]> git.saurik.com Git - apple/libc.git/blame - gen/FreeBSD/rand48.3
Libc-1272.200.26.tar.gz
[apple/libc.git] / gen / FreeBSD / rand48.3
CommitLineData
5b2abdfb
A
1.\" Copyright (c) 1993 Martin Birgmeier
2.\" All rights reserved.
3.\"
4.\" You may redistribute unmodified or modified versions of this source
5.\" code provided that the above copyright notice and this and the
6.\" following conditions are retained.
7.\"
8.\" This software is provided ``as is'', and comes with no warranties
9.\" of any kind. I shall in no event be liable for anything that happens
10.\" to anyone/anything when using this software.
11.\"
12.\" @(#)rand48.3 V1.0 MB 8 Oct 1993
1f2f436a 13.\" $FreeBSD: src/lib/libc/gen/rand48.3,v 1.17 2005/01/20 09:17:02 ru Exp $
5b2abdfb
A
14.\"
15.Dd October 8, 1993
16.Dt RAND48 3
17.Os
18.Sh NAME
19.Nm drand48 ,
20.Nm erand48 ,
ad3c9f2a
A
21.Nm jrand48 ,
22.Nm lcong48 ,
5b2abdfb 23.Nm lrand48 ,
5b2abdfb 24.Nm mrand48 ,
ad3c9f2a 25.Nm nrand48 ,
5b2abdfb 26.Nm seed48 ,
ad3c9f2a 27.Nm srand48
5b2abdfb
A
28.Nd pseudo random number generators and initialization routines
29.Sh LIBRARY
30.Lb libc
31.Sh SYNOPSIS
32.In stdlib.h
33.Ft double
ad3c9f2a
A
34.Fo drand48
35.Fa void
36.Fc
5b2abdfb 37.Ft double
ad3c9f2a
A
38.Fo erand48
39.Fa "unsigned short xsubi[3]"
40.Fc
5b2abdfb 41.Ft long
ad3c9f2a
A
42.Fo jrand48
43.Fa "unsigned short xsubi[3]"
44.Fc
45.Ft void
46.Fo lcong48
47.Fa "unsigned short param[7]"
48.Fc
5b2abdfb 49.Ft long
ad3c9f2a
A
50.Fo lrand48
51.Fa void
52.Fc
5b2abdfb 53.Ft long
ad3c9f2a
A
54.Fo mrand48
55.Fa void
56.Fc
5b2abdfb 57.Ft long
ad3c9f2a
A
58.Fo nrand48
59.Fa "unsigned short xsubi[3]"
60.Fc
5b2abdfb 61.Ft "unsigned short *"
ad3c9f2a
A
62.Fo seed48
63.Fa "unsigned short seed16v[3]"
64.Fc
5b2abdfb 65.Ft void
ad3c9f2a
A
66.Fo srand48
67.Fa "long seedval"
68.Fc
5b2abdfb
A
69.Sh DESCRIPTION
70The
71.Fn rand48
ad3c9f2a 72family of functions generates pseudo-random numbers, using a linear
5b2abdfb
A
73congruential algorithm working on integers 48 bits in size.
74The
75particular formula employed is
ad3c9f2a
A
76r(n+1) = (a * r(n) + c) mod m.
77The default value for the multiplicand `a' is 0x5deece66d (25214903917).
78The default value for the the addend `c' is 0xb (11).
5b2abdfb
A
79The modulo is always fixed at m = 2 ** 48.
80r(n) is called the seed of the random number generator.
81.Pp
ad3c9f2a 82For the six generator routines described next, the first
5b2abdfb
A
83computational step is to perform a single iteration of the algorithm.
84.Pp
9385eb3d 85The
5b2abdfb
A
86.Fn drand48
87and
88.Fn erand48
9385eb3d 89functions
5b2abdfb
A
90return values of type double.
91The full 48 bits of r(n+1) are
92loaded into the mantissa of the returned value, with the exponent set
93such that the values produced lie in the interval [0.0, 1.0).
94.Pp
9385eb3d 95The
5b2abdfb
A
96.Fn lrand48
97and
98.Fn nrand48
9385eb3d 99functions
5b2abdfb 100return values of type long in the range
3d9156a7
A
101[0, 2**31-1].
102The high-order (31) bits of
5b2abdfb
A
103r(n+1) are loaded into the lower bits of the returned value, with
104the topmost (sign) bit set to zero.
105.Pp
9385eb3d 106The
5b2abdfb
A
107.Fn mrand48
108and
109.Fn jrand48
9385eb3d 110functions
5b2abdfb 111return values of type long in the range
3d9156a7
A
112[-2**31, 2**31-1].
113The high-order (32) bits of
5b2abdfb
A
114r(n+1) are loaded into the returned value.
115.Pp
9385eb3d 116The
5b2abdfb
A
117.Fn drand48 ,
118.Fn lrand48 ,
119and
120.Fn mrand48
9385eb3d 121functions
3d9156a7
A
122use an internal buffer to store r(n).
123For these functions
5b2abdfb
A
124the initial value of r(0) = 0x1234abcd330e = 20017429951246.
125.Pp
126On the other hand,
127.Fn erand48 ,
128.Fn nrand48 ,
129and
130.Fn jrand48
131use a user-supplied buffer to store the seed r(n),
132which consists of an array of 3 shorts, where the zeroth member
133holds the least significant bits.
134.Pp
135All functions share the same multiplicand and addend.
136.Pp
9385eb3d 137The
5b2abdfb 138.Fn srand48
9385eb3d 139function
5b2abdfb
A
140is used to initialize the internal buffer r(n) of
141.Fn drand48 ,
142.Fn lrand48 ,
143and
ad3c9f2a 144.Fn mrand48 ,
5b2abdfb
A
145such that the 32 bits of the seed value are copied into the upper 32 bits
146of r(n), with the lower 16 bits of r(n) arbitrarily being set to 0x330e.
147Additionally, the constant multiplicand and addend of the algorithm are
148reset to the default values given above.
149.Pp
9385eb3d 150The
5b2abdfb 151.Fn seed48
9385eb3d 152function
5b2abdfb
A
153also initializes the internal buffer r(n) of
154.Fn drand48 ,
155.Fn lrand48 ,
156and
157.Fn mrand48 ,
158but here all 48 bits of the seed can be specified in an array of 3 shorts,
159where the zeroth member specifies the lowest bits.
160Again,
161the constant multiplicand and addend of the algorithm are
162reset to the default values given above.
9385eb3d 163The
5b2abdfb 164.Fn seed48
9385eb3d 165function
5b2abdfb 166returns a pointer to an array of 3 shorts which contains the old seed.
ad3c9f2a 167This array is statically allocated; thus, its contents are lost after
5b2abdfb
A
168each new call to
169.Fn seed48 .
170.Pp
171Finally,
172.Fn lcong48
173allows full control over the multiplicand and addend used in
174.Fn drand48 ,
175.Fn erand48 ,
176.Fn lrand48 ,
177.Fn nrand48 ,
178.Fn mrand48 ,
179and
180.Fn jrand48 ,
181and the seed used in
182.Fn drand48 ,
183.Fn lrand48 ,
184and
185.Fn mrand48 .
9385eb3d 186An array of 7 shorts is passed as argument; the first three shorts are
5b2abdfb
A
187used to initialize the seed; the second three are used to initialize the
188multiplicand; and the last short is used to initialize the addend.
189It is thus not possible to use values greater than 0xffff as the addend.
190.Pp
191Note that all three methods of seeding the random number generator
192always also set the multiplicand and addend for any of the six
193generator calls.
194.Pp
195For a more powerful random number generator, see
196.Xr random 3 .
5b2abdfb
A
197.Sh SEE ALSO
198.Xr rand 3 ,
199.Xr random 3
1f2f436a
A
200.Sh AUTHORS
201.An Martin Birgmeier