]>
Commit | Line | Data |
---|---|---|
9385eb3d A |
1 | /* |
2 | * Copyright (c) 2002 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
9385eb3d A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. Please obtain a copy of the License at | |
10 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
11 | * file. | |
12 | * | |
13 | * The Original Code and all software distributed under the License are | |
14 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
17 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
18 | * Please see the License for the specific language governing rights and | |
19 | * limitations under the License. | |
20 | * | |
21 | * @APPLE_LICENSE_HEADER_END@ | |
22 | */ | |
23 | #define ASSEMBLER | |
24 | #include <mach/ppc/asm.h> | |
25 | #undef ASSEMBLER | |
26 | ||
59e0d9fe A |
27 | #define __APPLE_API_PRIVATE |
28 | #include <machine/cpu_capabilities.h> | |
29 | #undef __APPLE_API_PRIVATE | |
30 | ||
31 | /* We use mode-independent "g" opcodes such as "srgi". These expand | |
32 | * into word operations when targeting __ppc__, and into doubleword | |
33 | * operations when targeting __ppc64__. | |
34 | */ | |
35 | #include <architecture/ppc/mode_independent_asm.h> | |
36 | ||
37 | ||
9385eb3d A |
38 | // *************** |
39 | // * S T R C A T * | |
40 | // *************** | |
41 | // | |
42 | // char* strcat(const char *dst, const char *src); | |
43 | // | |
44 | // We optimize the move by doing it word parallel. This introduces | |
45 | // a complication: if we blindly did word load/stores until finding | |
46 | // a 0, we might get a spurious page fault by touching bytes past it. | |
59e0d9fe | 47 | // To avoid this, we never do a load that crosses a page boundary, |
9385eb3d A |
48 | // and never store a byte we don't have to. |
49 | // | |
50 | // The test for 0s relies on the following inobvious but very efficient | |
51 | // word-parallel test: | |
52 | // x = dataWord + 0xFEFEFEFF | |
53 | // y = ~dataWord & 0x80808080 | |
54 | // if (x & y) == 0 then no zero found | |
55 | // The test maps any non-zero byte to zero, and any zero byte to 0x80, | |
56 | // with one exception: 0x01 bytes preceeding the first zero are also | |
57 | // mapped to 0x80. | |
59e0d9fe A |
58 | // |
59 | // In 64-bit mode, this algorithm is doubleword parallel. | |
9385eb3d A |
60 | |
61 | .text | |
62 | .globl EXT(strcat) | |
63 | ||
64 | .align 5 | |
59e0d9fe A |
65 | LEXT(strcat) // char* strcat(const char *s, const char *append); |
66 | clrrgi r9,r3,LOG2_GPR_BYTES// align pointer by zeroing right LOG2_GPR_BYTES bits | |
67 | li r10,-1 // get 0xFFs | |
68 | lg r8,0(r9) // get word or doubleword with 1st operand byte | |
69 | rlwinm r11,r3,3,(GPR_BYTES-1)*8 // get starting bit position of operand | |
70 | #if defined(__ppc__) | |
71 | lis r6,hi16(0xFEFEFEFF) // start to generate 32-bit magic constants | |
9385eb3d | 72 | lis r7,hi16(0x80808080) |
59e0d9fe | 73 | srw r10,r10,r11 // create a mask of 0xFF bytes for operand in r8 |
9385eb3d A |
74 | ori r6,r6,lo16(0xFEFEFEFF) |
75 | ori r7,r7,lo16(0x80808080) | |
59e0d9fe A |
76 | #else |
77 | ld r6,_COMM_PAGE_MAGIC_FE(0) // get 0xFEFEFEFE FEFEFEFF from commpage | |
78 | ld r7,_COMM_PAGE_MAGIC_80(0) // get 0x80808080 80808080 from commpage | |
79 | srd r10,r10,r11 // create a mask of 0xFF bytes for operand in r8 | |
80 | #endif | |
81 | orc r8,r8,r10 // make sure bytes preceeding operand are nonzero | |
82 | b Lword0loopEnter | |
83 | ||
84 | // Loop over words or doublewords looking for 0-byte marking end of dest. | |
85 | // r4 = source ptr (unaligned) | |
9385eb3d A |
86 | // r6 = 0xFEFEFEFF |
87 | // r7 = 0x80808080 | |
59e0d9fe | 88 | // r9 = dest ptr (aligned) |
9385eb3d A |
89 | |
90 | .align 5 // align inner loops for speed | |
91 | Lword0loop: | |
59e0d9fe A |
92 | lgu r8,GPR_BYTES(r9) // r8 <- next dest word or doubleword |
93 | Lword0loopEnter: // initial entry | |
9385eb3d A |
94 | add r10,r8,r6 // r10 <- word + 0xFEFEFEFF |
95 | andc r12,r7,r8 // r12 <- ~word & 0x80808080 | |
96 | and. r11,r10,r12 // r11 <- nonzero iff word has a 0-byte | |
97 | beq Lword0loop // loop until 0 found | |
59e0d9fe A |
98 | |
99 | // Now we know one of the bytes in r8 is zero, we just have to figure out which one. | |
100 | // We have mapped 0 bytes to 0x80, and nonzero bytes to 0x00, with one exception: | |
101 | // 0x01 bytes preceeding the first zero are also mapped to 0x80. So we have to mask | |
102 | // out the 0x80s caused by 0x01s before searching for the 0x80 byte. Once the 0 is | |
103 | // found, we can start appending source. We align the source, which allows us to | |
104 | // avoid worrying about spurious page faults. | |
9385eb3d A |
105 | // r4 = source ptr (unaligned) |
106 | // r6 = 0xFEFEFEFF | |
107 | // r7 = 0x80808080 | |
59e0d9fe A |
108 | // r8 = word or doubleword with a 0-byte |
109 | // r9 = ptr to the word or doubleword in r8 (aligned) | |
110 | // r11 = mapped word or doubleword | |
9385eb3d | 111 | |
59e0d9fe A |
112 | slgi r10,r8,7 // move 0x01 bits (false hits) into 0x80 position |
113 | andi. r0,r4,GPR_BYTES-1 // is source aligned? | |
114 | andc r11,r11,r10 // mask out false hits | |
115 | cntlzg r10,r11 // find 0 byte (r0 = 0, 8, 16, or 24) | |
116 | subfic r0,r0,GPR_BYTES // get #bytes to align r4 | |
117 | srwi r10,r10,3 // now r0 = 0, 1, 2, or 3 | |
118 | add r9,r9,r10 // now r9 points to the 0-byte in dest | |
119 | beq LwordloopEnter // skip if source is already aligned | |
120 | ||
9385eb3d A |
121 | mtctr r0 // set up loop |
122 | ||
123 | // Loop over bytes. | |
124 | // r4 = source ptr (unaligned) | |
125 | // r6 = 0xFEFEFEFF | |
126 | // r7 = 0x80808080 | |
127 | // r9 = dest ptr (unaligned) | |
128 | // ctr = byte count | |
129 | ||
130 | Lbyteloop: | |
131 | lbz r8,0(r4) // r8 <- next source byte | |
132 | addi r4,r4,1 | |
133 | cmpwi r8,0 // 0 ? | |
134 | stb r8,0(r9) // pack into dest | |
135 | addi r9,r9,1 | |
136 | bdnzf eq,Lbyteloop // loop until (ctr==0) | (r8==0) | |
137 | ||
138 | bne LwordloopEnter // 0-byte not found, so enter word loop | |
139 | blr // 0-byte found, done | |
140 | ||
59e0d9fe A |
141 | // Word loop: move a word or doubleword at a time until 0-byte found. |
142 | // r4 = source ptr (aligned) | |
9385eb3d A |
143 | // r6 = 0xFEFEFEFF |
144 | // r7 = 0x80808080 | |
145 | // r9 = dest ptr (unaligned) | |
146 | ||
147 | .align 5 // align inner loop, which is 8 words ling | |
148 | Lwordloop: | |
59e0d9fe A |
149 | stg r8,0(r9) // pack word or doubleword into destination |
150 | addi r9,r9,GPR_BYTES | |
9385eb3d | 151 | LwordloopEnter: |
59e0d9fe A |
152 | lg r8,0(r4) // r8 <- next 4 or 8 source bytes |
153 | addi r4,r4,GPR_BYTES | |
9385eb3d A |
154 | add r10,r8,r6 // r10 <- word + 0xFEFEFEFF |
155 | andc r12,r7,r8 // r12 <- ~word & 0x80808080 | |
156 | and. r0,r10,r12 // r0 <- nonzero iff word has a 0-byte | |
59e0d9fe | 157 | beq Lwordloop // loop if no 0-byte |
9385eb3d A |
158 | |
159 | // Found a 0-byte. Store last word up to and including the 0, a byte at a time. | |
59e0d9fe | 160 | // r8 = last word or doubleword, known to have a 0-byte |
9385eb3d A |
161 | // r9 = dest ptr |
162 | ||
163 | Lstorelastbytes: | |
59e0d9fe A |
164 | srgi. r0,r8,GPR_BYTES*8-8 // shift leftmost byte into bottom so we can "stb" |
165 | slgi r8,r8,8 // move on to next | |
9385eb3d A |
166 | stb r0,0(r9) // pack into dest |
167 | addi r9,r9,1 | |
168 | bne Lstorelastbytes // loop until 0 stored | |
169 | ||
170 | blr | |
171 |