS_P(self->rb_left->rb_right) | |
1339 | || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left) | |
1340 | || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right)); | |
1341 | ||
1342 | /* | |
1343 | * If we are fully interior node, then our predecessors and | |
1344 | * successors must have no children in our direction. | |
1345 | */ | |
1346 | if (RB_TWOCHILDREN_P(self)) { | |
1347 | const struct rb_node *prev0; | |
1348 | const struct rb_node *next0; | |
1349 | ||
1350 | prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT); | |
1351 | KASSERT(prev0 != NULL); | |
1352 | KASSERT(RB_RIGHT_SENTINEL_P(prev0)); | |
1353 | ||
1354 | next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT); | |
1355 | KASSERT(next0 != NULL); | |
1356 | KASSERT(RB_LEFT_SENTINEL_P(next0)); | |
1357 | } | |
1358 | } | |
1359 | ||
1360 | return true; | |
1361 | } | |
1362 | ||
1363 | void | |
1364 | rb_tree_check(const struct rb_tree *rbt, bool red_check) | |
1365 | { | |
1366 | const struct rb_node *self; | |
1367 | const struct rb_node *prev; | |
1368 | #ifdef RBSTATS | |
1369 | unsigned int count = 0; | |
1370 | #endif | |
1371 | ||
1372 | KASSERT(rbt->rbt_root != NULL); | |
1373 | KASSERT(RB_LEFT_P(rbt->rbt_root)); | |
1374 | ||
1375 | #if defined(RBSTATS) && !defined(RBSMALL) | |
1376 | KASSERT(rbt->rbt_count > 1 | |
1377 | || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]); | |
1378 | #endif | |
1379 | ||
1380 | prev = NULL; | |
1381 | TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { | |
1382 | rb_tree_check_node(rbt, self, prev, false); | |
1383 | #ifdef RBSTATS | |
1384 | count++; | |
1385 | #endif | |
1386 | } | |
1387 | #ifdef RBSTATS | |
1388 | KASSERT(rbt->rbt_count == count); | |
1389 | #endif | |
1390 | if (red_check) { | |
1391 | KASSERT(RB_BLACK_P(rbt->rbt_root)); | |
1392 | KASSERT(RB_SENTINEL_P(rbt->rbt_root) | |
1393 | || rb_tree_count_black(rbt->rbt_root)); | |
1394 | ||
1395 | /* | |
1396 | * The root must be black. | |
1397 | * There can never be two adjacent red nodes. | |
1398 | */ | |
1399 | TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { | |
1400 | rb_tree_check_node(rbt, self, NULL, true); | |
1401 | } | |
1402 | } | |
1403 | } | |
1404 | #endif /* RBDEBUG */ | |
1405 | ||
1406 | #ifdef RBSTATS | |
1407 | static void | |
1408 | rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self, | |
1409 | size_t *depths, size_t depth) | |
1410 | { | |
1411 | if (RB_SENTINEL_P(self)) | |
1412 | return; | |
1413 | ||
1414 | if (RB_TWOCHILDREN_P(self)) { | |
1415 | rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1); | |
1416 | rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1); | |
1417 | return; | |
1418 | } | |
1419 | depths[depth]++; | |
1420 | if (!RB_LEFT_SENTINEL_P(self)) { | |
1421 | rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1); | |
1422 | } | |
1423 | if (!RB_RIGHT_SENTINEL_P(self)) { | |
1424 | rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1); | |
1425 | } | |
1426 | } | |
1427 | ||
1428 | void | |
1429 | rb_tree_depths(const struct rb_tree *rbt, size_t *depths) | |
1430 | { | |
1431 | rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1); | |
1432 | } | |
1433 | #endif /* RBSTATS */ | |
1434 | ||
1435 | size_t rb_tree_count(rb_tree_t *rbt) { | |
1436 | if (__predict_false(rbt == NULL)) | |
1437 | return 0; | |
1438 | ||
1439 | return rbt->rbt_count; | |
1440 | } |