]>
Commit | Line | Data |
---|---|---|
9385eb3d A |
1 | /**************************************************************** |
2 | ||
3 | The author of this software is David M. Gay. | |
4 | ||
5 | Copyright (C) 1998, 1999 by Lucent Technologies | |
6 | All Rights Reserved | |
7 | ||
8 | Permission to use, copy, modify, and distribute this software and | |
9 | its documentation for any purpose and without fee is hereby | |
10 | granted, provided that the above copyright notice appear in all | |
11 | copies and that both that the copyright notice and this | |
12 | permission notice and warranty disclaimer appear in supporting | |
13 | documentation, and that the name of Lucent or any of its entities | |
14 | not be used in advertising or publicity pertaining to | |
15 | distribution of the software without specific, written prior | |
16 | permission. | |
17 | ||
18 | LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, | |
19 | INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. | |
20 | IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY | |
21 | SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |
22 | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER | |
23 | IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, | |
24 | ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF | |
25 | THIS SOFTWARE. | |
26 | ||
27 | ****************************************************************/ | |
28 | ||
29 | /* Please send bug reports to | |
30 | David M. Gay | |
31 | Bell Laboratories, Room 2C-463 | |
32 | 600 Mountain Avenue | |
33 | Murray Hill, NJ 07974-0636 | |
34 | U.S.A. | |
35 | dmg@bell-labs.com | |
36 | */ | |
37 | ||
38 | #include "gdtoaimp.h" | |
39 | ||
40 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. | |
41 | * | |
42 | * Inspired by "How to Print Floating-Point Numbers Accurately" by | |
43 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. | |
44 | * | |
45 | * Modifications: | |
46 | * 1. Rather than iterating, we use a simple numeric overestimate | |
47 | * to determine k = floor(log10(d)). We scale relevant | |
48 | * quantities using O(log2(k)) rather than O(k) multiplications. | |
49 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't | |
50 | * try to generate digits strictly left to right. Instead, we | |
51 | * compute with fewer bits and propagate the carry if necessary | |
52 | * when rounding the final digit up. This is often faster. | |
53 | * 3. Under the assumption that input will be rounded nearest, | |
54 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. | |
55 | * That is, we allow equality in stopping tests when the | |
56 | * round-nearest rule will give the same floating-point value | |
57 | * as would satisfaction of the stopping test with strict | |
58 | * inequality. | |
59 | * 4. We remove common factors of powers of 2 from relevant | |
60 | * quantities. | |
61 | * 5. When converting floating-point integers less than 1e16, | |
62 | * we use floating-point arithmetic rather than resorting | |
63 | * to multiple-precision integers. | |
64 | * 6. When asked to produce fewer than 15 digits, we first try | |
65 | * to get by with floating-point arithmetic; we resort to | |
66 | * multiple-precision integer arithmetic only if we cannot | |
67 | * guarantee that the floating-point calculation has given | |
68 | * the correctly rounded result. For k requested digits and | |
69 | * "uniformly" distributed input, the probability is | |
70 | * something like 10^(k-15) that we must resort to the Long | |
71 | * calculation. | |
72 | */ | |
73 | ||
74 | #ifdef Honor_FLT_ROUNDS | |
75 | #define Rounding rounding | |
76 | #undef Check_FLT_ROUNDS | |
77 | #define Check_FLT_ROUNDS | |
78 | #else | |
79 | #define Rounding Flt_Rounds | |
80 | #endif | |
81 | ||
82 | char * | |
83 | dtoa | |
84 | #ifdef KR_headers | |
85 | (d, mode, ndigits, decpt, sign, rve) | |
86 | double d; int mode, ndigits, *decpt, *sign; char **rve; | |
87 | #else | |
88 | (double d, int mode, int ndigits, int *decpt, int *sign, char **rve) | |
89 | #endif | |
90 | { | |
91 | /* Arguments ndigits, decpt, sign are similar to those | |
92 | of ecvt and fcvt; trailing zeros are suppressed from | |
93 | the returned string. If not null, *rve is set to point | |
94 | to the end of the return value. If d is +-Infinity or NaN, | |
95 | then *decpt is set to 9999. | |
96 | ||
97 | mode: | |
98 | 0 ==> shortest string that yields d when read in | |
99 | and rounded to nearest. | |
100 | 1 ==> like 0, but with Steele & White stopping rule; | |
101 | e.g. with IEEE P754 arithmetic , mode 0 gives | |
102 | 1e23 whereas mode 1 gives 9.999999999999999e22. | |
103 | 2 ==> max(1,ndigits) significant digits. This gives a | |
104 | return value similar to that of ecvt, except | |
105 | that trailing zeros are suppressed. | |
106 | 3 ==> through ndigits past the decimal point. This | |
107 | gives a return value similar to that from fcvt, | |
108 | except that trailing zeros are suppressed, and | |
109 | ndigits can be negative. | |
110 | 4,5 ==> similar to 2 and 3, respectively, but (in | |
111 | round-nearest mode) with the tests of mode 0 to | |
112 | possibly return a shorter string that rounds to d. | |
113 | With IEEE arithmetic and compilation with | |
114 | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same | |
115 | as modes 2 and 3 when FLT_ROUNDS != 1. | |
116 | 6-9 ==> Debugging modes similar to mode - 4: don't try | |
117 | fast floating-point estimate (if applicable). | |
118 | ||
119 | Values of mode other than 0-9 are treated as mode 0. | |
120 | ||
121 | Sufficient space is allocated to the return value | |
122 | to hold the suppressed trailing zeros. | |
123 | */ | |
124 | ||
125 | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, | |
126 | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, | |
127 | spec_case, try_quick; | |
128 | Long L; | |
129 | #ifndef Sudden_Underflow | |
130 | int denorm; | |
131 | ULong x; | |
132 | #endif | |
133 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; | |
134 | double d2, ds, eps; | |
135 | char *s, *s0; | |
136 | #ifdef Honor_FLT_ROUNDS | |
137 | int rounding; | |
138 | #endif | |
139 | #ifdef SET_INEXACT | |
140 | int inexact, oldinexact; | |
141 | #endif | |
142 | ||
143 | #ifndef MULTIPLE_THREADS | |
144 | if (dtoa_result) { | |
145 | freedtoa(dtoa_result); | |
146 | dtoa_result = 0; | |
147 | } | |
148 | #endif | |
149 | ||
150 | if (word0(d) & Sign_bit) { | |
151 | /* set sign for everything, including 0's and NaNs */ | |
152 | *sign = 1; | |
153 | word0(d) &= ~Sign_bit; /* clear sign bit */ | |
154 | } | |
155 | else | |
156 | *sign = 0; | |
157 | ||
158 | #if defined(IEEE_Arith) + defined(VAX) | |
159 | #ifdef IEEE_Arith | |
160 | if ((word0(d) & Exp_mask) == Exp_mask) | |
161 | #else | |
162 | if (word0(d) == 0x8000) | |
163 | #endif | |
164 | { | |
165 | /* Infinity or NaN */ | |
166 | *decpt = 9999; | |
167 | #ifdef IEEE_Arith | |
168 | if (!word1(d) && !(word0(d) & 0xfffff)) | |
169 | return nrv_alloc("Infinity", rve, 8); | |
170 | #endif | |
171 | return nrv_alloc("NaN", rve, 3); | |
172 | } | |
173 | #endif | |
174 | #ifdef IBM | |
175 | dval(d) += 0; /* normalize */ | |
176 | #endif | |
177 | if (!dval(d)) { | |
178 | *decpt = 1; | |
179 | return nrv_alloc("0", rve, 1); | |
180 | } | |
181 | ||
182 | #ifdef SET_INEXACT | |
183 | try_quick = oldinexact = get_inexact(); | |
184 | inexact = 1; | |
185 | #endif | |
186 | #ifdef Honor_FLT_ROUNDS | |
187 | if ((rounding = Flt_Rounds) >= 2) { | |
188 | if (*sign) | |
189 | rounding = rounding == 2 ? 0 : 2; | |
190 | else | |
191 | if (rounding != 2) | |
192 | rounding = 0; | |
193 | } | |
194 | #endif | |
195 | ||
196 | b = d2b(dval(d), &be, &bbits); | |
197 | #ifdef Sudden_Underflow | |
198 | i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); | |
199 | #else | |
200 | if (( i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) { | |
201 | #endif | |
202 | dval(d2) = dval(d); | |
203 | word0(d2) &= Frac_mask1; | |
204 | word0(d2) |= Exp_11; | |
205 | #ifdef IBM | |
206 | if (( j = 11 - hi0bits(word0(d2) & Frac_mask) )!=0) | |
207 | dval(d2) /= 1 << j; | |
208 | #endif | |
209 | ||
210 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 | |
211 | * log10(x) = log(x) / log(10) | |
212 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) | |
213 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) | |
214 | * | |
215 | * This suggests computing an approximation k to log10(d) by | |
216 | * | |
217 | * k = (i - Bias)*0.301029995663981 | |
218 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); | |
219 | * | |
220 | * We want k to be too large rather than too small. | |
221 | * The error in the first-order Taylor series approximation | |
222 | * is in our favor, so we just round up the constant enough | |
223 | * to compensate for any error in the multiplication of | |
224 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, | |
225 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, | |
226 | * adding 1e-13 to the constant term more than suffices. | |
227 | * Hence we adjust the constant term to 0.1760912590558. | |
228 | * (We could get a more accurate k by invoking log10, | |
229 | * but this is probably not worthwhile.) | |
230 | */ | |
231 | ||
232 | i -= Bias; | |
233 | #ifdef IBM | |
234 | i <<= 2; | |
235 | i += j; | |
236 | #endif | |
237 | #ifndef Sudden_Underflow | |
238 | denorm = 0; | |
239 | } | |
240 | else { | |
241 | /* d is denormalized */ | |
242 | ||
243 | i = bbits + be + (Bias + (P-1) - 1); | |
244 | x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32 | |
245 | : word1(d) << 32 - i; | |
246 | dval(d2) = x; | |
247 | word0(d2) -= 31*Exp_msk1; /* adjust exponent */ | |
248 | i -= (Bias + (P-1) - 1) + 1; | |
249 | denorm = 1; | |
250 | } | |
251 | #endif | |
252 | ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; | |
253 | k = (int)ds; | |
254 | if (ds < 0. && ds != k) | |
255 | k--; /* want k = floor(ds) */ | |
256 | k_check = 1; | |
257 | if (k >= 0 && k <= Ten_pmax) { | |
258 | if (dval(d) < tens[k]) | |
259 | k--; | |
260 | k_check = 0; | |
261 | } | |
262 | j = bbits - i - 1; | |
263 | if (j >= 0) { | |
264 | b2 = 0; | |
265 | s2 = j; | |
266 | } | |
267 | else { | |
268 | b2 = -j; | |
269 | s2 = 0; | |
270 | } | |
271 | if (k >= 0) { | |
272 | b5 = 0; | |
273 | s5 = k; | |
274 | s2 += k; | |
275 | } | |
276 | else { | |
277 | b2 -= k; | |
278 | b5 = -k; | |
279 | s5 = 0; | |
280 | } | |
281 | if (mode < 0 || mode > 9) | |
282 | mode = 0; | |
283 | ||
284 | #ifndef SET_INEXACT | |
285 | #ifdef Check_FLT_ROUNDS | |
286 | try_quick = Rounding == 1; | |
287 | #else | |
288 | try_quick = 1; | |
289 | #endif | |
290 | #endif /*SET_INEXACT*/ | |
291 | ||
292 | if (mode > 5) { | |
293 | mode -= 4; | |
294 | try_quick = 0; | |
295 | } | |
296 | leftright = 1; | |
297 | switch(mode) { | |
298 | case 0: | |
299 | case 1: | |
300 | ilim = ilim1 = -1; | |
301 | i = 18; | |
302 | ndigits = 0; | |
303 | break; | |
304 | case 2: | |
305 | leftright = 0; | |
306 | /* no break */ | |
307 | case 4: | |
308 | if (ndigits <= 0) | |
309 | ndigits = 1; | |
310 | ilim = ilim1 = i = ndigits; | |
311 | break; | |
312 | case 3: | |
313 | leftright = 0; | |
314 | /* no break */ | |
315 | case 5: | |
316 | i = ndigits + k + 1; | |
317 | ilim = i; | |
318 | ilim1 = i - 1; | |
319 | if (i <= 0) | |
320 | i = 1; | |
321 | } | |
322 | s = s0 = rv_alloc(i); | |
323 | ||
324 | #ifdef Honor_FLT_ROUNDS | |
325 | if (mode > 1 && rounding != 1) | |
326 | leftright = 0; | |
327 | #endif | |
328 | ||
329 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { | |
330 | ||
331 | /* Try to get by with floating-point arithmetic. */ | |
332 | ||
333 | i = 0; | |
334 | dval(d2) = dval(d); | |
335 | k0 = k; | |
336 | ilim0 = ilim; | |
337 | ieps = 2; /* conservative */ | |
338 | if (k > 0) { | |
339 | ds = tens[k&0xf]; | |
340 | j = k >> 4; | |
341 | if (j & Bletch) { | |
342 | /* prevent overflows */ | |
343 | j &= Bletch - 1; | |
344 | dval(d) /= bigtens[n_bigtens-1]; | |
345 | ieps++; | |
346 | } | |
347 | for(; j; j >>= 1, i++) | |
348 | if (j & 1) { | |
349 | ieps++; | |
350 | ds *= bigtens[i]; | |
351 | } | |
352 | dval(d) /= ds; | |
353 | } | |
354 | else if (( j1 = -k )!=0) { | |
355 | dval(d) *= tens[j1 & 0xf]; | |
356 | for(j = j1 >> 4; j; j >>= 1, i++) | |
357 | if (j & 1) { | |
358 | ieps++; | |
359 | dval(d) *= bigtens[i]; | |
360 | } | |
361 | } | |
362 | if (k_check && dval(d) < 1. && ilim > 0) { | |
363 | if (ilim1 <= 0) | |
364 | goto fast_failed; | |
365 | ilim = ilim1; | |
366 | k--; | |
367 | dval(d) *= 10.; | |
368 | ieps++; | |
369 | } | |
370 | dval(eps) = ieps*dval(d) + 7.; | |
371 | word0(eps) -= (P-1)*Exp_msk1; | |
372 | if (ilim == 0) { | |
373 | S = mhi = 0; | |
374 | dval(d) -= 5.; | |
375 | if (dval(d) > dval(eps)) | |
376 | goto one_digit; | |
377 | if (dval(d) < -dval(eps)) | |
378 | goto no_digits; | |
379 | goto fast_failed; | |
380 | } | |
381 | #ifndef No_leftright | |
382 | if (leftright) { | |
383 | /* Use Steele & White method of only | |
384 | * generating digits needed. | |
385 | */ | |
386 | dval(eps) = 0.5/tens[ilim-1] - dval(eps); | |
387 | for(i = 0;;) { | |
388 | L = dval(d); | |
389 | dval(d) -= L; | |
390 | *s++ = '0' + (int)L; | |
391 | if (dval(d) < dval(eps)) | |
392 | goto ret1; | |
393 | if (1. - dval(d) < dval(eps)) | |
394 | goto bump_up; | |
395 | if (++i >= ilim) | |
396 | break; | |
397 | dval(eps) *= 10.; | |
398 | dval(d) *= 10.; | |
399 | } | |
400 | } | |
401 | else { | |
402 | #endif | |
403 | /* Generate ilim digits, then fix them up. */ | |
404 | dval(eps) *= tens[ilim-1]; | |
405 | for(i = 1;; i++, dval(d) *= 10.) { | |
406 | L = (Long)(dval(d)); | |
407 | if (!(dval(d) -= L)) | |
408 | ilim = i; | |
409 | *s++ = '0' + (int)L; | |
410 | if (i == ilim) { | |
411 | if (dval(d) > 0.5 + dval(eps)) | |
412 | goto bump_up; | |
413 | else if (dval(d) < 0.5 - dval(eps)) { | |
414 | while(*--s == '0'); | |
415 | s++; | |
416 | goto ret1; | |
417 | } | |
418 | break; | |
419 | } | |
420 | } | |
421 | #ifndef No_leftright | |
422 | } | |
423 | #endif | |
424 | fast_failed: | |
425 | s = s0; | |
426 | dval(d) = dval(d2); | |
427 | k = k0; | |
428 | ilim = ilim0; | |
429 | } | |
430 | ||
431 | /* Do we have a "small" integer? */ | |
432 | ||
433 | if (be >= 0 && k <= Int_max) { | |
434 | /* Yes. */ | |
435 | ds = tens[k]; | |
436 | if (ndigits < 0 && ilim <= 0) { | |
437 | S = mhi = 0; | |
438 | if (ilim < 0 || dval(d) <= 5*ds) | |
439 | goto no_digits; | |
440 | goto one_digit; | |
441 | } | |
442 | for(i = 1;; i++, dval(d) *= 10.) { | |
443 | L = (Long)(dval(d) / ds); | |
444 | dval(d) -= L*ds; | |
445 | #ifdef Check_FLT_ROUNDS | |
446 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ | |
447 | if (dval(d) < 0) { | |
448 | L--; | |
449 | dval(d) += ds; | |
450 | } | |
451 | #endif | |
452 | *s++ = '0' + (int)L; | |
453 | if (!dval(d)) { | |
454 | #ifdef SET_INEXACT | |
455 | inexact = 0; | |
456 | #endif | |
457 | break; | |
458 | } | |
459 | if (i == ilim) { | |
460 | #ifdef Honor_FLT_ROUNDS | |
461 | if (mode > 1) | |
462 | switch(rounding) { | |
463 | case 0: goto ret1; | |
464 | case 2: goto bump_up; | |
465 | } | |
466 | #endif | |
467 | dval(d) += dval(d); | |
468 | if (dval(d) > ds || dval(d) == ds && L & 1) { | |
469 | bump_up: | |
470 | while(*--s == '9') | |
471 | if (s == s0) { | |
472 | k++; | |
473 | *s = '0'; | |
474 | break; | |
475 | } | |
476 | ++*s++; | |
477 | } | |
478 | break; | |
479 | } | |
480 | } | |
481 | goto ret1; | |
482 | } | |
483 | ||
484 | m2 = b2; | |
485 | m5 = b5; | |
486 | mhi = mlo = 0; | |
487 | if (leftright) { | |
488 | i = | |
489 | #ifndef Sudden_Underflow | |
490 | denorm ? be + (Bias + (P-1) - 1 + 1) : | |
491 | #endif | |
492 | #ifdef IBM | |
493 | 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); | |
494 | #else | |
495 | 1 + P - bbits; | |
496 | #endif | |
497 | b2 += i; | |
498 | s2 += i; | |
499 | mhi = i2b(1); | |
500 | } | |
501 | if (m2 > 0 && s2 > 0) { | |
502 | i = m2 < s2 ? m2 : s2; | |
503 | b2 -= i; | |
504 | m2 -= i; | |
505 | s2 -= i; | |
506 | } | |
507 | if (b5 > 0) { | |
508 | if (leftright) { | |
509 | if (m5 > 0) { | |
510 | mhi = pow5mult(mhi, m5); | |
511 | b1 = mult(mhi, b); | |
512 | Bfree(b); | |
513 | b = b1; | |
514 | } | |
515 | if (( j = b5 - m5 )!=0) | |
516 | b = pow5mult(b, j); | |
517 | } | |
518 | else | |
519 | b = pow5mult(b, b5); | |
520 | } | |
521 | S = i2b(1); | |
522 | if (s5 > 0) | |
523 | S = pow5mult(S, s5); | |
524 | ||
525 | /* Check for special case that d is a normalized power of 2. */ | |
526 | ||
527 | spec_case = 0; | |
528 | if ((mode < 2 || leftright) | |
529 | #ifdef Honor_FLT_ROUNDS | |
530 | && rounding == 1 | |
531 | #endif | |
532 | ) { | |
533 | if (!word1(d) && !(word0(d) & Bndry_mask) | |
534 | #ifndef Sudden_Underflow | |
535 | && word0(d) & (Exp_mask & ~Exp_msk1) | |
536 | #endif | |
537 | ) { | |
538 | /* The special case */ | |
539 | b2 += Log2P; | |
540 | s2 += Log2P; | |
541 | spec_case = 1; | |
542 | } | |
543 | } | |
544 | ||
545 | /* Arrange for convenient computation of quotients: | |
546 | * shift left if necessary so divisor has 4 leading 0 bits. | |
547 | * | |
548 | * Perhaps we should just compute leading 28 bits of S once | |
549 | * and for all and pass them and a shift to quorem, so it | |
550 | * can do shifts and ors to compute the numerator for q. | |
551 | */ | |
552 | #ifdef Pack_32 | |
553 | if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0) | |
554 | i = 32 - i; | |
555 | #else | |
556 | if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf )!=0) | |
557 | i = 16 - i; | |
558 | #endif | |
559 | if (i > 4) { | |
560 | i -= 4; | |
561 | b2 += i; | |
562 | m2 += i; | |
563 | s2 += i; | |
564 | } | |
565 | else if (i < 4) { | |
566 | i += 28; | |
567 | b2 += i; | |
568 | m2 += i; | |
569 | s2 += i; | |
570 | } | |
571 | if (b2 > 0) | |
572 | b = lshift(b, b2); | |
573 | if (s2 > 0) | |
574 | S = lshift(S, s2); | |
575 | if (k_check) { | |
576 | if (cmp(b,S) < 0) { | |
577 | k--; | |
578 | b = multadd(b, 10, 0); /* we botched the k estimate */ | |
579 | if (leftright) | |
580 | mhi = multadd(mhi, 10, 0); | |
581 | ilim = ilim1; | |
582 | } | |
583 | } | |
584 | if (ilim <= 0 && (mode == 3 || mode == 5)) { | |
585 | if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { | |
586 | /* no digits, fcvt style */ | |
587 | no_digits: | |
588 | k = -1 - ndigits; | |
589 | goto ret; | |
590 | } | |
591 | one_digit: | |
592 | *s++ = '1'; | |
593 | k++; | |
594 | goto ret; | |
595 | } | |
596 | if (leftright) { | |
597 | if (m2 > 0) | |
598 | mhi = lshift(mhi, m2); | |
599 | ||
600 | /* Compute mlo -- check for special case | |
601 | * that d is a normalized power of 2. | |
602 | */ | |
603 | ||
604 | mlo = mhi; | |
605 | if (spec_case) { | |
606 | mhi = Balloc(mhi->k); | |
607 | Bcopy(mhi, mlo); | |
608 | mhi = lshift(mhi, Log2P); | |
609 | } | |
610 | ||
611 | for(i = 1;;i++) { | |
612 | dig = quorem(b,S) + '0'; | |
613 | /* Do we yet have the shortest decimal string | |
614 | * that will round to d? | |
615 | */ | |
616 | j = cmp(b, mlo); | |
617 | delta = diff(S, mhi); | |
618 | j1 = delta->sign ? 1 : cmp(b, delta); | |
619 | Bfree(delta); | |
620 | #ifndef ROUND_BIASED | |
621 | if (j1 == 0 && mode != 1 && !(word1(d) & 1) | |
622 | #ifdef Honor_FLT_ROUNDS | |
623 | && rounding >= 1 | |
624 | #endif | |
625 | ) { | |
626 | if (dig == '9') | |
627 | goto round_9_up; | |
628 | if (j > 0) | |
629 | dig++; | |
630 | #ifdef SET_INEXACT | |
631 | else if (!b->x[0] && b->wds <= 1) | |
632 | inexact = 0; | |
633 | #endif | |
634 | *s++ = dig; | |
635 | goto ret; | |
636 | } | |
637 | #endif | |
638 | if (j < 0 || j == 0 && mode != 1 | |
639 | #ifndef ROUND_BIASED | |
640 | && !(word1(d) & 1) | |
641 | #endif | |
642 | ) { | |
643 | if (!b->x[0] && b->wds <= 1) { | |
644 | #ifdef SET_INEXACT | |
645 | inexact = 0; | |
646 | #endif | |
647 | goto accept_dig; | |
648 | } | |
649 | #ifdef Honor_FLT_ROUNDS | |
650 | if (mode > 1) | |
651 | switch(rounding) { | |
652 | case 0: goto accept_dig; | |
653 | case 2: goto keep_dig; | |
654 | } | |
655 | #endif /*Honor_FLT_ROUNDS*/ | |
656 | if (j1 > 0) { | |
657 | b = lshift(b, 1); | |
658 | j1 = cmp(b, S); | |
659 | if ((j1 > 0 || j1 == 0 && dig & 1) | |
660 | && dig++ == '9') | |
661 | goto round_9_up; | |
662 | } | |
663 | accept_dig: | |
664 | *s++ = dig; | |
665 | goto ret; | |
666 | } | |
667 | if (j1 > 0) { | |
668 | #ifdef Honor_FLT_ROUNDS | |
669 | if (!rounding) | |
670 | goto accept_dig; | |
671 | #endif | |
672 | if (dig == '9') { /* possible if i == 1 */ | |
673 | round_9_up: | |
674 | *s++ = '9'; | |
675 | goto roundoff; | |
676 | } | |
677 | *s++ = dig + 1; | |
678 | goto ret; | |
679 | } | |
680 | #ifdef Honor_FLT_ROUNDS | |
681 | keep_dig: | |
682 | #endif | |
683 | *s++ = dig; | |
684 | if (i == ilim) | |
685 | break; | |
686 | b = multadd(b, 10, 0); | |
687 | if (mlo == mhi) | |
688 | mlo = mhi = multadd(mhi, 10, 0); | |
689 | else { | |
690 | mlo = multadd(mlo, 10, 0); | |
691 | mhi = multadd(mhi, 10, 0); | |
692 | } | |
693 | } | |
694 | } | |
695 | else | |
696 | for(i = 1;; i++) { | |
697 | *s++ = dig = quorem(b,S) + '0'; | |
698 | if (!b->x[0] && b->wds <= 1) { | |
699 | #ifdef SET_INEXACT | |
700 | inexact = 0; | |
701 | #endif | |
702 | goto ret; | |
703 | } | |
704 | if (i >= ilim) | |
705 | break; | |
706 | b = multadd(b, 10, 0); | |
707 | } | |
708 | ||
709 | /* Round off last digit */ | |
710 | ||
711 | #ifdef Honor_FLT_ROUNDS | |
712 | switch(rounding) { | |
713 | case 0: goto trimzeros; | |
714 | case 2: goto roundoff; | |
715 | } | |
716 | #endif | |
717 | b = lshift(b, 1); | |
718 | j = cmp(b, S); | |
719 | if (j > 0 || j == 0 && dig & 1) { | |
720 | roundoff: | |
721 | while(*--s == '9') | |
722 | if (s == s0) { | |
723 | k++; | |
724 | *s++ = '1'; | |
725 | goto ret; | |
726 | } | |
727 | ++*s++; | |
728 | } | |
729 | else { | |
730 | trimzeros: | |
731 | while(*--s == '0'); | |
732 | s++; | |
733 | } | |
734 | ret: | |
735 | Bfree(S); | |
736 | if (mhi) { | |
737 | if (mlo && mlo != mhi) | |
738 | Bfree(mlo); | |
739 | Bfree(mhi); | |
740 | } | |
741 | ret1: | |
742 | #ifdef SET_INEXACT | |
743 | if (inexact) { | |
744 | if (!oldinexact) { | |
745 | word0(d) = Exp_1 + (70 << Exp_shift); | |
746 | word1(d) = 0; | |
747 | dval(d) += 1.; | |
748 | } | |
749 | } | |
750 | else if (!oldinexact) | |
751 | clear_inexact(); | |
752 | #endif | |
753 | Bfree(b); | |
754 | *s = 0; | |
755 | *decpt = k + 1; | |
756 | if (rve) | |
757 | *rve = s; | |
758 | return s0; | |
759 | } |