]>
Commit | Line | Data |
---|---|---|
e9ce8d39 | 1 | /* |
224c7076 | 2 | * Copyright (c) 1999, 2003, 2006, 2007 Apple Inc. All rights reserved. |
e9ce8d39 A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
734aad71 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. Please obtain a copy of the License at | |
10 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
11 | * file. | |
12 | * | |
13 | * The Original Code and all software distributed under the License are | |
14 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
e9ce8d39 A |
15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
734aad71 A |
17 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
18 | * Please see the License for the specific language governing rights and | |
19 | * limitations under the License. | |
e9ce8d39 A |
20 | * |
21 | * @APPLE_LICENSE_HEADER_END@ | |
22 | */ | |
23 | ||
24 | #include <errno.h> | |
25 | #include <sys/time.h> | |
e9ce8d39 | 26 | #include <mach/mach_error.h> |
59e0d9fe | 27 | #include <mach/mach_time.h> |
e9ce8d39 A |
28 | #include <stdio.h> |
29 | ||
3d9156a7 | 30 | |
224c7076 | 31 | #if __DARWIN_UNIX03 |
3d9156a7 | 32 | #include "pthread_internals.h" |
224c7076 | 33 | #include <mach/clock.h> |
3d9156a7 A |
34 | |
35 | extern int __unix_conforming; | |
36 | extern mach_port_t clock_port; | |
37 | extern semaphore_t clock_sem; | |
224c7076 A |
38 | #ifdef VARIANT_CANCELABLE |
39 | extern void _pthread_testcancel(pthread_t thread, int isconforming); | |
40 | extern int __semwait_signal(int cond_sem, int mutex_sem, int timeout, int relative, time_t tv_sec, __int32_t tv_nsec); | |
41 | #define SEMWAIT_SIGNAL __semwait_signal | |
42 | #else /* !VARIANT_CANCELABLE */ | |
43 | extern int __semwait_signal_nocancel(int cond_sem, int mutex_sem, int timeout, int relative, time_t tv_sec, __int32_t tv_nsec); | |
44 | #define SEMWAIT_SIGNAL __semwait_signal_nocancel | |
45 | #endif /* VARIANT_CANCELABLE */ | |
3d9156a7 A |
46 | |
47 | int | |
48 | nanosleep(const struct timespec *requested_time, struct timespec *remaining_time) { | |
49 | kern_return_t kret; | |
50 | int ret; | |
51 | mach_timespec_t remain; | |
52 | mach_timespec_t current; | |
53 | ||
54 | if (__unix_conforming == 0) | |
55 | __unix_conforming = 1; | |
224c7076 A |
56 | |
57 | #ifdef VARIANT_CANCELABLE | |
58 | _pthread_testcancel(pthread_self(), 1); | |
59 | #endif /* VARIANT_CANCELABLE */ | |
60 | ||
3d9156a7 A |
61 | if ((requested_time == NULL) || (requested_time->tv_sec < 0) || (requested_time->tv_nsec >= NSEC_PER_SEC)) { |
62 | errno = EINVAL; | |
63 | return -1; | |
64 | } | |
65 | ||
224c7076 | 66 | |
3d9156a7 A |
67 | if (remaining_time != NULL) { |
68 | kret = clock_get_time(clock_port, ¤t); | |
69 | if (kret != KERN_SUCCESS) { | |
224c7076 | 70 | fprintf(stderr, "clock_get_time() failed: %s\n", mach_error_string(kret)); |
3d9156a7 A |
71 | return -1; |
72 | } | |
73 | } | |
224c7076 | 74 | ret = SEMWAIT_SIGNAL(clock_sem, MACH_PORT_NULL, 1, 1, requested_time->tv_sec, requested_time->tv_nsec); |
3d9156a7 A |
75 | if (ret < 0) { |
76 | if (errno == ETIMEDOUT) { | |
77 | return 0; | |
78 | } else if (errno == EINTR) { | |
79 | if (remaining_time != NULL) { | |
80 | ret = clock_get_time(clock_port, &remain); | |
81 | if (ret != KERN_SUCCESS) { | |
82 | fprintf(stderr, "clock_get_time() failed: %s\n", mach_error_string(ret)); | |
83 | return -1; | |
84 | } | |
85 | /* This depends on the layout of a mach_timespec_t and timespec_t being equivalent */ | |
86 | ADD_MACH_TIMESPEC(¤t, requested_time); | |
87 | SUB_MACH_TIMESPEC(¤t, &remain); | |
88 | remaining_time->tv_sec = current.tv_sec; | |
89 | remaining_time->tv_nsec = current.tv_nsec; | |
90 | } | |
91 | } else { | |
92 | errno = EINVAL; | |
93 | } | |
94 | } | |
95 | return -1; | |
96 | } | |
97 | ||
98 | ||
224c7076 A |
99 | #else /* !__DARWIN_UNIX03 */ |
100 | ||
101 | typedef struct { | |
102 | uint64_t high; | |
103 | uint64_t low; | |
104 | } uint128_t; | |
105 | ||
106 | /* 128-bit addition: acc += add */ | |
107 | static inline void | |
108 | add128_128(uint128_t *acc, uint128_t *add) | |
109 | { | |
110 | acc->high += add->high; | |
111 | acc->low += add->low; | |
112 | if(acc->low < add->low) | |
113 | acc->high++; // carry | |
114 | } | |
115 | ||
116 | /* 128-bit subtraction: acc -= sub */ | |
117 | static inline void | |
118 | sub128_128(uint128_t *acc, uint128_t *sub) | |
119 | { | |
120 | acc->high -= sub->high; | |
121 | if(acc->low < sub->low) | |
122 | acc->high--; // borrow | |
123 | acc->low -= sub->low; | |
124 | } | |
125 | ||
126 | #define TWO64 (((double)(1ULL << 32)) * ((double)(1ULL << 32))) | |
127 | ||
128 | static inline double | |
129 | uint128_double(uint128_t *u) | |
130 | { | |
131 | return TWO64 * u->high + u->low; // may loses precision | |
132 | } | |
133 | ||
134 | /* 64x64 -> 128 bit multiplication */ | |
135 | static inline void | |
136 | mul64x64(uint64_t x, uint64_t y, uint128_t *prod) | |
137 | { | |
138 | uint128_t add; | |
139 | /* | |
140 | * Split the two 64-bit multiplicands into 32-bit parts: | |
141 | * x => 2^32 * x1 + x2 | |
142 | * y => 2^32 * y1 + y2 | |
143 | */ | |
144 | uint32_t x1 = (uint32_t)(x >> 32); | |
145 | uint32_t x2 = (uint32_t)x; | |
146 | uint32_t y1 = (uint32_t)(y >> 32); | |
147 | uint32_t y2 = (uint32_t)y; | |
148 | /* | |
149 | * direct multiplication: | |
150 | * x * y => 2^64 * (x1 * y1) + 2^32 (x1 * y2 + x2 * y1) + (x2 * y2) | |
151 | * The first and last terms are direct assignmenet into the uint128_t | |
152 | * structure. Then we add the middle two terms separately, to avoid | |
153 | * 64-bit overflow. (We could use the Karatsuba algorithm to save | |
154 | * one multiply, but it is harder to deal with 64-bit overflows.) | |
155 | */ | |
156 | prod->high = (uint64_t)x1 * (uint64_t)y1; | |
157 | prod->low = (uint64_t)x2 * (uint64_t)y2; | |
158 | add.low = (uint64_t)x1 * (uint64_t)y2; | |
159 | add.high = (add.low >> 32); | |
160 | add.low <<= 32; | |
161 | add128_128(prod, &add); | |
162 | add.low = (uint64_t)x2 * (uint64_t)y1; | |
163 | add.high = (add.low >> 32); | |
164 | add.low <<= 32; | |
165 | add128_128(prod, &add); | |
166 | } | |
167 | ||
168 | /* calculate (x * y / divisor), using 128-bit internal calculations */ | |
169 | static int | |
170 | muldiv128(uint64_t x, uint64_t y, uint64_t divisor, uint64_t *res) | |
171 | { | |
172 | uint128_t temp; | |
173 | uint128_t divisor128 = {0, divisor}; | |
174 | uint64_t result = 0; | |
175 | double recip; | |
176 | ||
177 | /* calculate (x * y) */ | |
178 | mul64x64(x, y, &temp); | |
179 | /* | |
180 | * Now divide by the divisor. We use floating point to calculate an | |
181 | * approximate answer and update the results. Then we iterate and | |
182 | * calculate a correction from the difference. | |
183 | */ | |
184 | recip = 1.0 / ((double)divisor); | |
185 | while(temp.high || temp.low >= divisor) { | |
186 | uint128_t backmul; | |
187 | uint64_t uapprox; | |
188 | double approx = uint128_double(&temp) * recip; | |
189 | ||
190 | if(approx > __LONG_LONG_MAX__) | |
191 | return 0; // answer overflows 64-bits | |
192 | uapprox = (uint64_t)approx; | |
193 | mul64x64(uapprox, divisor, &backmul); | |
194 | /* | |
195 | * Because we are using unsigned integers, we need to approach the | |
196 | * answer from the lesser side. So if our estimate is too large | |
197 | * we need to decrease it until it is smaller. | |
198 | */ | |
199 | while(backmul.high > temp.high || backmul.high == temp.high && backmul.low > temp.low) { | |
200 | sub128_128(&backmul, &divisor128); | |
201 | uapprox--; | |
202 | } | |
203 | sub128_128(&temp, &backmul); | |
204 | result += uapprox; | |
205 | } | |
206 | *res = result; | |
207 | return 1; | |
208 | } | |
3d9156a7 | 209 | |
e9ce8d39 A |
210 | int |
211 | nanosleep(const struct timespec *requested_time, struct timespec *remaining_time) { | |
212 | kern_return_t ret; | |
224c7076 A |
213 | uint64_t end, units; |
214 | static struct mach_timebase_info info = {0, 0}; | |
215 | static int unity; | |
e9ce8d39 A |
216 | |
217 | if ((requested_time == NULL) || (requested_time->tv_sec < 0) || (requested_time->tv_nsec > NSEC_PER_SEC)) { | |
218 | errno = EINVAL; | |
219 | return -1; | |
220 | } | |
221 | ||
224c7076 | 222 | if (info.denom == 0) { |
59e0d9fe A |
223 | ret = mach_timebase_info(&info); |
224 | if (ret != KERN_SUCCESS) { | |
225 | fprintf(stderr, "mach_timebase_info() failed: %s\n", mach_error_string(ret)); | |
226 | errno = EAGAIN; | |
227 | return -1; | |
228 | } | |
224c7076 A |
229 | /* If numer == denom == 1 (as in intel), no conversion needed */ |
230 | unity = (info.numer == info.denom); | |
e9ce8d39 | 231 | } |
59e0d9fe | 232 | |
224c7076 A |
233 | if(unity) |
234 | units = (uint64_t)requested_time->tv_sec * NSEC_PER_SEC; | |
235 | else if(!muldiv128((uint64_t)info.denom * NSEC_PER_SEC, | |
236 | (uint64_t)requested_time->tv_sec, | |
237 | (uint64_t)info.numer, | |
238 | &units)) | |
239 | { | |
240 | errno = EINVAL; | |
241 | return -1; | |
242 | } | |
243 | end = mach_absolute_time() | |
244 | + units | |
245 | + (uint64_t)info.denom * requested_time->tv_nsec / info.numer; | |
59e0d9fe | 246 | ret = mach_wait_until(end); |
e9ce8d39 A |
247 | if (ret != KERN_SUCCESS) { |
248 | if (ret == KERN_ABORTED) { | |
249 | errno = EINTR; | |
250 | if (remaining_time != NULL) { | |
59e0d9fe | 251 | uint64_t now = mach_absolute_time(); |
224c7076 A |
252 | if (now >= end) { |
253 | remaining_time->tv_sec = 0; | |
254 | remaining_time->tv_nsec = 0; | |
255 | } else { | |
256 | if(unity) | |
257 | units = (end - now); | |
258 | else | |
259 | muldiv128((uint64_t)info.numer, | |
260 | (end - now), | |
261 | (uint64_t)info.denom, | |
262 | &units); // this can't overflow | |
263 | remaining_time->tv_sec = units / NSEC_PER_SEC; | |
264 | remaining_time->tv_nsec = units % NSEC_PER_SEC; | |
265 | } | |
e9ce8d39 A |
266 | } |
267 | } else { | |
268 | errno = EINVAL; | |
269 | } | |
270 | return -1; | |
271 | } | |
272 | return 0; | |
273 | } | |
3d9156a7 A |
274 | |
275 | ||
224c7076 | 276 | #endif /* __DARWIN_UNIX03 */ |