]> git.saurik.com Git - apple/libc.git/blame - gdtoa/gdtoaimp.h
Libc-498.1.1.tar.gz
[apple/libc.git] / gdtoa / gdtoaimp.h
CommitLineData
224c7076
A
1/****************************************************************
2
3The author of this software is David M. Gay.
4
5Copyright (C) 1998-2000 by Lucent Technologies
6All Rights Reserved
7
8Permission to use, copy, modify, and distribute this software and
9its documentation for any purpose and without fee is hereby
10granted, provided that the above copyright notice appear in all
11copies and that both that the copyright notice and this
12permission notice and warranty disclaimer appear in supporting
13documentation, and that the name of Lucent or any of its entities
14not be used in advertising or publicity pertaining to
15distribution of the software without specific, written prior
16permission.
17
18LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25THIS SOFTWARE.
26
27****************************************************************/
28
29/* This is a variation on dtoa.c that converts arbitary binary
30 floating-point formats to and from decimal notation. It uses
31 double-precision arithmetic internally, so there are still
32 various #ifdefs that adapt the calculations to the native
33 double-precision arithmetic (any of IEEE, VAX D_floating,
34 or IBM mainframe arithmetic).
35
36 Please send bug reports to David M. Gay (dmg at acm dot org,
37 with " at " changed at "@" and " dot " changed to ".").
38 */
39
40/* On a machine with IEEE extended-precision registers, it is
41 * necessary to specify double-precision (53-bit) rounding precision
42 * before invoking strtod or dtoa. If the machine uses (the equivalent
43 * of) Intel 80x87 arithmetic, the call
44 * _control87(PC_53, MCW_PC);
45 * does this with many compilers. Whether this or another call is
46 * appropriate depends on the compiler; for this to work, it may be
47 * necessary to #include "float.h" or another system-dependent header
48 * file.
49 */
50
51/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52 *
53 * This strtod returns a nearest machine number to the input decimal
54 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
55 * broken by the IEEE round-even rule. Otherwise ties are broken by
56 * biased rounding (add half and chop).
57 *
58 * Inspired loosely by William D. Clinger's paper "How to Read Floating
59 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
60 *
61 * Modifications:
62 *
63 * 1. We only require IEEE, IBM, or VAX double-precision
64 * arithmetic (not IEEE double-extended).
65 * 2. We get by with floating-point arithmetic in a case that
66 * Clinger missed -- when we're computing d * 10^n
67 * for a small integer d and the integer n is not too
68 * much larger than 22 (the maximum integer k for which
69 * we can represent 10^k exactly), we may be able to
70 * compute (d*10^k) * 10^(e-k) with just one roundoff.
71 * 3. Rather than a bit-at-a-time adjustment of the binary
72 * result in the hard case, we use floating-point
73 * arithmetic to determine the adjustment to within
74 * one bit; only in really hard cases do we need to
75 * compute a second residual.
76 * 4. Because of 3., we don't need a large table of powers of 10
77 * for ten-to-e (just some small tables, e.g. of 10^k
78 * for 0 <= k <= 22).
79 */
80
81/*
82 * #define IEEE_8087 for IEEE-arithmetic machines where the least
83 * significant byte has the lowest address.
84 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85 * significant byte has the lowest address.
86 * #define Long int on machines with 32-bit ints and 64-bit longs.
87 * #define Sudden_Underflow for IEEE-format machines without gradual
88 * underflow (i.e., that flush to zero on underflow).
89 * #define IBM for IBM mainframe-style floating-point arithmetic.
90 * #define VAX for VAX-style floating-point arithmetic (D_floating).
91 * #define No_leftright to omit left-right logic in fast floating-point
92 * computation of dtoa.
93 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
94 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
95 * that use extended-precision instructions to compute rounded
96 * products and quotients) with IBM.
97 * #define ROUND_BIASED for IEEE-format with biased rounding.
98 * #define Inaccurate_Divide for IEEE-format with correctly rounded
99 * products but inaccurate quotients, e.g., for Intel i860.
100 * #define NO_LONG_LONG on machines that do not have a "long long"
101 * integer type (of >= 64 bits). On such machines, you can
102 * #define Just_16 to store 16 bits per 32-bit Long when doing
103 * high-precision integer arithmetic. Whether this speeds things
104 * up or slows things down depends on the machine and the number
105 * being converted. If long long is available and the name is
106 * something other than "long long", #define Llong to be the name,
107 * and if "unsigned Llong" does not work as an unsigned version of
108 * Llong, #define #ULLong to be the corresponding unsigned type.
109 * #define KR_headers for old-style C function headers.
110 * #define Bad_float_h if your system lacks a float.h or if it does not
111 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
112 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
113 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
114 * if memory is available and otherwise does something you deem
115 * appropriate. If MALLOC is undefined, malloc will be invoked
116 * directly -- and assumed always to succeed.
117 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
118 * memory allocations from a private pool of memory when possible.
119 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
120 * unless #defined to be a different length. This default length
121 * suffices to get rid of MALLOC calls except for unusual cases,
122 * such as decimal-to-binary conversion of a very long string of
123 * digits. When converting IEEE double precision values, the
124 * longest string gdtoa can return is about 751 bytes long. For
125 * conversions by strtod of strings of 800 digits and all gdtoa
126 * conversions of IEEE doubles in single-threaded executions with
127 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
128 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
129 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
130 * Infinity and NaN (case insensitively).
131 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
132 * strtodg also accepts (case insensitively) strings of the form
133 * NaN(x), where x is a string of hexadecimal digits and spaces;
134 * if there is only one string of hexadecimal digits, it is taken
135 * for the fraction bits of the resulting NaN; if there are two or
136 * more strings of hexadecimal digits, each string is assigned
137 * to the next available sequence of 32-bit words of fractions
138 * bits (starting with the most significant), right-aligned in
139 * each sequence.
140 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
141 * multiple threads. In this case, you must provide (or suitably
142 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
143 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
144 * in pow5mult, ensures lazy evaluation of only one copy of high
145 * powers of 5; omitting this lock would introduce a small
146 * probability of wasting memory, but would otherwise be harmless.)
147 * You must also invoke freedtoa(s) to free the value s returned by
148 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
149 * #define IMPRECISE_INEXACT if you do not care about the setting of
150 * the STRTOG_Inexact bits in the special case of doing IEEE double
151 * precision conversions (which could also be done by the strtog in
152 * dtoa.c).
153 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
154 * floating-point constants.
155 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
156 * strtodg.c).
157 * #define NO_STRING_H to use private versions of memcpy.
158 * On some K&R systems, it may also be necessary to
159 * #define DECLARE_SIZE_T in this case.
160 * #define YES_ALIAS to permit aliasing certain double values with
161 * arrays of ULongs. This leads to slightly better code with
162 * some compilers and was always used prior to 19990916, but it
163 * is not strictly legal and can cause trouble with aggressively
164 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
165 * #define USE_LOCALE to use the current locale's decimal_point value.
166 */
167
168#ifndef GDTOAIMP_H_INCLUDED
169#define GDTOAIMP_H_INCLUDED
170#include <xlocale.h>
171#include "gdtoa.h"
172#include "gd_qnan.h"
173
174#ifdef DEBUG
175#include "stdio.h"
176#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
177#endif
178
179#include "limits.h"
180#include "stdlib.h"
181#include "string.h"
182#include "libc_private.h"
183#include "spinlock.h"
184
185#ifdef KR_headers
186#define Char char
187#else
188#define Char void
189#endif
190
191#ifdef MALLOC
192extern Char *MALLOC ANSI((size_t));
193#else
194#define MALLOC malloc
195#endif
196
197#define INFNAN_CHECK
198#define USE_LOCALE
199
200#undef IEEE_Arith
201#undef Avoid_Underflow
202#ifdef IEEE_MC68k
203#define IEEE_Arith
204#endif
205#ifdef IEEE_8087
206#define IEEE_Arith
207#endif
208
209#include "errno.h"
210#ifdef Bad_float_h
211
212#ifdef IEEE_Arith
213#define DBL_DIG 15
214#define DBL_MAX_10_EXP 308
215#define DBL_MAX_EXP 1024
216#define FLT_RADIX 2
217#define DBL_MAX 1.7976931348623157e+308
218#endif
219
220#ifdef IBM
221#define DBL_DIG 16
222#define DBL_MAX_10_EXP 75
223#define DBL_MAX_EXP 63
224#define FLT_RADIX 16
225#define DBL_MAX 7.2370055773322621e+75
226#endif
227
228#ifdef VAX
229#define DBL_DIG 16
230#define DBL_MAX_10_EXP 38
231#define DBL_MAX_EXP 127
232#define FLT_RADIX 2
233#define DBL_MAX 1.7014118346046923e+38
234#define n_bigtens 2
235#endif
236
237#ifndef LONG_MAX
238#define LONG_MAX 2147483647
239#endif
240
241#else /* ifndef Bad_float_h */
242#include "float.h"
243/* force the correct definition of FLT_ROUNDS */
244extern int __fegetfltrounds( void );
245#undef FLT_ROUNDS
246#define FLT_ROUNDS (__fegetfltrounds ())
247#endif /* Bad_float_h */
248
249#ifdef IEEE_Arith
250#define Scale_Bit 0x10
251#define n_bigtens 5
252#endif
253
254#ifdef IBM
255#define n_bigtens 3
256#endif
257
258#ifdef VAX
259#define n_bigtens 2
260#endif
261
262#ifndef __MATH_H__
263#include "math.h"
264#endif
265
266#ifdef __cplusplus
267extern "C" {
268#endif
269
270#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
271Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
272#endif
273
274typedef union { double d; ULong L[2]; } U;
275
276#ifdef YES_ALIAS
277#define dval(x) x
278#ifdef IEEE_8087
279#define word0(x) ((ULong *)&x)[1]
280#define word1(x) ((ULong *)&x)[0]
281#else
282#define word0(x) ((ULong *)&x)[0]
283#define word1(x) ((ULong *)&x)[1]
284#endif
285#else /* !YES_ALIAS */
286#ifdef IEEE_8087
287#define word0(x) ((U*)&x)->L[1]
288#define word1(x) ((U*)&x)->L[0]
289#else
290#define word0(x) ((U*)&x)->L[0]
291#define word1(x) ((U*)&x)->L[1]
292#endif
293#define dval(x) ((U*)&x)->d
294#endif /* YES_ALIAS */
295
296/* The following definition of Storeinc is appropriate for MIPS processors.
297 * An alternative that might be better on some machines is
298 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
299 */
300#if defined(IEEE_8087) + defined(VAX)
301#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
302((unsigned short *)a)[0] = (unsigned short)c, a++)
303#else
304#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
305((unsigned short *)a)[1] = (unsigned short)c, a++)
306#endif
307
308/* #define P DBL_MANT_DIG */
309/* Ten_pmax = floor(P*log(2)/log(5)) */
310/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
311/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
312/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
313
314#ifdef IEEE_Arith
315#define Exp_shift 20
316#define Exp_shift1 20
317#define Exp_msk1 0x100000
318#define Exp_msk11 0x100000
319#define Exp_mask 0x7ff00000
320#define P 53
321#define Bias 1023
322#define Emin (-1022)
323#define Exp_1 0x3ff00000
324#define Exp_11 0x3ff00000
325#define Ebits 11
326#define Frac_mask 0xfffff
327#define Frac_mask1 0xfffff
328#define Ten_pmax 22
329#define Bletch 0x10
330#define Bndry_mask 0xfffff
331#define Bndry_mask1 0xfffff
332#define LSB 1
333#define Sign_bit 0x80000000
334#define Log2P 1
335#define Tiny0 0
336#define Tiny1 1
337#define Quick_max 14
338#define Int_max 14
339
340#ifndef Flt_Rounds
341#ifdef FLT_ROUNDS
342#define Flt_Rounds FLT_ROUNDS
343#else
344#define Flt_Rounds 1
345#endif
346#endif /*Flt_Rounds*/
347
348#else /* ifndef IEEE_Arith */
349#undef Sudden_Underflow
350#define Sudden_Underflow
351#ifdef IBM
352#undef Flt_Rounds
353#define Flt_Rounds 0
354#define Exp_shift 24
355#define Exp_shift1 24
356#define Exp_msk1 0x1000000
357#define Exp_msk11 0x1000000
358#define Exp_mask 0x7f000000
359#define P 14
360#define Bias 65
361#define Exp_1 0x41000000
362#define Exp_11 0x41000000
363#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
364#define Frac_mask 0xffffff
365#define Frac_mask1 0xffffff
366#define Bletch 4
367#define Ten_pmax 22
368#define Bndry_mask 0xefffff
369#define Bndry_mask1 0xffffff
370#define LSB 1
371#define Sign_bit 0x80000000
372#define Log2P 4
373#define Tiny0 0x100000
374#define Tiny1 0
375#define Quick_max 14
376#define Int_max 15
377#else /* VAX */
378#undef Flt_Rounds
379#define Flt_Rounds 1
380#define Exp_shift 23
381#define Exp_shift1 7
382#define Exp_msk1 0x80
383#define Exp_msk11 0x800000
384#define Exp_mask 0x7f80
385#define P 56
386#define Bias 129
387#define Exp_1 0x40800000
388#define Exp_11 0x4080
389#define Ebits 8
390#define Frac_mask 0x7fffff
391#define Frac_mask1 0xffff007f
392#define Ten_pmax 24
393#define Bletch 2
394#define Bndry_mask 0xffff007f
395#define Bndry_mask1 0xffff007f
396#define LSB 0x10000
397#define Sign_bit 0x8000
398#define Log2P 1
399#define Tiny0 0x80
400#define Tiny1 0
401#define Quick_max 15
402#define Int_max 15
403#endif /* IBM, VAX */
404#endif /* IEEE_Arith */
405
406#ifndef IEEE_Arith
407#define ROUND_BIASED
408#endif
409
410#ifdef RND_PRODQUOT
411#define rounded_product(a,b) a = rnd_prod(a, b)
412#define rounded_quotient(a,b) a = rnd_quot(a, b)
413#ifdef KR_headers
414extern double rnd_prod(), rnd_quot();
415#else
416extern double rnd_prod(double, double), rnd_quot(double, double);
417#endif
418#else
419#define rounded_product(a,b) a *= b
420#define rounded_quotient(a,b) a /= b
421#endif
422
423#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
424#define Big1 0xffffffff
425
426#undef Pack_16
427#ifndef Pack_32
428#define Pack_32
429#endif
430
431#ifdef NO_LONG_LONG
432#undef ULLong
433#ifdef Just_16
434#undef Pack_32
435#define Pack_16
436/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
437 * This makes some inner loops simpler and sometimes saves work
438 * during multiplications, but it often seems to make things slightly
439 * slower. Hence the default is now to store 32 bits per Long.
440 */
441#endif
442#else /* long long available */
443#ifndef Llong
444#define Llong long long
445#endif
446#ifndef ULLong
447#define ULLong unsigned Llong
448#endif
449#endif /* NO_LONG_LONG */
450
451#ifdef Pack_32
452#define ULbits 32
453#define kshift 5
454#define kmask 31
455#define ALL_ON 0xffffffff
456#else
457#define ULbits 16
458#define kshift 4
459#define kmask 15
460#define ALL_ON 0xffff
461#endif
462
463#define MULTIPLE_THREADS
464extern spinlock_t __gdtoa_locks[2];
465#define ACQUIRE_DTOA_LOCK(n) do { \
466 if (__isthreaded) \
467 _SPINLOCK(&__gdtoa_locks[n]); \
468} while(0)
469#define FREE_DTOA_LOCK(n) do { \
470 if (__isthreaded) \
471 _SPINUNLOCK(&__gdtoa_locks[n]); \
472} while(0)
473
474#define Kmax 15
475
476 struct
477Bigint {
478 struct Bigint *next;
479 int k, maxwds, sign, wds;
480 ULong x[1];
481 };
482
483 typedef struct Bigint Bigint;
484
485#ifdef NO_STRING_H
486#ifdef DECLARE_SIZE_T
487typedef unsigned int size_t;
488#endif
489extern void memcpy_D2A ANSI((void*, const void*, size_t));
490#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
491#else /* !NO_STRING_H */
492#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
493#endif /* NO_STRING_H */
494
495/*
496 * Paranoia: Protect exported symbols, including ones in files we don't
497 * compile right now. The standard strtof and strtod survive.
498 */
499#define dtoa __dtoa
500#define gdtoa __gdtoa
501#define freedtoa __freedtoa
502#define strtodg __strtodg
503#define g_ddfmt __g_ddfmt
504#define g_dfmt __g_dfmt
505#define g_ffmt __g_ffmt
506#define g_Qfmt __g_Qfmt
507#define g_xfmt __g_xfmt
508#define g_xLfmt __g_xLfmt
509#define strtoId __strtoId
510#define strtoIdd __strtoIdd
511#define strtoIf __strtoIf
512#define strtoIQ __strtoIQ
513#define strtoIx __strtoIx
514#define strtoIxL __strtoIxL
515#define strtord __strtord
516#define strtordd __strtordd
517#define strtorf __strtorf
518#define strtorQ __strtorQ
519#define strtorx __strtorx
520#define strtorxL __strtorxL
521#define strtodI __strtodI
522#define strtopd __strtopd
523#define strtopdd __strtopdd
524#define strtopf __strtopf
525#define strtopQ __strtopQ
526#define strtopx __strtopx
527#define strtopxL __strtopxL
528
529/* Protect gdtoa-internal symbols */
530#define Balloc __Balloc_D2A
531#define Bfree __Bfree_D2A
532#define ULtoQ __ULtoQ_D2A
533#define ULtof __ULtof_D2A
534#define ULtod __ULtod_D2A
535#define ULtodd __ULtodd_D2A
536#define ULtox __ULtox_D2A
537#define ULtoxL __ULtoxL_D2A
538#define any_on __any_on_D2A
539#define b2d __b2d_D2A
540#define bigtens __bigtens_D2A
541#define cmp __cmp_D2A
542#define copybits __copybits_D2A
543#define d2b __d2b_D2A
544#define decrement __decrement_D2A
545#define diff __diff_D2A
546#define dtoa_result __dtoa_result_D2A
547#define g__fmt __g__fmt_D2A
548#define gethex __gethex_D2A
549#define hexdig __hexdig_D2A
550#define hexdig_init_D2A __hexdig_init_D2A
551#define hexnan __hexnan_D2A
552#define hi0bits __hi0bits_D2A
553#define hi0bits_D2A __hi0bits_D2A
554#define i2b __i2b_D2A
555#define increment __increment_D2A
556#define lo0bits __lo0bits_D2A
557#define lshift __lshift_D2A
558#define match __match_D2A
559#define mult __mult_D2A
560#define multadd __multadd_D2A
561#define nrv_alloc __nrv_alloc_D2A
562#define pow5mult __pow5mult_D2A
563#define quorem __quorem_D2A
564#define ratio __ratio_D2A
565#define rshift __rshift_D2A
566#define rv_alloc __rv_alloc_D2A
567#define s2b __s2b_D2A
568#define set_ones __set_ones_D2A
569#define strcp __strcp_D2A
570#define strcp_D2A __strcp_D2A
571#define strtoIg __strtoIg_D2A
572#define sum __sum_D2A
573#define tens __tens_D2A
574#define tinytens __tinytens_D2A
575#define tinytens __tinytens_D2A
576#define trailz __trailz_D2A
577#define ulp __ulp_D2A
578
579 extern char *dtoa_result;
580 extern CONST double bigtens[], tens[], tinytens[];
581 extern unsigned char hexdig[];
582
583 extern Bigint *Balloc ANSI((int));
584 extern void Bfree ANSI((Bigint*));
585 extern void ULtof ANSI((ULong*, ULong*, Long, int));
586 extern void ULtod ANSI((ULong*, ULong*, Long, int));
587 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
588 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
589 extern void ULtox ANSI((UShort*, ULong*, Long, int));
590 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
591 extern ULong any_on ANSI((Bigint*, int));
592 extern double b2d ANSI((Bigint*, int*));
593 extern int cmp ANSI((Bigint*, Bigint*));
594 extern void copybits ANSI((ULong*, int, Bigint*));
595 extern Bigint *d2b ANSI((double, int*, int*));
596 extern int decrement ANSI((Bigint*));
597 extern Bigint *diff ANSI((Bigint*, Bigint*));
598 extern char *dtoa ANSI((double d, int mode, int ndigits,
599 int *decpt, int *sign, char **rve));
600 extern void freedtoa ANSI((char*));
601 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp,
602 int mode, int ndigits, int *decpt, char **rve));
603 extern char *g__fmt ANSI((char*, char*, char*, int, ULong));
604 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int, locale_t));
605 extern void hexdig_init_D2A(Void);
606 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
607 extern int hi0bits_D2A ANSI((ULong));
608 extern Bigint *i2b ANSI((int));
609 extern Bigint *increment ANSI((Bigint*));
610 extern int lo0bits ANSI((ULong*));
611 extern Bigint *lshift ANSI((Bigint*, int));
612 extern int match ANSI((CONST char**, char*));
613 extern Bigint *mult ANSI((Bigint*, Bigint*));
614 extern Bigint *multadd ANSI((Bigint*, int, int));
615 extern char *nrv_alloc ANSI((char*, char **, int));
616 extern Bigint *pow5mult ANSI((Bigint*, int));
617 extern int quorem ANSI((Bigint*, Bigint*));
618 extern double ratio ANSI((Bigint*, Bigint*));
619 extern void rshift ANSI((Bigint*, int));
620 extern char *rv_alloc ANSI((int));
621 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
622 extern Bigint *set_ones ANSI((Bigint*, int));
623 extern char *strcp ANSI((char*, const char*));
624 extern int strtodg ANSI((CONST char*, char**, FPI*, Long*, ULong*, locale_t)) __DARWIN_ALIAS(strtodg);
625
626 extern int strtoId ANSI((CONST char *, char **, double *, double *));
627 extern int strtoIdd ANSI((CONST char *, char **, double *, double *));
628 extern int strtoIf ANSI((CONST char *, char **, float *, float *));
629 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
630 extern int strtoIQ ANSI((CONST char *, char **, void *, void *));
631 extern int strtoIx ANSI((CONST char *, char **, void *, void *));
632 extern int strtoIxL ANSI((CONST char *, char **, void *, void *));
633 extern double strtod ANSI((const char *s00, char **se));
634 extern double strtod_l ANSI((const char *s00, char **se, locale_t));
635 extern int strtopQ ANSI((CONST char *, char **, Void *));
636 extern int strtopf ANSI((CONST char *, char **, float *));
637 extern int strtopd ANSI((CONST char *, char **, double *));
638 extern int strtopdd ANSI((CONST char *, char **, double *, locale_t));
639 extern int strtopx ANSI((CONST char *, char **, Void *, locale_t));
640 extern int strtopxL ANSI((CONST char *, char **, Void *));
641 extern int strtord ANSI((CONST char *, char **, int, double *));
642 extern int strtordd ANSI((CONST char *, char **, int, double *));
643 extern int strtorf ANSI((CONST char *, char **, int, float *));
644 extern int strtorQ ANSI((CONST char *, char **, int, void *));
645 extern int strtorx ANSI((CONST char *, char **, int, void *));
646 extern int strtorxL ANSI((CONST char *, char **, int, void *));
647 extern Bigint *sum ANSI((Bigint*, Bigint*));
648 extern int trailz ANSI((Bigint*));
649 extern double ulp ANSI((double));
650
651#ifdef __cplusplus
652}
653#endif
654/*
655 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
656 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
657 * respectively), but now are determined by compiling and running
658 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
659 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
660 * and -DNAN_WORD1=... values if necessary. This should still work.
661 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
662 */
663#ifdef IEEE_Arith
664#ifdef IEEE_MC68k
665#define _0 0
666#define _1 1
667#ifndef NAN_WORD0
668#define NAN_WORD0 d_QNAN0
669#endif
670#ifndef NAN_WORD1
671#define NAN_WORD1 d_QNAN1
672#endif
673#else
674#define _0 1
675#define _1 0
676#ifndef NAN_WORD0
677#define NAN_WORD0 d_QNAN1
678#endif
679#ifndef NAN_WORD1
680#define NAN_WORD1 d_QNAN0
681#endif
682#endif
683#else
684#undef INFNAN_CHECK
685#endif
686
687#undef SI
688#ifdef Sudden_Underflow
689#define SI 1
690#else
691#define SI 0
692#endif
693
694#endif /* GDTOAIMP_H_INCLUDED */