]>
Commit | Line | Data |
---|---|---|
59e0d9fe | 1 | /*- |
eb1cde05 | 2 | * Copyright (c) 2004 David Schultz <das@FreeBSD.ORG> |
59e0d9fe A |
3 | * All rights reserved. |
4 | * | |
5 | * Redistribution and use in source and binary forms, with or without | |
6 | * modification, are permitted provided that the following conditions | |
7 | * are met: | |
8 | * 1. Redistributions of source code must retain the above copyright | |
9 | * notice, this list of conditions and the following disclaimer. | |
10 | * 2. Redistributions in binary form must reproduce the above copyright | |
11 | * notice, this list of conditions and the following disclaimer in the | |
12 | * documentation and/or other materials provided with the distribution. | |
13 | * | |
14 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
15 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
16 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
17 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
18 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
19 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
20 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
21 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
22 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
23 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
24 | * SUCH DAMAGE. | |
25 | */ | |
26 | ||
27 | #include <sys/cdefs.h> | |
eb1cde05 | 28 | __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.2 2004/01/21 04:51:50 grehan Exp $"); |
59e0d9fe A |
29 | |
30 | #include <float.h> | |
eb1cde05 | 31 | #include <inttypes.h> |
59e0d9fe A |
32 | #include <limits.h> |
33 | #include <math.h> | |
eb1cde05 | 34 | #include <stdlib.h> |
59e0d9fe A |
35 | #include "fpmath.h" |
36 | #include "gdtoaimp.h" | |
37 | ||
38 | /* Strings values used by dtoa() */ | |
39 | #define INFSTR "Infinity" | |
40 | #define NANSTR "NaN" | |
41 | ||
eb1cde05 A |
42 | #define DBL_BIAS (DBL_MAX_EXP - 1) |
43 | #define LDBL_BIAS (LDBL_MAX_EXP - 1) | |
44 | ||
45 | #ifdef LDBL_IMPLICIT_NBIT | |
46 | #define LDBL_NBIT_ADJ 0 | |
47 | #else | |
48 | #define LDBL_NBIT_ADJ 1 | |
49 | #endif | |
50 | ||
51 | /* | |
52 | * Efficiently compute the log2 of an integer. Uses a combination of | |
53 | * arcane tricks found in fortune and arcane tricks not (yet) in | |
54 | * fortune. This routine behaves similarly to fls(9). | |
55 | */ | |
56 | static int | |
57 | log2_32(uint32_t n) | |
58 | { | |
59 | ||
60 | n |= (n >> 1); | |
61 | n |= (n >> 2); | |
62 | n |= (n >> 4); | |
63 | n |= (n >> 8); | |
64 | n |= (n >> 16); | |
65 | ||
66 | n = (n & 0x55555555) + ((n & 0xaaaaaaaa) >> 1); | |
67 | n = (n & 0x33333333) + ((n & 0xcccccccc) >> 2); | |
68 | n = (n & 0x0f0f0f0f) + ((n & 0xf0f0f0f0) >> 4); | |
69 | n = (n & 0x00ff00ff) + ((n & 0xff00ff00) >> 8); | |
70 | n = (n & 0x0000ffff) + ((n & 0xffff0000) >> 16); | |
71 | return (n - 1); | |
72 | } | |
73 | ||
74 | #if (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32) | |
75 | ||
76 | static int | |
77 | log2_64(uint64_t n) | |
78 | { | |
79 | ||
80 | if (n >> 32 != 0) | |
81 | return (log2_32((uint32_t)(n >> 32)) + 32); | |
82 | else | |
83 | return (log2_32((uint32_t)n)); | |
84 | } | |
85 | ||
86 | #endif /* (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32) */ | |
59e0d9fe A |
87 | |
88 | /* | |
89 | * Round up the given digit string. If the digit string is fff...f, | |
90 | * this procedure sets it to 100...0 and returns 1 to indicate that | |
91 | * the exponent needs to be bumped. Otherwise, 0 is returned. | |
92 | */ | |
93 | static int | |
94 | roundup(char *s0, int ndigits) | |
95 | { | |
96 | char *s; | |
97 | ||
98 | for (s = s0 + ndigits - 1; *s == 0xf; s--) { | |
99 | if (s == s0) { | |
100 | *s = 1; | |
101 | return (1); | |
102 | } | |
103 | ++*s; | |
104 | } | |
105 | ++*s; | |
106 | return (0); | |
107 | } | |
108 | ||
109 | /* | |
110 | * Round the given digit string to ndigits digits according to the | |
111 | * current rounding mode. Note that this could produce a string whose | |
112 | * value is not representable in the corresponding floating-point | |
113 | * type. The exponent pointed to by decpt is adjusted if necessary. | |
114 | */ | |
115 | static void | |
116 | dorounding(char *s0, int ndigits, int sign, int *decpt) | |
117 | { | |
118 | int adjust = 0; /* do we need to adjust the exponent? */ | |
119 | ||
120 | switch (FLT_ROUNDS) { | |
121 | case 0: /* toward zero */ | |
122 | default: /* implementation-defined */ | |
123 | break; | |
124 | case 1: /* to nearest, halfway rounds to even */ | |
125 | if ((s0[ndigits] > 8) || | |
126 | (s0[ndigits] == 8 && s0[ndigits - 1] & 1)) | |
127 | adjust = roundup(s0, ndigits); | |
128 | break; | |
129 | case 2: /* toward +inf */ | |
130 | if (sign == 0) | |
131 | adjust = roundup(s0, ndigits); | |
132 | break; | |
133 | case 3: /* toward -inf */ | |
134 | if (sign != 0) | |
135 | adjust = roundup(s0, ndigits); | |
136 | break; | |
137 | } | |
138 | ||
139 | if (adjust) | |
140 | *decpt += 4; | |
141 | } | |
142 | ||
143 | /* | |
144 | * This procedure converts a double-precision number in IEEE format | |
145 | * into a string of hexadecimal digits and an exponent of 2. Its | |
146 | * behavior is bug-for-bug compatible with dtoa() in mode 2, with the | |
147 | * following exceptions: | |
148 | * | |
149 | * - An ndigits < 0 causes it to use as many digits as necessary to | |
150 | * represent the number exactly. | |
151 | * - The additional xdigs argument should point to either the string | |
152 | * "0123456789ABCDEF" or the string "0123456789abcdef", depending on | |
153 | * which case is desired. | |
154 | * - This routine does not repeat dtoa's mistake of setting decpt | |
155 | * to 9999 in the case of an infinity or NaN. INT_MAX is used | |
156 | * for this purpose instead. | |
157 | * | |
158 | * Note that the C99 standard does not specify what the leading digit | |
159 | * should be for non-zero numbers. For instance, 0x1.3p3 is the same | |
160 | * as 0x2.6p2 is the same as 0x4.cp3. This implementation chooses the | |
161 | * first digit so that subsequent digits are aligned on nibble | |
162 | * boundaries (before rounding). | |
163 | * | |
164 | * Inputs: d, xdigs, ndigits | |
165 | * Outputs: decpt, sign, rve | |
166 | */ | |
167 | char * | |
168 | __hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign, | |
169 | char **rve) | |
170 | { | |
171 | union IEEEd2bits u; | |
172 | char *s, *s0; | |
173 | int bufsize; | |
eb1cde05 A |
174 | int impnbit; /* implicit normalization bit */ |
175 | int pos; | |
176 | int shift; /* for subnormals, # of shifts required to normalize */ | |
177 | int sigfigs; /* number of significant hex figures in result */ | |
59e0d9fe A |
178 | |
179 | u.d = d; | |
180 | *sign = u.bits.sign; | |
181 | ||
182 | switch (fpclassify(d)) { | |
183 | case FP_NORMAL: | |
eb1cde05 A |
184 | sigfigs = (DBL_MANT_DIG + 3) / 4; |
185 | impnbit = 1 << ((DBL_MANT_DIG - 1) % 4); | |
186 | *decpt = u.bits.exp - DBL_BIAS + 1 - | |
187 | ((DBL_MANT_DIG - 1) % 4); | |
59e0d9fe A |
188 | break; |
189 | case FP_ZERO: | |
190 | *decpt = 1; | |
191 | return (nrv_alloc("0", rve, 1)); | |
192 | case FP_SUBNORMAL: | |
eb1cde05 A |
193 | /* |
194 | * The position of the highest-order bit tells us by | |
195 | * how much to adjust the exponent (decpt). The | |
196 | * adjustment is raised to the next nibble boundary | |
197 | * since we will later choose the leftmost hexadecimal | |
198 | * digit so that all subsequent digits align on nibble | |
199 | * boundaries. | |
200 | */ | |
201 | if (u.bits.manh != 0) { | |
202 | pos = log2_32(u.bits.manh); | |
203 | shift = DBL_MANH_SIZE - pos; | |
204 | } else { | |
205 | pos = log2_32(u.bits.manl); | |
206 | shift = DBL_MANH_SIZE + DBL_MANL_SIZE - pos; | |
207 | } | |
208 | sigfigs = (3 + DBL_MANT_DIG - shift) / 4; | |
209 | impnbit = 0; | |
210 | *decpt = DBL_MIN_EXP - ((shift + 3) & ~(4 - 1)); | |
59e0d9fe A |
211 | break; |
212 | case FP_INFINITE: | |
213 | *decpt = INT_MAX; | |
214 | return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1)); | |
215 | case FP_NAN: | |
216 | *decpt = INT_MAX; | |
217 | return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1)); | |
218 | default: | |
219 | abort(); | |
220 | } | |
221 | ||
222 | /* FP_NORMAL or FP_SUBNORMAL */ | |
223 | ||
224 | if (ndigits == 0) /* dtoa() compatibility */ | |
225 | ndigits = 1; | |
226 | ||
227 | /* | |
228 | * For simplicity, we generate all the digits even if the | |
229 | * caller has requested fewer. | |
230 | */ | |
231 | bufsize = (sigfigs > ndigits) ? sigfigs : ndigits; | |
232 | s0 = rv_alloc(bufsize); | |
233 | ||
234 | /* | |
235 | * We work from right to left, first adding any requested zero | |
236 | * padding, then the least significant portion of the | |
237 | * mantissa, followed by the most significant. The buffer is | |
238 | * filled with the byte values 0x0 through 0xf, which are | |
239 | * converted to xdigs[0x0] through xdigs[0xf] after the | |
240 | * rounding phase. | |
241 | */ | |
242 | for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--) | |
243 | *s = 0; | |
244 | for (; s > s0 + sigfigs - (DBL_MANL_SIZE / 4) - 1 && s > s0; s--) { | |
245 | *s = u.bits.manl & 0xf; | |
246 | u.bits.manl >>= 4; | |
247 | } | |
248 | for (; s > s0; s--) { | |
249 | *s = u.bits.manh & 0xf; | |
250 | u.bits.manh >>= 4; | |
251 | } | |
252 | ||
253 | /* | |
254 | * At this point, we have snarfed all the bits in the | |
255 | * mantissa, with the possible exception of the highest-order | |
256 | * (partial) nibble, which is dealt with by the next | |
eb1cde05 A |
257 | * statement. That nibble is usually in manh, but it could be |
258 | * in manl instead for small subnormals. We also tack on the | |
259 | * implicit normalization bit if appropriate. | |
59e0d9fe | 260 | */ |
eb1cde05 | 261 | *s = u.bits.manh | u.bits.manl | impnbit; |
59e0d9fe A |
262 | |
263 | /* If ndigits < 0, we are expected to auto-size the precision. */ | |
264 | if (ndigits < 0) { | |
265 | for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--) | |
266 | ; | |
267 | } | |
268 | ||
269 | if (sigfigs > ndigits && s0[ndigits] != 0) | |
270 | dorounding(s0, ndigits, u.bits.sign, decpt); | |
271 | ||
272 | s = s0 + ndigits; | |
273 | if (rve != NULL) | |
274 | *rve = s; | |
275 | *s-- = '\0'; | |
276 | for (; s >= s0; s--) | |
277 | *s = xdigs[(unsigned int)*s]; | |
278 | ||
279 | return (s0); | |
280 | } | |
281 | ||
282 | #if (LDBL_MANT_DIG > DBL_MANT_DIG) | |
283 | ||
284 | /* | |
285 | * This is the long double version of __hdtoa(). | |
eb1cde05 A |
286 | * |
287 | * On architectures that have an explicit integer bit, unnormals and | |
288 | * pseudo-denormals cause problems in the conversion routine, so they | |
289 | * are ``fixed'' by effectively toggling the integer bit. Although | |
290 | * this is not correct behavior, the hardware will not produce these | |
291 | * formats externally. | |
59e0d9fe A |
292 | */ |
293 | char * | |
294 | __hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign, | |
295 | char **rve) | |
296 | { | |
297 | union IEEEl2bits u; | |
298 | char *s, *s0; | |
299 | int bufsize; | |
eb1cde05 A |
300 | int impnbit; /* implicit normalization bit */ |
301 | int pos; | |
302 | int shift; /* for subnormals, # of shifts required to normalize */ | |
303 | int sigfigs; /* number of significant hex figures in result */ | |
59e0d9fe A |
304 | |
305 | u.e = e; | |
306 | *sign = u.bits.sign; | |
307 | ||
308 | switch (fpclassify(e)) { | |
309 | case FP_NORMAL: | |
eb1cde05 A |
310 | sigfigs = (LDBL_MANT_DIG + 3) / 4; |
311 | impnbit = 1 << ((LDBL_MANT_DIG - 1) % 4); | |
312 | *decpt = u.bits.exp - LDBL_BIAS + 1 - | |
313 | ((LDBL_MANT_DIG - 1) % 4); | |
59e0d9fe A |
314 | break; |
315 | case FP_ZERO: | |
316 | *decpt = 1; | |
317 | return (nrv_alloc("0", rve, 1)); | |
318 | case FP_SUBNORMAL: | |
eb1cde05 A |
319 | /* |
320 | * The position of the highest-order bit tells us by | |
321 | * how much to adjust the exponent (decpt). The | |
322 | * adjustment is raised to the next nibble boundary | |
323 | * since we will later choose the leftmost hexadecimal | |
324 | * digit so that all subsequent digits align on nibble | |
325 | * boundaries. | |
326 | */ | |
327 | #ifdef LDBL_IMPLICIT_NBIT | |
328 | /* Don't trust the normalization bit to be off. */ | |
329 | u.bits.manh &= ~(~0ULL << (LDBL_MANH_SIZE - 1)); | |
330 | #endif | |
331 | if (u.bits.manh != 0) { | |
332 | #if LDBL_MANH_SIZE > 32 | |
333 | pos = log2_64(u.bits.manh); | |
334 | #else | |
335 | pos = log2_32(u.bits.manh); | |
336 | #endif | |
337 | shift = LDBL_MANH_SIZE - LDBL_NBIT_ADJ - pos; | |
338 | } else { | |
339 | #if LDBL_MANL_SIZE > 32 | |
340 | pos = log2_64(u.bits.manl); | |
341 | #else | |
342 | pos = log2_32(u.bits.manl); | |
343 | #endif | |
344 | shift = LDBL_MANH_SIZE + LDBL_MANL_SIZE - | |
345 | LDBL_NBIT_ADJ - pos; | |
346 | } | |
347 | sigfigs = (3 + LDBL_MANT_DIG - LDBL_NBIT_ADJ - shift) / 4; | |
348 | *decpt = LDBL_MIN_EXP + LDBL_NBIT_ADJ - | |
349 | ((shift + 3) & ~(4 - 1)); | |
350 | impnbit = 0; | |
59e0d9fe A |
351 | break; |
352 | case FP_INFINITE: | |
353 | *decpt = INT_MAX; | |
354 | return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1)); | |
355 | case FP_NAN: | |
356 | *decpt = INT_MAX; | |
357 | return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1)); | |
358 | default: | |
359 | abort(); | |
360 | } | |
361 | ||
362 | /* FP_NORMAL or FP_SUBNORMAL */ | |
363 | ||
364 | if (ndigits == 0) /* dtoa() compatibility */ | |
365 | ndigits = 1; | |
366 | ||
367 | /* | |
368 | * For simplicity, we generate all the digits even if the | |
369 | * caller has requested fewer. | |
370 | */ | |
371 | bufsize = (sigfigs > ndigits) ? sigfigs : ndigits; | |
372 | s0 = rv_alloc(bufsize); | |
373 | ||
374 | /* | |
375 | * We work from right to left, first adding any requested zero | |
376 | * padding, then the least significant portion of the | |
377 | * mantissa, followed by the most significant. The buffer is | |
378 | * filled with the byte values 0x0 through 0xf, which are | |
379 | * converted to xdigs[0x0] through xdigs[0xf] after the | |
380 | * rounding phase. | |
381 | */ | |
382 | for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--) | |
383 | *s = 0; | |
384 | for (; s > s0 + sigfigs - (LDBL_MANL_SIZE / 4) - 1 && s > s0; s--) { | |
385 | *s = u.bits.manl & 0xf; | |
386 | u.bits.manl >>= 4; | |
387 | } | |
388 | for (; s > s0; s--) { | |
389 | *s = u.bits.manh & 0xf; | |
390 | u.bits.manh >>= 4; | |
391 | } | |
392 | ||
393 | /* | |
394 | * At this point, we have snarfed all the bits in the | |
395 | * mantissa, with the possible exception of the highest-order | |
396 | * (partial) nibble, which is dealt with by the next | |
eb1cde05 A |
397 | * statement. That nibble is usually in manh, but it could be |
398 | * in manl instead for small subnormals. We also tack on the | |
399 | * implicit normalization bit if appropriate. | |
59e0d9fe | 400 | */ |
eb1cde05 | 401 | *s = u.bits.manh | u.bits.manl | impnbit; |
59e0d9fe A |
402 | |
403 | /* If ndigits < 0, we are expected to auto-size the precision. */ | |
404 | if (ndigits < 0) { | |
405 | for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--) | |
406 | ; | |
407 | } | |
408 | ||
409 | if (sigfigs > ndigits && s0[ndigits] != 0) | |
410 | dorounding(s0, ndigits, u.bits.sign, decpt); | |
411 | ||
412 | s = s0 + ndigits; | |
413 | if (rve != NULL) | |
414 | *rve = s; | |
415 | *s-- = '\0'; | |
416 | for (; s >= s0; s--) | |
417 | *s = xdigs[(unsigned int)*s]; | |
418 | ||
419 | return (s0); | |
420 | } | |
421 | ||
422 | #else /* (LDBL_MANT_DIG == DBL_MANT_DIG) */ | |
423 | ||
424 | char * | |
425 | __hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign, | |
426 | char **rve) | |
427 | { | |
428 | ||
429 | return (__hdtoa((double)e, xdigs, ndigits, decpt, sign, rve)); | |
430 | } | |
431 | ||
432 | #endif /* (LDBL_MANT_DIG == DBL_MANT_DIG) */ |