]>
Commit | Line | Data |
---|---|---|
e9ce8d39 A |
1 | /* |
2 | * Copyright 1996 1995 by Open Software Foundation, Inc. 1997 1996 1995 1994 1993 1992 1991 | |
3 | * All Rights Reserved | |
4 | * | |
5 | * Permission to use, copy, modify, and distribute this software and | |
6 | * its documentation for any purpose and without fee is hereby granted, | |
7 | * provided that the above copyright notice appears in all copies and | |
8 | * that both the copyright notice and this permission notice appear in | |
9 | * supporting documentation. | |
10 | * | |
11 | * OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE | |
12 | * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
13 | * FOR A PARTICULAR PURPOSE. | |
14 | * | |
15 | * IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR | |
16 | * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM | |
17 | * LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT, | |
18 | * NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION | |
19 | * WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |
20 | * | |
21 | */ | |
22 | /* | |
23 | * MkLinux | |
24 | */ | |
25 | ||
26 | /* | |
27 | * POSIX Pthread Library | |
28 | */ | |
29 | ||
30 | #define __POSIX_LIB__ | |
31 | #include <assert.h> | |
32 | #include <stdio.h> /* For printf(). */ | |
33 | #include <stdlib.h> | |
34 | #include <errno.h> /* For __mach_errno_addr() prototype. */ | |
35 | #include <sys/time.h> | |
36 | #include <sys/resource.h> | |
37 | #include <sys/sysctl.h> | |
38 | #include <machine/vmparam.h> | |
39 | #include <mach/vm_statistics.h> | |
40 | ||
41 | #include "pthread_internals.h" | |
42 | ||
43 | /* Per-thread kernel support */ | |
44 | extern void _pthread_set_self(pthread_t); | |
45 | extern void mig_init(int); | |
46 | ||
47 | /* Needed to tell the malloc subsystem we're going multithreaded */ | |
48 | extern void set_malloc_singlethreaded(int); | |
49 | ||
50 | /* Used when we need to call into the kernel with no reply port */ | |
51 | extern pthread_lock_t reply_port_lock; | |
52 | ||
53 | /* | |
54 | * [Internal] stack support | |
55 | */ | |
56 | ||
57 | size_t _pthread_stack_size = 0; | |
58 | int _spin_tries = 1; | |
59 | int _cpu_has_altivec = 0; | |
60 | ||
61 | /* This global should be used (carefully) by anyone needing to know if a pthread has been | |
62 | ** created. | |
63 | */ | |
64 | int __is_threaded = 0; | |
65 | ||
66 | /* These are used to keep track of a semaphore pool shared by mutexes and condition | |
67 | ** variables. | |
68 | */ | |
69 | ||
70 | static semaphore_t *sem_pool = NULL; | |
71 | static int sem_pool_count = 0; | |
72 | static int sem_pool_current = 0; | |
73 | static pthread_lock_t sem_pool_lock = LOCK_INITIALIZER; | |
74 | ||
75 | static int default_priority; | |
76 | static int max_priority; | |
77 | static int min_priority; | |
78 | ||
79 | extern mach_port_t thread_recycle_port; | |
80 | ||
81 | #define STACK_LOWEST(sp) ((sp) & ~__pthread_stack_mask) | |
82 | #define STACK_RESERVED (sizeof (struct _pthread)) | |
83 | ||
84 | #ifdef STACK_GROWS_UP | |
85 | ||
86 | /* The stack grows towards higher addresses: | |
87 | |struct _pthread|user stack---------------->| | |
88 | ^STACK_BASE ^STACK_START | |
89 | ^STACK_SELF | |
90 | ^STACK_LOWEST */ | |
91 | #define STACK_BASE(sp) STACK_LOWEST(sp) | |
92 | #define STACK_START(stack_low) (STACK_BASE(stack_low) + STACK_RESERVED) | |
93 | #define STACK_SELF(sp) STACK_BASE(sp) | |
94 | ||
95 | #else | |
96 | ||
97 | /* The stack grows towards lower addresses: | |
98 | |<----------------user stack|struct _pthread| | |
99 | ^STACK_LOWEST ^STACK_START ^STACK_BASE | |
100 | ^STACK_SELF */ | |
101 | ||
102 | #define STACK_BASE(sp) (((sp) | __pthread_stack_mask) + 1) | |
103 | #define STACK_START(stack_low) (STACK_BASE(stack_low) - STACK_RESERVED) | |
104 | #define STACK_SELF(sp) STACK_START(sp) | |
105 | ||
106 | #endif | |
107 | ||
108 | /* This is the struct used to recycle (or terminate) a thread */ | |
109 | /* We stash the thread port into the reply port of the message */ | |
110 | ||
111 | typedef struct { | |
112 | mach_msg_header_t header; | |
113 | mach_msg_trailer_t trailer; | |
114 | } recycle_msg_t; | |
115 | ||
116 | /* Set the base address to use as the stack pointer, before adjusting due to the ABI */ | |
117 | ||
118 | static int | |
119 | _pthread_allocate_stack(pthread_attr_t *attrs, vm_address_t *stack) | |
120 | { | |
121 | kern_return_t kr; | |
122 | #if 1 | |
123 | assert(attrs->stacksize >= PTHREAD_STACK_MIN); | |
124 | if (attrs->stackaddr != NULL) { | |
125 | assert(((vm_offset_t)(attrs->stackaddr) & (vm_page_size - 1)) == 0); | |
126 | *stack = (vm_address_t)attrs->stackaddr; | |
127 | return 0; | |
128 | } | |
129 | kr = vm_allocate(mach_task_self(), stack, attrs->stacksize + vm_page_size, VM_MAKE_TAG(VM_MEMORY_STACK)| TRUE); | |
130 | if (kr != KERN_SUCCESS) { | |
131 | return EAGAIN; | |
132 | } | |
133 | #ifdef STACK_GROWS_UP | |
134 | /* The guard page is the page one higher than the stack */ | |
135 | /* The stack base is at the lowest address */ | |
136 | kr = vm_protect(mach_task_self(), *stack + attrs->stacksize, vm_page_size, FALSE, VM_PROT_NONE); | |
137 | #else | |
138 | /* The guard page is at the lowest address */ | |
139 | /* The stack base is the highest address */ | |
140 | kr = vm_protect(mach_task_self(), *stack, vm_page_size, FALSE, VM_PROT_NONE); | |
141 | *stack += attrs->stacksize + vm_page_size; | |
142 | #endif | |
143 | ||
144 | #else | |
145 | vm_address_t cur_stack = (vm_address_t)0; | |
146 | if (free_stacks == 0) | |
147 | { | |
148 | /* Allocating guard pages is done by doubling | |
149 | * the actual stack size, since STACK_BASE() needs | |
150 | * to have stacks aligned on stack_size. Allocating just | |
151 | * one page takes as much memory as allocating more pages | |
152 | * since it will remain one entry in the vm map. | |
153 | * Besides, allocating more than one page allows tracking the | |
154 | * overflow pattern when the overflow is bigger than one page. | |
155 | */ | |
156 | #ifndef NO_GUARD_PAGES | |
157 | # define GUARD_SIZE(a) (2*(a)) | |
158 | # define GUARD_MASK(a) (((a)<<1) | 1) | |
159 | #else | |
160 | # define GUARD_SIZE(a) (a) | |
161 | # define GUARD_MASK(a) (a) | |
162 | #endif | |
163 | while (lowest_stack > GUARD_SIZE(__pthread_stack_size)) | |
164 | { | |
165 | lowest_stack -= GUARD_SIZE(__pthread_stack_size); | |
166 | /* Ensure stack is there */ | |
167 | kr = vm_allocate(mach_task_self(), | |
168 | &lowest_stack, | |
169 | GUARD_SIZE(__pthread_stack_size), | |
170 | FALSE); | |
171 | #ifndef NO_GUARD_PAGES | |
172 | if (kr == KERN_SUCCESS) { | |
173 | # ifdef STACK_GROWS_UP | |
174 | kr = vm_protect(mach_task_self(), | |
175 | lowest_stack+__pthread_stack_size, | |
176 | __pthread_stack_size, | |
177 | FALSE, VM_PROT_NONE); | |
178 | # else /* STACK_GROWS_UP */ | |
179 | kr = vm_protect(mach_task_self(), | |
180 | lowest_stack, | |
181 | __pthread_stack_size, | |
182 | FALSE, VM_PROT_NONE); | |
183 | lowest_stack += __pthread_stack_size; | |
184 | # endif /* STACK_GROWS_UP */ | |
185 | if (kr == KERN_SUCCESS) | |
186 | break; | |
187 | } | |
188 | #else | |
189 | if (kr == KERN_SUCCESS) | |
190 | break; | |
191 | #endif | |
192 | } | |
193 | if (lowest_stack > 0) | |
194 | free_stacks = (vm_address_t *)lowest_stack; | |
195 | else | |
196 | { | |
197 | /* Too bad. We'll just have to take what comes. | |
198 | Use vm_map instead of vm_allocate so we can | |
199 | specify alignment. */ | |
200 | kr = vm_map(mach_task_self(), &lowest_stack, | |
201 | GUARD_SIZE(__pthread_stack_size), | |
202 | GUARD_MASK(__pthread_stack_mask), | |
203 | TRUE /* anywhere */, MEMORY_OBJECT_NULL, | |
204 | 0, FALSE, VM_PROT_DEFAULT, VM_PROT_ALL, | |
205 | VM_INHERIT_DEFAULT); | |
206 | /* This really shouldn't fail and if it does I don't | |
207 | know what to do. */ | |
208 | #ifndef NO_GUARD_PAGES | |
209 | if (kr == KERN_SUCCESS) { | |
210 | # ifdef STACK_GROWS_UP | |
211 | kr = vm_protect(mach_task_self(), | |
212 | lowest_stack+__pthread_stack_size, | |
213 | __pthread_stack_size, | |
214 | FALSE, VM_PROT_NONE); | |
215 | # else /* STACK_GROWS_UP */ | |
216 | kr = vm_protect(mach_task_self(), | |
217 | lowest_stack, | |
218 | __pthread_stack_size, | |
219 | FALSE, VM_PROT_NONE); | |
220 | lowest_stack += __pthread_stack_size; | |
221 | # endif /* STACK_GROWS_UP */ | |
222 | } | |
223 | #endif | |
224 | free_stacks = (vm_address_t *)lowest_stack; | |
225 | lowest_stack = 0; | |
226 | } | |
227 | *free_stacks = 0; /* No other free stacks */ | |
228 | } | |
229 | cur_stack = STACK_START((vm_address_t) free_stacks); | |
230 | free_stacks = (vm_address_t *)*free_stacks; | |
231 | cur_stack = _adjust_sp(cur_stack); /* Machine dependent stack fudging */ | |
232 | #endif | |
233 | return 0; | |
234 | } | |
235 | ||
236 | /* | |
237 | * Destroy a thread attribute structure | |
238 | */ | |
239 | int | |
240 | pthread_attr_destroy(pthread_attr_t *attr) | |
241 | { | |
242 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
243 | { | |
244 | return (ESUCCESS); | |
245 | } else | |
246 | { | |
247 | return (EINVAL); /* Not an attribute structure! */ | |
248 | } | |
249 | } | |
250 | ||
251 | /* | |
252 | * Get the 'detach' state from a thread attribute structure. | |
253 | * Note: written as a helper function for info hiding | |
254 | */ | |
255 | int | |
256 | pthread_attr_getdetachstate(const pthread_attr_t *attr, | |
257 | int *detachstate) | |
258 | { | |
259 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
260 | { | |
261 | *detachstate = attr->detached; | |
262 | return (ESUCCESS); | |
263 | } else | |
264 | { | |
265 | return (EINVAL); /* Not an attribute structure! */ | |
266 | } | |
267 | } | |
268 | ||
269 | /* | |
270 | * Get the 'inherit scheduling' info from a thread attribute structure. | |
271 | * Note: written as a helper function for info hiding | |
272 | */ | |
273 | int | |
274 | pthread_attr_getinheritsched(const pthread_attr_t *attr, | |
275 | int *inheritsched) | |
276 | { | |
277 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
278 | { | |
279 | *inheritsched = attr->inherit; | |
280 | return (ESUCCESS); | |
281 | } else | |
282 | { | |
283 | return (EINVAL); /* Not an attribute structure! */ | |
284 | } | |
285 | } | |
286 | ||
287 | /* | |
288 | * Get the scheduling parameters from a thread attribute structure. | |
289 | * Note: written as a helper function for info hiding | |
290 | */ | |
291 | int | |
292 | pthread_attr_getschedparam(const pthread_attr_t *attr, | |
293 | struct sched_param *param) | |
294 | { | |
295 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
296 | { | |
297 | *param = attr->param; | |
298 | return (ESUCCESS); | |
299 | } else | |
300 | { | |
301 | return (EINVAL); /* Not an attribute structure! */ | |
302 | } | |
303 | } | |
304 | ||
305 | /* | |
306 | * Get the scheduling policy from a thread attribute structure. | |
307 | * Note: written as a helper function for info hiding | |
308 | */ | |
309 | int | |
310 | pthread_attr_getschedpolicy(const pthread_attr_t *attr, | |
311 | int *policy) | |
312 | { | |
313 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
314 | { | |
315 | *policy = attr->policy; | |
316 | return (ESUCCESS); | |
317 | } else | |
318 | { | |
319 | return (EINVAL); /* Not an attribute structure! */ | |
320 | } | |
321 | } | |
322 | ||
323 | static const size_t DEFAULT_STACK_SIZE = DFLSSIZ; | |
324 | /* | |
325 | * Initialize a thread attribute structure to default values. | |
326 | */ | |
327 | int | |
328 | pthread_attr_init(pthread_attr_t *attr) | |
329 | { | |
330 | attr->stacksize = DEFAULT_STACK_SIZE; | |
331 | attr->stackaddr = NULL; | |
332 | attr->sig = _PTHREAD_ATTR_SIG; | |
333 | attr->policy = _PTHREAD_DEFAULT_POLICY; | |
334 | attr->param.sched_priority = default_priority; | |
335 | attr->param.quantum = 10; /* quantum isn't public yet */ | |
336 | attr->inherit = _PTHREAD_DEFAULT_INHERITSCHED; | |
337 | attr->detached = PTHREAD_CREATE_JOINABLE; | |
338 | attr->freeStackOnExit = TRUE; | |
339 | return (ESUCCESS); | |
340 | } | |
341 | ||
342 | /* | |
343 | * Set the 'detach' state in a thread attribute structure. | |
344 | * Note: written as a helper function for info hiding | |
345 | */ | |
346 | int | |
347 | pthread_attr_setdetachstate(pthread_attr_t *attr, | |
348 | int detachstate) | |
349 | { | |
350 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
351 | { | |
352 | if ((detachstate == PTHREAD_CREATE_JOINABLE) || | |
353 | (detachstate == PTHREAD_CREATE_DETACHED)) | |
354 | { | |
355 | attr->detached = detachstate; | |
356 | return (ESUCCESS); | |
357 | } else | |
358 | { | |
359 | return (EINVAL); | |
360 | } | |
361 | } else | |
362 | { | |
363 | return (EINVAL); /* Not an attribute structure! */ | |
364 | } | |
365 | } | |
366 | ||
367 | /* | |
368 | * Set the 'inherit scheduling' state in a thread attribute structure. | |
369 | * Note: written as a helper function for info hiding | |
370 | */ | |
371 | int | |
372 | pthread_attr_setinheritsched(pthread_attr_t *attr, | |
373 | int inheritsched) | |
374 | { | |
375 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
376 | { | |
377 | if ((inheritsched == PTHREAD_INHERIT_SCHED) || | |
378 | (inheritsched == PTHREAD_EXPLICIT_SCHED)) | |
379 | { | |
380 | attr->inherit = inheritsched; | |
381 | return (ESUCCESS); | |
382 | } else | |
383 | { | |
384 | return (EINVAL); | |
385 | } | |
386 | } else | |
387 | { | |
388 | return (EINVAL); /* Not an attribute structure! */ | |
389 | } | |
390 | } | |
391 | ||
392 | /* | |
393 | * Set the scheduling paramters in a thread attribute structure. | |
394 | * Note: written as a helper function for info hiding | |
395 | */ | |
396 | int | |
397 | pthread_attr_setschedparam(pthread_attr_t *attr, | |
398 | const struct sched_param *param) | |
399 | { | |
400 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
401 | { | |
402 | /* TODO: Validate sched_param fields */ | |
403 | attr->param = *param; | |
404 | return (ESUCCESS); | |
405 | } else | |
406 | { | |
407 | return (EINVAL); /* Not an attribute structure! */ | |
408 | } | |
409 | } | |
410 | ||
411 | /* | |
412 | * Set the scheduling policy in a thread attribute structure. | |
413 | * Note: written as a helper function for info hiding | |
414 | */ | |
415 | int | |
416 | pthread_attr_setschedpolicy(pthread_attr_t *attr, | |
417 | int policy) | |
418 | { | |
419 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
420 | { | |
421 | if ((policy == SCHED_OTHER) || | |
422 | (policy == SCHED_RR) || | |
423 | (policy == SCHED_FIFO)) | |
424 | { | |
425 | attr->policy = policy; | |
426 | return (ESUCCESS); | |
427 | } else | |
428 | { | |
429 | return (EINVAL); | |
430 | } | |
431 | } else | |
432 | { | |
433 | return (EINVAL); /* Not an attribute structure! */ | |
434 | } | |
435 | } | |
436 | ||
437 | /* | |
438 | * Set the scope for the thread. | |
439 | * We currently only provide PTHREAD_SCOPE_SYSTEM | |
440 | */ | |
441 | int | |
442 | pthread_attr_setscope(pthread_attr_t *attr, | |
443 | int scope) | |
444 | { | |
445 | if (attr->sig == _PTHREAD_ATTR_SIG) { | |
446 | if (scope == PTHREAD_SCOPE_SYSTEM) { | |
447 | /* No attribute yet for the scope */ | |
448 | return (ESUCCESS); | |
449 | } else if (scope == PTHREAD_SCOPE_PROCESS) { | |
450 | return (ENOTSUP); | |
451 | } | |
452 | } | |
453 | return (EINVAL); /* Not an attribute structure! */ | |
454 | } | |
455 | ||
456 | /* | |
457 | * Get the scope for the thread. | |
458 | * We currently only provide PTHREAD_SCOPE_SYSTEM | |
459 | */ | |
460 | int | |
461 | pthread_attr_getscope(pthread_attr_t *attr, | |
462 | int *scope) | |
463 | { | |
464 | if (attr->sig == _PTHREAD_ATTR_SIG) { | |
465 | *scope = PTHREAD_SCOPE_SYSTEM; | |
466 | return (ESUCCESS); | |
467 | } | |
468 | return (EINVAL); /* Not an attribute structure! */ | |
469 | } | |
470 | ||
471 | /* Get the base stack address of the given thread */ | |
472 | int | |
473 | pthread_attr_getstackaddr(const pthread_attr_t *attr, void **stackaddr) | |
474 | { | |
475 | if (attr->sig == _PTHREAD_ATTR_SIG) { | |
476 | *stackaddr = attr->stackaddr; | |
477 | return (ESUCCESS); | |
478 | } else { | |
479 | return (EINVAL); /* Not an attribute structure! */ | |
480 | } | |
481 | } | |
482 | ||
483 | int | |
484 | pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr) | |
485 | { | |
486 | if ((attr->sig == _PTHREAD_ATTR_SIG) && (((vm_offset_t)stackaddr & (vm_page_size - 1)) == 0)) { | |
487 | attr->stackaddr = stackaddr; | |
488 | attr->freeStackOnExit = FALSE; | |
489 | return (ESUCCESS); | |
490 | } else { | |
491 | return (EINVAL); /* Not an attribute structure! */ | |
492 | } | |
493 | } | |
494 | ||
495 | int | |
496 | pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize) | |
497 | { | |
498 | if (attr->sig == _PTHREAD_ATTR_SIG) { | |
499 | *stacksize = attr->stacksize; | |
500 | return (ESUCCESS); | |
501 | } else { | |
502 | return (EINVAL); /* Not an attribute structure! */ | |
503 | } | |
504 | } | |
505 | ||
506 | int | |
507 | pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize) | |
508 | { | |
509 | if ((attr->sig == _PTHREAD_ATTR_SIG) && ((stacksize % vm_page_size) == 0) && (stacksize >= PTHREAD_STACK_MIN)) { | |
510 | attr->stacksize = stacksize; | |
511 | return (ESUCCESS); | |
512 | } else { | |
513 | return (EINVAL); /* Not an attribute structure! */ | |
514 | } | |
515 | } | |
516 | ||
517 | pthread_t _cachedThread = (pthread_t)0; | |
518 | ||
519 | void _clear_thread_cache(void) { | |
520 | _cachedThread = (pthread_t)0; | |
521 | } | |
522 | ||
523 | /* | |
524 | * Create and start execution of a new thread. | |
525 | */ | |
526 | ||
527 | static void | |
528 | _pthread_body(pthread_t self) | |
529 | { | |
530 | _clear_thread_cache(); | |
531 | _pthread_set_self(self); | |
532 | pthread_exit((self->fun)(self->arg)); | |
533 | } | |
534 | ||
535 | int | |
536 | _pthread_create(pthread_t t, | |
537 | const pthread_attr_t *attrs, | |
538 | vm_address_t stack, | |
539 | const mach_port_t kernel_thread) | |
540 | { | |
541 | int res; | |
542 | kern_return_t kern_res; | |
543 | res = ESUCCESS; | |
544 | do | |
545 | { | |
546 | memset(t, 0, sizeof(*t)); | |
547 | t->stacksize = attrs->stacksize; | |
548 | t->stackaddr = (void *)stack; | |
549 | t->kernel_thread = kernel_thread; | |
550 | t->detached = attrs->detached; | |
551 | t->inherit = attrs->inherit; | |
552 | t->policy = attrs->policy; | |
553 | t->param = attrs->param; | |
554 | t->freeStackOnExit = attrs->freeStackOnExit; | |
555 | t->mutexes = (struct _pthread_mutex *)NULL; | |
556 | t->sig = _PTHREAD_SIG; | |
557 | t->reply_port = MACH_PORT_NULL; | |
558 | t->cthread_self = NULL; | |
559 | LOCK_INIT(t->lock); | |
560 | t->cancel_state = PTHREAD_CANCEL_ENABLE | PTHREAD_CANCEL_DEFERRED; | |
561 | t->cleanup_stack = (struct _pthread_handler_rec *)NULL; | |
562 | pthread_setschedparam(t, t->policy, &t->param); | |
563 | /* Create control semaphores */ | |
564 | if (t->detached == PTHREAD_CREATE_JOINABLE) | |
565 | { | |
566 | PTHREAD_MACH_CALL(semaphore_create(mach_task_self(), | |
567 | &t->death, | |
568 | SYNC_POLICY_FIFO, | |
569 | 0), kern_res); | |
570 | if (kern_res != KERN_SUCCESS) | |
571 | { | |
572 | printf("Can't create 'death' semaphore: %d\n", kern_res); | |
573 | res = EINVAL; /* Need better error here? */ | |
574 | break; | |
575 | } | |
576 | PTHREAD_MACH_CALL(semaphore_create(mach_task_self(), | |
577 | &t->joiners, | |
578 | SYNC_POLICY_FIFO, | |
579 | 0), kern_res); | |
580 | if (kern_res != KERN_SUCCESS) | |
581 | { | |
582 | printf("Can't create 'joiners' semaphore: %d\n", kern_res); | |
583 | res = EINVAL; /* Need better error here? */ | |
584 | break; | |
585 | } | |
586 | t->num_joiners = 0; | |
587 | } else | |
588 | { | |
589 | t->death = MACH_PORT_NULL; | |
590 | } | |
591 | } while (0); | |
592 | return (res); | |
593 | } | |
594 | ||
595 | int | |
596 | _pthread_is_threaded(void) | |
597 | { | |
598 | return __is_threaded; | |
599 | } | |
600 | ||
601 | mach_port_t | |
602 | pthread_mach_thread_np(pthread_t t) | |
603 | { | |
604 | return t->kernel_thread; | |
605 | } | |
606 | ||
607 | size_t | |
608 | pthread_get_stacksize_np(pthread_t t) | |
609 | { | |
610 | return t->stacksize; | |
611 | } | |
612 | ||
613 | void * | |
614 | pthread_get_stackaddr_np(pthread_t t) | |
615 | { | |
616 | return t->stackaddr; | |
617 | } | |
618 | ||
619 | mach_port_t | |
620 | _pthread_reply_port(pthread_t t) | |
621 | { | |
622 | return t->reply_port; | |
623 | } | |
624 | ||
625 | static int | |
626 | _pthread_create_suspended(pthread_t *thread, | |
627 | const pthread_attr_t *attr, | |
628 | void *(*start_routine)(void *), | |
629 | void *arg, | |
630 | int suspended) | |
631 | { | |
632 | pthread_attr_t _attr, *attrs; | |
633 | vm_address_t stack; | |
634 | int res; | |
635 | pthread_t t; | |
636 | kern_return_t kern_res; | |
637 | mach_port_t kernel_thread; | |
638 | if ((attrs = (pthread_attr_t *)attr) == (pthread_attr_t *)NULL) | |
639 | { /* Set up default paramters */ | |
640 | attrs = &_attr; | |
641 | pthread_attr_init(attrs); | |
642 | } else if (attrs->sig != _PTHREAD_ATTR_SIG) { | |
643 | return EINVAL; | |
644 | } | |
645 | res = ESUCCESS; | |
646 | do | |
647 | { | |
648 | /* Allocate a stack for the thread */ | |
649 | if ((res = _pthread_allocate_stack(attrs, &stack)) != 0) { | |
650 | break; | |
651 | } | |
652 | t = (pthread_t)malloc(sizeof(struct _pthread)); | |
653 | *thread = t; | |
654 | /* Create the Mach thread for this thread */ | |
655 | PTHREAD_MACH_CALL(thread_create(mach_task_self(), &kernel_thread), kern_res); | |
656 | if (kern_res != KERN_SUCCESS) | |
657 | { | |
658 | printf("Can't create thread: %d\n", kern_res); | |
659 | res = EINVAL; /* Need better error here? */ | |
660 | break; | |
661 | } | |
662 | if ((res = _pthread_create(t, attrs, stack, kernel_thread)) != 0) | |
663 | { | |
664 | break; | |
665 | } | |
666 | t->arg = arg; | |
667 | t->fun = start_routine; | |
668 | /* Now set it up to execute */ | |
669 | _pthread_setup(t, _pthread_body, stack); | |
670 | /* Send it on it's way */ | |
671 | set_malloc_singlethreaded(0); | |
672 | __is_threaded = 1; | |
673 | if (suspended == 0) { | |
674 | PTHREAD_MACH_CALL(thread_resume(kernel_thread), kern_res); | |
675 | } | |
676 | if (kern_res != KERN_SUCCESS) | |
677 | { | |
678 | printf("Can't resume thread: %d\n", kern_res); | |
679 | res = EINVAL; /* Need better error here? */ | |
680 | break; | |
681 | } | |
682 | } while (0); | |
683 | return (res); | |
684 | } | |
685 | ||
686 | int | |
687 | pthread_create(pthread_t *thread, | |
688 | const pthread_attr_t *attr, | |
689 | void *(*start_routine)(void *), | |
690 | void *arg) | |
691 | { | |
692 | return _pthread_create_suspended(thread, attr, start_routine, arg, 0); | |
693 | } | |
694 | ||
695 | int | |
696 | pthread_create_suspended_np(pthread_t *thread, | |
697 | const pthread_attr_t *attr, | |
698 | void *(*start_routine)(void *), | |
699 | void *arg) | |
700 | { | |
701 | return _pthread_create_suspended(thread, attr, start_routine, arg, 1); | |
702 | } | |
703 | ||
704 | /* | |
705 | * Make a thread 'undetached' - no longer 'joinable' with other threads. | |
706 | */ | |
707 | int | |
708 | pthread_detach(pthread_t thread) | |
709 | { | |
710 | kern_return_t kern_res; | |
711 | int num_joiners; | |
712 | mach_port_t death; | |
713 | if (thread->sig == _PTHREAD_SIG) | |
714 | { | |
715 | LOCK(thread->lock); | |
716 | if (thread->detached == PTHREAD_CREATE_JOINABLE) | |
717 | { | |
718 | thread->detached = PTHREAD_CREATE_DETACHED; | |
719 | num_joiners = thread->num_joiners; | |
720 | death = thread->death; | |
721 | thread->death = MACH_PORT_NULL; | |
722 | UNLOCK(thread->lock); | |
723 | if (num_joiners > 0) | |
724 | { /* Have to tell these guys this thread can't be joined with */ | |
725 | swtch_pri(0); | |
726 | PTHREAD_MACH_CALL(semaphore_signal_all(thread->joiners), kern_res); | |
727 | } | |
728 | /* Destroy 'control' semaphores */ | |
729 | PTHREAD_MACH_CALL(semaphore_destroy(mach_task_self(), | |
730 | thread->joiners), kern_res); | |
731 | PTHREAD_MACH_CALL(semaphore_destroy(mach_task_self(), | |
732 | death), kern_res); | |
733 | return (ESUCCESS); | |
734 | } else | |
735 | { | |
736 | UNLOCK(thread->lock); | |
737 | return (EINVAL); | |
738 | } | |
739 | } else | |
740 | { | |
741 | return (ESRCH); /* Not a valid thread */ | |
742 | } | |
743 | } | |
744 | ||
745 | /* Announce that there is a thread ready to be reclaimed for pthread_create */ | |
746 | /* or terminated by pthread_exit. If the thread is reused, it will have its */ | |
747 | /* thread state set and will continue in the thread body function. If it is */ | |
748 | /* terminated, it will be yanked out from under the mach_msg() call. */ | |
749 | ||
750 | static void _pthread_become_available(pthread_t thread) { | |
751 | recycle_msg_t msg = { { 0 } }; | |
752 | kern_return_t ret; | |
753 | ||
754 | msg.header.msgh_size = sizeof msg - sizeof msg.trailer; | |
755 | msg.header.msgh_remote_port = thread_recycle_port; | |
756 | msg.header.msgh_local_port = MACH_PORT_NULL; | |
757 | msg.header.msgh_id = (int)thread; | |
758 | msg.header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0); | |
759 | ret = mach_msg(&msg.header, MACH_SEND_MSG, msg.header.msgh_size, 0, | |
760 | MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, | |
761 | MACH_PORT_NULL); | |
762 | while (1) { | |
763 | ret = thread_suspend(thread->kernel_thread); | |
764 | } | |
765 | /* We should never get here */ | |
766 | } | |
767 | ||
768 | /* Check to see if any threads are available. Return immediately */ | |
769 | ||
770 | static kern_return_t _pthread_check_for_available_threads(recycle_msg_t *msg) { | |
771 | return mach_msg(&msg->header, MACH_RCV_MSG|MACH_RCV_TIMEOUT, 0, | |
772 | sizeof(recycle_msg_t), thread_recycle_port, 0, | |
773 | MACH_PORT_NULL); | |
774 | } | |
775 | ||
776 | /* Terminate all available threads and deallocate their stacks */ | |
777 | static void _pthread_reap_threads(void) { | |
778 | kern_return_t ret; | |
779 | recycle_msg_t msg = { { 0 } }; | |
780 | while(_pthread_check_for_available_threads(&msg) == KERN_SUCCESS) { | |
781 | pthread_t th = (pthread_t)msg.header.msgh_id; | |
782 | mach_port_t kernel_thread = th->kernel_thread; | |
783 | mach_port_t reply_port = th->reply_port; | |
784 | vm_size_t size = (vm_size_t)th->stacksize + vm_page_size; | |
785 | vm_address_t addr = (vm_address_t)th->stackaddr; | |
786 | #if !defined(STACK_GROWS_UP) | |
787 | addr -= size; | |
788 | #endif | |
789 | ret = thread_terminate(kernel_thread); | |
790 | if (ret != KERN_SUCCESS) { | |
791 | fprintf(stderr, "thread_terminate() failed: %s\n", | |
792 | mach_error_string(ret)); | |
793 | } | |
794 | ret = mach_port_destroy(mach_task_self(), reply_port); | |
795 | if (ret != KERN_SUCCESS) { | |
796 | fprintf(stderr, | |
797 | "mach_port_destroy(thread_reply) failed: %s\n", | |
798 | mach_error_string(ret)); | |
799 | } | |
800 | if (th->freeStackOnExit) { | |
801 | ret = vm_deallocate(mach_task_self(), addr, size); | |
802 | if (ret != KERN_SUCCESS) { | |
803 | fprintf(stderr, | |
804 | "vm_deallocate(stack) failed: %s\n", | |
805 | mach_error_string(ret)); | |
806 | } | |
807 | } | |
808 | free(th); | |
809 | } | |
810 | } | |
811 | ||
812 | ||
813 | static void * | |
814 | stackAddress(void) | |
815 | { | |
816 | unsigned dummy; | |
817 | return (void *)((unsigned)&dummy & ~ (PTHREAD_STACK_MIN - 1)); | |
818 | } | |
819 | ||
820 | extern pthread_t _pthread_self(void); | |
821 | ||
822 | pthread_t | |
823 | pthread_self(void) | |
824 | { | |
825 | void * myStack = (void *)0; | |
826 | pthread_t cachedThread = _cachedThread; | |
827 | if (cachedThread) { | |
828 | myStack = stackAddress(); | |
829 | if ((void *)((unsigned)(cachedThread->stackaddr - 1) & ~ (PTHREAD_STACK_MIN - 1)) == myStack) { | |
830 | return cachedThread; | |
831 | } | |
832 | } | |
833 | _cachedThread = _pthread_self(); | |
834 | return _cachedThread; | |
835 | } | |
836 | ||
837 | /* | |
838 | * Terminate a thread. | |
839 | */ | |
840 | void | |
841 | pthread_exit(void *value_ptr) | |
842 | { | |
843 | pthread_t self = pthread_self(); | |
844 | struct _pthread_handler_rec *handler; | |
845 | kern_return_t kern_res; | |
846 | int num_joiners; | |
847 | _clear_thread_cache(); | |
848 | while ((handler = self->cleanup_stack) != 0) | |
849 | { | |
850 | (handler->routine)(handler->arg); | |
851 | self->cleanup_stack = handler->next; | |
852 | } | |
853 | _pthread_tsd_cleanup(self); | |
854 | LOCK(self->lock); | |
855 | if (self->detached == PTHREAD_CREATE_JOINABLE) | |
856 | { | |
857 | self->detached = _PTHREAD_EXITED; | |
858 | self->exit_value = value_ptr; | |
859 | num_joiners = self->num_joiners; | |
860 | UNLOCK(self->lock); | |
861 | if (num_joiners > 0) | |
862 | { | |
863 | swtch_pri(0); | |
864 | PTHREAD_MACH_CALL(semaphore_signal_all(self->joiners), kern_res); | |
865 | } | |
866 | PTHREAD_MACH_CALL(semaphore_wait(self->death), kern_res); | |
867 | } else | |
868 | UNLOCK(self->lock); | |
869 | /* Destroy thread & reclaim resources */ | |
870 | if (self->death) | |
871 | { | |
872 | PTHREAD_MACH_CALL(semaphore_destroy(mach_task_self(), self->joiners), kern_res); | |
873 | PTHREAD_MACH_CALL(semaphore_destroy(mach_task_self(), self->death), kern_res); | |
874 | } | |
875 | if (self->detached == _PTHREAD_CREATE_PARENT) { | |
876 | exit((int)(self->exit_value)); | |
877 | } | |
878 | ||
879 | _pthread_reap_threads(); | |
880 | ||
881 | _pthread_become_available(self); | |
882 | } | |
883 | ||
884 | /* | |
885 | * Wait for a thread to terminate and obtain its exit value. | |
886 | */ | |
887 | int | |
888 | pthread_join(pthread_t thread, | |
889 | void **value_ptr) | |
890 | { | |
891 | kern_return_t kern_res; | |
892 | if (thread->sig == _PTHREAD_SIG) | |
893 | { | |
894 | LOCK(thread->lock); | |
895 | if (thread->detached == PTHREAD_CREATE_JOINABLE) | |
896 | { | |
897 | thread->num_joiners++; | |
898 | UNLOCK(thread->lock); | |
899 | PTHREAD_MACH_CALL(semaphore_wait(thread->joiners), kern_res); | |
900 | LOCK(thread->lock); | |
901 | thread->num_joiners--; | |
902 | } | |
903 | if (thread->detached == _PTHREAD_EXITED) | |
904 | { | |
905 | if (thread->num_joiners == 0) | |
906 | { /* Give the result to this thread */ | |
907 | if (value_ptr) | |
908 | { | |
909 | *value_ptr = thread->exit_value; | |
910 | } | |
911 | UNLOCK(thread->lock); | |
912 | swtch_pri(0); | |
913 | PTHREAD_MACH_CALL(semaphore_signal(thread->death), kern_res); | |
914 | return (ESUCCESS); | |
915 | } else | |
916 | { /* This 'joiner' missed the catch! */ | |
917 | UNLOCK(thread->lock); | |
918 | return (ESRCH); | |
919 | } | |
920 | } else | |
921 | { /* The thread has become anti-social! */ | |
922 | UNLOCK(thread->lock); | |
923 | return (EINVAL); | |
924 | } | |
925 | } else | |
926 | { | |
927 | return (ESRCH); /* Not a valid thread */ | |
928 | } | |
929 | } | |
930 | ||
931 | /* | |
932 | * Get the scheduling policy and scheduling paramters for a thread. | |
933 | */ | |
934 | int | |
935 | pthread_getschedparam(pthread_t thread, | |
936 | int *policy, | |
937 | struct sched_param *param) | |
938 | { | |
939 | if (thread->sig == _PTHREAD_SIG) | |
940 | { | |
941 | *policy = thread->policy; | |
942 | *param = thread->param; | |
943 | return (ESUCCESS); | |
944 | } else | |
945 | { | |
946 | return (ESRCH); /* Not a valid thread structure */ | |
947 | } | |
948 | } | |
949 | ||
950 | /* | |
951 | * Set the scheduling policy and scheduling paramters for a thread. | |
952 | */ | |
953 | int | |
954 | pthread_setschedparam(pthread_t thread, | |
955 | int policy, | |
956 | const struct sched_param *param) | |
957 | { | |
958 | policy_base_data_t bases; | |
959 | policy_base_t base; | |
960 | mach_msg_type_number_t count; | |
961 | kern_return_t ret; | |
962 | ||
963 | if (thread->sig == _PTHREAD_SIG) | |
964 | { | |
965 | switch (policy) | |
966 | { | |
967 | case SCHED_OTHER: | |
968 | bases.ts.base_priority = param->sched_priority; | |
969 | base = (policy_base_t)&bases.ts; | |
970 | count = POLICY_TIMESHARE_BASE_COUNT; | |
971 | break; | |
972 | case SCHED_FIFO: | |
973 | bases.fifo.base_priority = param->sched_priority; | |
974 | base = (policy_base_t)&bases.fifo; | |
975 | count = POLICY_FIFO_BASE_COUNT; | |
976 | break; | |
977 | case SCHED_RR: | |
978 | bases.rr.base_priority = param->sched_priority; | |
979 | /* quantum isn't public yet */ | |
980 | bases.rr.quantum = param->quantum; | |
981 | base = (policy_base_t)&bases.rr; | |
982 | count = POLICY_RR_BASE_COUNT; | |
983 | break; | |
984 | default: | |
985 | return (EINVAL); | |
986 | } | |
987 | thread->policy = policy; | |
988 | thread->param = *param; | |
989 | ret = thread_policy(thread->kernel_thread, policy, base, count, TRUE); | |
990 | if (ret != KERN_SUCCESS) | |
991 | { | |
992 | return (EINVAL); | |
993 | } | |
994 | return (ESUCCESS); | |
995 | } else | |
996 | { | |
997 | return (ESRCH); /* Not a valid thread structure */ | |
998 | } | |
999 | } | |
1000 | ||
1001 | /* | |
1002 | * Get the minimum priority for the given policy | |
1003 | */ | |
1004 | int | |
1005 | sched_get_priority_min(int policy) | |
1006 | { | |
1007 | return default_priority - 16; | |
1008 | } | |
1009 | ||
1010 | /* | |
1011 | * Get the maximum priority for the given policy | |
1012 | */ | |
1013 | int | |
1014 | sched_get_priority_max(int policy) | |
1015 | { | |
1016 | return default_priority + 16; | |
1017 | } | |
1018 | ||
1019 | /* | |
1020 | * Determine if two thread identifiers represent the same thread. | |
1021 | */ | |
1022 | int | |
1023 | pthread_equal(pthread_t t1, | |
1024 | pthread_t t2) | |
1025 | { | |
1026 | return (t1 == t2); | |
1027 | } | |
1028 | ||
1029 | void | |
1030 | cthread_set_self(void *cself) | |
1031 | { | |
1032 | pthread_t self = pthread_self(); | |
1033 | if ((self == (pthread_t)NULL) || (self->sig != _PTHREAD_SIG)) { | |
1034 | _pthread_set_self(cself); | |
1035 | return; | |
1036 | } | |
1037 | self->cthread_self = cself; | |
1038 | } | |
1039 | ||
1040 | void * | |
1041 | ur_cthread_self(void) { | |
1042 | pthread_t self = pthread_self(); | |
1043 | if ((self == (pthread_t)NULL) || (self->sig != _PTHREAD_SIG)) { | |
1044 | return (void *)self; | |
1045 | } | |
1046 | return self->cthread_self; | |
1047 | } | |
1048 | ||
1049 | /* | |
1050 | * Execute a function exactly one time in a thread-safe fashion. | |
1051 | */ | |
1052 | int | |
1053 | pthread_once(pthread_once_t *once_control, | |
1054 | void (*init_routine)(void)) | |
1055 | { | |
1056 | LOCK(once_control->lock); | |
1057 | if (once_control->sig == _PTHREAD_ONCE_SIG_init) | |
1058 | { | |
1059 | (*init_routine)(); | |
1060 | once_control->sig = _PTHREAD_ONCE_SIG; | |
1061 | } | |
1062 | UNLOCK(once_control->lock); | |
1063 | return (ESUCCESS); /* Spec defines no possible errors! */ | |
1064 | } | |
1065 | ||
1066 | /* | |
1067 | * Cancel a thread | |
1068 | */ | |
1069 | int | |
1070 | pthread_cancel(pthread_t thread) | |
1071 | { | |
1072 | if (thread->sig == _PTHREAD_SIG) | |
1073 | { | |
1074 | thread->cancel_state |= _PTHREAD_CANCEL_PENDING; | |
1075 | return (ESUCCESS); | |
1076 | } else | |
1077 | { | |
1078 | return (ESRCH); | |
1079 | } | |
1080 | } | |
1081 | ||
1082 | /* | |
1083 | * Insert a cancellation point in a thread. | |
1084 | */ | |
1085 | static void | |
1086 | _pthread_testcancel(pthread_t thread) | |
1087 | { | |
1088 | LOCK(thread->lock); | |
1089 | if ((thread->cancel_state & (PTHREAD_CANCEL_ENABLE|_PTHREAD_CANCEL_PENDING)) == | |
1090 | (PTHREAD_CANCEL_ENABLE|_PTHREAD_CANCEL_PENDING)) | |
1091 | { | |
1092 | UNLOCK(thread->lock); | |
1093 | pthread_exit(0); | |
1094 | } | |
1095 | UNLOCK(thread->lock); | |
1096 | } | |
1097 | ||
1098 | void | |
1099 | pthread_testcancel(void) | |
1100 | { | |
1101 | pthread_t self = pthread_self(); | |
1102 | _pthread_testcancel(self); | |
1103 | } | |
1104 | ||
1105 | /* | |
1106 | * Query/update the cancelability 'state' of a thread | |
1107 | */ | |
1108 | int | |
1109 | pthread_setcancelstate(int state, int *oldstate) | |
1110 | { | |
1111 | pthread_t self = pthread_self(); | |
1112 | int err = ESUCCESS; | |
1113 | LOCK(self->lock); | |
1114 | *oldstate = self->cancel_state & _PTHREAD_CANCEL_STATE_MASK; | |
1115 | if ((state == PTHREAD_CANCEL_ENABLE) || (state == PTHREAD_CANCEL_DISABLE)) | |
1116 | { | |
1117 | self->cancel_state = (self->cancel_state & _PTHREAD_CANCEL_STATE_MASK) | state; | |
1118 | } else | |
1119 | { | |
1120 | err = EINVAL; | |
1121 | } | |
1122 | UNLOCK(self->lock); | |
1123 | _pthread_testcancel(self); /* See if we need to 'die' now... */ | |
1124 | return (err); | |
1125 | } | |
1126 | ||
1127 | /* | |
1128 | * Query/update the cancelability 'type' of a thread | |
1129 | */ | |
1130 | int | |
1131 | pthread_setcanceltype(int type, int *oldtype) | |
1132 | { | |
1133 | pthread_t self = pthread_self(); | |
1134 | int err = ESUCCESS; | |
1135 | LOCK(self->lock); | |
1136 | *oldtype = self->cancel_state & _PTHREAD_CANCEL_TYPE_MASK; | |
1137 | if ((type == PTHREAD_CANCEL_DEFERRED) || (type == PTHREAD_CANCEL_ASYNCHRONOUS)) | |
1138 | { | |
1139 | self->cancel_state = (self->cancel_state & _PTHREAD_CANCEL_TYPE_MASK) | type; | |
1140 | } else | |
1141 | { | |
1142 | err = EINVAL; | |
1143 | } | |
1144 | UNLOCK(self->lock); | |
1145 | _pthread_testcancel(self); /* See if we need to 'die' now... */ | |
1146 | return (err); | |
1147 | } | |
1148 | ||
1149 | /* | |
1150 | * Perform package initialization - called automatically when application starts | |
1151 | */ | |
1152 | ||
1153 | /* We'll implement this when the main thread is a pthread */ | |
1154 | /* Use the local _pthread struct to avoid malloc before our MiG reply port is set */ | |
1155 | ||
1156 | static struct _pthread _thread = {0}; | |
1157 | ||
1158 | static int | |
1159 | pthread_init(void) | |
1160 | { | |
1161 | pthread_attr_t _attr, *attrs; | |
1162 | pthread_t thread; | |
1163 | kern_return_t kr; | |
1164 | host_basic_info_data_t basic_info; | |
1165 | host_priority_info_data_t priority_info; | |
1166 | host_info_t info; | |
1167 | host_flavor_t flavor; | |
1168 | mach_msg_type_number_t count; | |
1169 | int mib[2]; | |
1170 | size_t len; | |
1171 | int hasvectorunit, numcpus; | |
1172 | ||
1173 | count = HOST_PRIORITY_INFO_COUNT; | |
1174 | info = (host_info_t)&priority_info; | |
1175 | flavor = HOST_PRIORITY_INFO; | |
1176 | kr = host_info(mach_host_self(), flavor, info, &count); | |
1177 | if (kr != KERN_SUCCESS) | |
1178 | printf("host_info failed (%d); probably need privilege.\n", kr); | |
1179 | else { | |
1180 | default_priority = priority_info.user_priority; | |
1181 | min_priority = priority_info.minimum_priority; | |
1182 | max_priority = priority_info.maximum_priority; | |
1183 | } | |
1184 | attrs = &_attr; | |
1185 | pthread_attr_init(attrs); | |
1186 | _clear_thread_cache(); | |
1187 | _pthread_set_self(&_thread); | |
1188 | ||
1189 | _pthread_create(&_thread, attrs, USRSTACK, mach_thread_self()); | |
1190 | thread = (pthread_t)malloc(sizeof(struct _pthread)); | |
1191 | memcpy(thread, &_thread, sizeof(struct _pthread)); | |
1192 | _clear_thread_cache(); | |
1193 | _pthread_set_self(thread); | |
1194 | thread->detached = _PTHREAD_CREATE_PARENT; | |
1195 | ||
1196 | /* See if we're on a multiprocessor and set _spin_tries if so. */ | |
1197 | mib[0] = CTL_HW; | |
1198 | mib[1] = HW_NCPU; | |
1199 | len = sizeof(numcpus); | |
1200 | if (sysctl(mib, 2, &numcpus, &len, NULL, 0) == 0) { | |
1201 | if (numcpus > 1) { | |
1202 | _spin_tries = SPIN_TRIES; | |
1203 | } | |
1204 | } else { | |
1205 | count = HOST_BASIC_INFO_COUNT; | |
1206 | info = (host_info_t)&basic_info; | |
1207 | flavor = HOST_BASIC_INFO; | |
1208 | kr = host_info(mach_host_self(), flavor, info, &count); | |
1209 | if (kr != KERN_SUCCESS) | |
1210 | printf("host_info failed (%d)\n", kr); | |
1211 | else { | |
1212 | if (basic_info.avail_cpus > 1) | |
1213 | _spin_tries = SPIN_TRIES; | |
1214 | /* This is a crude test */ | |
1215 | if (basic_info.cpu_subtype >= CPU_SUBTYPE_POWERPC_7400) | |
1216 | _cpu_has_altivec = 1; | |
1217 | } | |
1218 | } | |
1219 | mib[0] = CTL_HW; | |
1220 | mib[1] = HW_VECTORUNIT; | |
1221 | len = sizeof(hasvectorunit); | |
1222 | if (sysctl(mib, 2, &hasvectorunit, &len, NULL, 0) == 0) { | |
1223 | _cpu_has_altivec = hasvectorunit; | |
1224 | } | |
1225 | mig_init(1); /* enable multi-threaded mig interfaces */ | |
1226 | return 0; | |
1227 | } | |
1228 | ||
1229 | int sched_yield(void) | |
1230 | { | |
1231 | swtch_pri(0); | |
1232 | return 0; | |
1233 | } | |
1234 | ||
1235 | /* This is the "magic" that gets the initialization routine called when the application starts */ | |
1236 | int (*_cthread_init_routine)(void) = pthread_init; | |
1237 | ||
1238 | /* Get a semaphore from the pool, growing it if necessary */ | |
1239 | ||
1240 | __private_extern__ semaphore_t new_sem_from_pool(void) { | |
1241 | kern_return_t res; | |
1242 | semaphore_t sem; | |
1243 | int i; | |
1244 | ||
1245 | LOCK(sem_pool_lock); | |
1246 | if (sem_pool_current == sem_pool_count) { | |
1247 | sem_pool_count += 16; | |
1248 | sem_pool = realloc(sem_pool, sem_pool_count * sizeof(semaphore_t)); | |
1249 | for (i = sem_pool_current; i < sem_pool_count; i++) { | |
1250 | PTHREAD_MACH_CALL(semaphore_create(mach_task_self(), &sem_pool[i], SYNC_POLICY_FIFO, 0), res); | |
1251 | } | |
1252 | } | |
1253 | sem = sem_pool[sem_pool_current++]; | |
1254 | UNLOCK(sem_pool_lock); | |
1255 | return sem; | |
1256 | } | |
1257 | ||
1258 | /* Put a semaphore back into the pool */ | |
1259 | __private_extern__ void restore_sem_to_pool(semaphore_t sem) { | |
1260 | LOCK(sem_pool_lock); | |
1261 | sem_pool[--sem_pool_current] = sem; | |
1262 | UNLOCK(sem_pool_lock); | |
1263 | } | |
1264 | ||
1265 | static void sem_pool_reset(void) { | |
1266 | LOCK(sem_pool_lock); | |
1267 | sem_pool_count = 0; | |
1268 | sem_pool_current = 0; | |
1269 | sem_pool = NULL; | |
1270 | UNLOCK(sem_pool_lock); | |
1271 | } | |
1272 | ||
1273 | __private_extern__ void _pthread_fork_child(void) { | |
1274 | /* Just in case somebody had it locked... */ | |
1275 | UNLOCK(sem_pool_lock); | |
1276 | sem_pool_reset(); | |
1277 | } | |
1278 |