void addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend);
uint8_t* _pagesForDelete;
+ uint8_t* _pageAlignedPages;
uint8_t* _pages;
uint64_t _pagesSize;
uint8_t* _header;
UnwindInfoAtom<A>::UnwindInfoAtom(const std::vector<UnwindEntry>& entries, uint64_t ehFrameSize)
: ld::Atom(_s_section, ld::Atom::definitionRegular, ld::Atom::combineNever,
ld::Atom::scopeLinkageUnit, ld::Atom::typeUnclassified,
- symbolTableNotIn, false, false, false, ld::Atom::Alignment(0)),
- _pagesForDelete(NULL), _pages(NULL), _pagesSize(0), _header(NULL), _headerSize(0)
+ symbolTableNotIn, false, false, false, ld::Atom::Alignment(2)),
+ _pagesForDelete(NULL), _pageAlignedPages(NULL), _pages(NULL), _pagesSize(0), _header(NULL), _headerSize(0)
{
// build new compressed list by removing entries where next function has same encoding
std::vector<UnwindEntry> uniqueEntries;
std::map<const ld::Atom*, uint32_t> personalityIndexMap;
makePersonalityIndexes(uniqueEntries, personalityIndexMap);
if ( personalityIndexMap.size() > 3 ) {
- warning("too many personality routines for compact unwind to encode");
- return;
+ throw "too many personality routines for compact unwind to encode";
}
// put the most common encodings into the common table, but at most 127 of them
// calculate worst case size for all unwind info pages when allocating buffer
const unsigned int entriesPerRegularPage = (4096-sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry);
assert(uniqueEntries.size() > 0);
- const unsigned int pageCount = ((uniqueEntries.size() - 1)/entriesPerRegularPage) + 1;
- _pagesForDelete = (uint8_t*)calloc(pageCount,4096);
+ const unsigned int pageCount = ((uniqueEntries.size() - 1)/entriesPerRegularPage) + 2;
+ _pagesForDelete = (uint8_t*)calloc(pageCount+1,4096);
if ( _pagesForDelete == NULL ) {
warning("could not allocate space for compact unwind info");
return;
}
+ _pageAlignedPages = (uint8_t*)((((uintptr_t)_pagesForDelete) + 4095) & -4096);
// make last second level page smaller so that all other second level pages can be page aligned
uint32_t maxLastPageSize = 4096 - (ehFrameSize % 4096);
uint8_t* secondLevelPagesStarts[pageCount*3];
unsigned int endIndex = uniqueEntries.size();
unsigned int secondLevelPageCount = 0;
- uint8_t* pageEnd = &_pagesForDelete[pageCount*4096];
+ uint8_t* pageEnd = &_pageAlignedPages[pageCount*4096];
uint32_t pageSize = maxLastPageSize;
while ( endIndex > 0 ) {
endIndex = makeCompressedSecondLevelPage(uniqueEntries, commonEncodings, pageSize, endIndex, pageEnd);
secondLevelPagesStarts[secondLevelPageCount] = pageEnd;
secondLevelFirstFuncs[secondLevelPageCount] = uniqueEntries[endIndex].func;
++secondLevelPageCount;
- pageSize = 4096; // last page can be odd size, make rest up to 4096 bytes in size
+ // if this requires more than one page, align so that next starts on page boundary
+ if ( (pageSize != 4096) && (endIndex > 0) ) {
+ pageEnd = (uint8_t*)((uintptr_t)(pageEnd) & -4096);
+ pageSize = 4096; // last page can be odd size, make rest up to 4096 bytes in size
+ }
}
_pages = pageEnd;
- _pagesSize = &_pagesForDelete[pageCount*4096] - pageEnd;
-
-
+ _pagesSize = &_pageAlignedPages[pageCount*4096] - pageEnd;
+
// calculate section layout
const uint32_t commonEncodingsArraySectionOffset = sizeof(macho_unwind_info_section_header<P>);
const uint32_t commonEncodingsArrayCount = commonEncodings.size();
const uint32_t headerEndSectionOffset = lsdaIndexArraySectionOffset + lsdaIndexArraySize;
// now that we know the size of the header, slide all existing fixups on the pages
- const int32_t fixupSlide = headerEndSectionOffset + (_pagesForDelete - _pages);
+ const int32_t fixupSlide = headerEndSectionOffset + (_pageAlignedPages - _pages);
for(std::vector<ld::Fixup>::iterator it = _fixups.begin(); it != _fixups.end(); ++it) {
it->offsetInAtom += fixupSlide;
}
return ((enc & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF);
}
+
+template <>
+bool UnwindInfoAtom<arm>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
+{
+ return ((enc & UNWIND_ARM_MODE_MASK) == UNWIND_ARM_MODE_DWARF);
+}
+
+
template <typename A>
void UnwindInfoAtom<A>::compressDuplicates(const std::vector<UnwindEntry>& entries, std::vector<UnwindEntry>& uniqueEntries)
{
_fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndianLow24of32));
}
+
+template <>
+void UnwindInfoAtom<arm>::addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc)
+{
+ if ( fromFunc->isThumb() ) {
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, func));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, fromFunc));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, 1));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndianLow24of32));
+ }
+ else {
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, func));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindSubtractTargetAddress, fromFunc));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndianLow24of32));
+ }
+}
+
template <>
void UnwindInfoAtom<x86>::addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde)
{
_fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32));
}
+
+template <>
+void UnwindInfoAtom<arm>::addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32));
+}
+
template <>
void UnwindInfoAtom<x86>::addRegularAddressFixup(uint32_t offset, const ld::Atom* func)
{
_fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32));
}
+
+template <>
+void UnwindInfoAtom<arm>::addRegularAddressFixup(uint32_t offset, const ld::Atom* func)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, func));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32));
+}
+
template <>
void UnwindInfoAtom<x86>::addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde)
{
_fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32));
}
+
+template <>
+void UnwindInfoAtom<arm>::addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde)
+{
+ _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde));
+ _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32));
+}
+
template <>
void UnwindInfoAtom<x86>::addImageOffsetFixup(uint32_t offset, const ld::Atom* targ)
{
_fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32));
}
+
+template <>
+void UnwindInfoAtom<arm>::addImageOffsetFixup(uint32_t offset, const ld::Atom* targ)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, targ));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32));
+}
+
template <>
void UnwindInfoAtom<x86>::addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend)
{
}
+template <>
+void UnwindInfoAtom<arm>::addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetImageOffset, targ));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, addend));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndian32));
+}
+
+
template <typename A>
entryTable[i].set_functionOffset(0);
entryTable[i].set_encoding(info.encoding);
// add fixup for address part of entry
- uint32_t offset = (uint8_t*)(&entryTable[i]) - _pagesForDelete;
+ uint32_t offset = (uint8_t*)(&entryTable[i]) - _pageAlignedPages;
this->addRegularAddressFixup(offset, info.func);
if ( encodingMeansUseDwarf(info.encoding) ) {
// add fixup for dwarf offset part of page specific encoding
- uint32_t encOffset = (uint8_t*)(&entryTable[i]) - _pagesForDelete;
+ uint32_t encOffset = (uint8_t*)(&entryTable[i]) - _pageAlignedPages;
this->addRegularFDEOffsetFixup(encOffset, info.fde);
}
}
// keep adding entries to page until:
// 1) encoding table plus entry table plus header exceed page size
// 2) the file offset delta from the first to last function > 24 bits
- // 3) custom encoding index reachs 255
+ // 3) custom encoding index reaches 255
// 4) run out of uniqueInfos to encode
std::map<compact_unwind_encoding_t, unsigned int> pageSpecificEncodings;
uint32_t space4 = (pageSize - sizeof(unwind_info_compressed_second_level_page_header))/sizeof(uint32_t);
- std::vector<uint8_t> encodingIndexes;
int index = endIndex-1;
int entryCount = 0;
uint64_t lastEntryAddress = uniqueInfos[index].funcTentAddress;
std::map<compact_unwind_encoding_t, unsigned int>::const_iterator pos = commonEncodings.find(info.encoding);
if ( pos != commonEncodings.end() ) {
encodingIndex = pos->second;
+ if (_s_log) fprintf(stderr, "makeCompressedSecondLevelPage(): funcIndex=%d, re-use commonEncodings[%d]=0x%08X\n", index, encodingIndex, info.encoding);
}
else {
// no commmon entry, so add one on this page
std::map<compact_unwind_encoding_t, unsigned int>::iterator ppos = pageSpecificEncodings.find(encoding);
if ( ppos != pageSpecificEncodings.end() ) {
encodingIndex = pos->second;
+ if (_s_log) fprintf(stderr, "makeCompressedSecondLevelPage(): funcIndex=%d, re-use pageSpecificEncodings[%d]=0x%08X\n", index, encodingIndex, encoding);
}
else {
encodingIndex = commonEncodings.size() + pageSpecificEncodings.size();
if ( encodingIndex <= 255 ) {
pageSpecificEncodings[encoding] = encodingIndex;
- if (_s_log) fprintf(stderr, "makeCompressedSecondLevelPage(): pageSpecificEncodings[%d]=0x%08X\n", encodingIndex, encoding);
+ if (_s_log) fprintf(stderr, "makeCompressedSecondLevelPage(): funcIndex=%d, pageSpecificEncodings[%d]=0x%08X\n", index, encodingIndex, encoding);
}
else {
canDo = false; // case 3)
}
}
}
- if ( canDo )
- encodingIndexes.push_back(encodingIndex);
// compute function offset
uint32_t funcOffsetWithInPage = lastEntryAddress - info.funcTentAddress;
if ( funcOffsetWithInPage > 0x00FFFF00 ) {
canDo = false; // case 2)
if (_s_log) fprintf(stderr, "can't use compressed page with %u entries because function offset too big\n", entryCount);
}
- else {
- ++entryCount;
- }
// check room for entry
- if ( (pageSpecificEncodings.size()+entryCount) >= space4 ) {
+ if ( (pageSpecificEncodings.size()+entryCount) > space4 ) {
canDo = false; // case 1)
--entryCount;
if (_s_log) fprintf(stderr, "end of compressed page with %u entries because full\n", entryCount);
}
//if (_s_log) fprintf(stderr, "space4=%d, pageSpecificEncodings.size()=%ld, entryCount=%d\n", space4, pageSpecificEncodings.size(), entryCount);
+ if ( canDo ) {
+ ++entryCount;
+ }
}
// check for cases where it would be better to use a regular (non-compressed) page
uint8_t encodingIndex;
if ( encodingMeansUseDwarf(info.encoding) ) {
// dwarf entries are always in page specific encodings
+ assert(pageSpecificEncodings.find(info.encoding+i) != pageSpecificEncodings.end());
encodingIndex = pageSpecificEncodings[info.encoding+i];
}
else {
uint32_t entryIndex = i - endIndex + entryCount;
E::set32(entiresArray[entryIndex], encodingIndex << 24);
// add fixup for address part of entry
- uint32_t offset = (uint8_t*)(&entiresArray[entryIndex]) - _pagesForDelete;
+ uint32_t offset = (uint8_t*)(&entiresArray[entryIndex]) - _pageAlignedPages;
this->addCompressedAddressOffsetFixup(offset, info.func, firstFunc);
if ( encodingMeansUseDwarf(info.encoding) ) {
// add fixup for dwarf offset part of page specific encoding
- uint32_t encOffset = (uint8_t*)(&encodingsArray[encodingIndex-commonEncodings.size()]) - _pagesForDelete;
+ uint32_t encOffset = (uint8_t*)(&encodingsArray[encodingIndex-commonEncodings.size()]) - _pageAlignedPages;
this->addCompressedEncodingFixup(encOffset, info.fde);
}
}
-
-
-static uint64_t calculateEHFrameSize(const ld::Internal& state)
+static uint64_t calculateEHFrameSize(ld::Internal& state)
{
+ bool allCIEs = true;
uint64_t size = 0;
- for (std::vector<ld::Internal::FinalSection*>::const_iterator sit=state.sections.begin(); sit != state.sections.end(); ++sit) {
- ld::Internal::FinalSection* sect = *sit;
+ for (ld::Internal::FinalSection* sect : state.sections) {
if ( sect->type() == ld::Section::typeCFI ) {
- for (std::vector<const ld::Atom*>::iterator ait=sect->atoms.begin(); ait != sect->atoms.end(); ++ait) {
- size += (*ait)->size();
+ for (const ld::Atom* atom : sect->atoms) {
+ size += atom->size();
+ if ( strcmp(atom->name(), "CIE") != 0 )
+ allCIEs = false;
+ }
+ if ( allCIEs ) {
+ // <rdar://problem/21427393> Linker generates eh_frame data even when there's only an unused CIEs in it
+ sect->atoms.clear();
+ state.sections.erase(std::remove(state.sections.begin(), state.sections.end(), sect), state.sections.end());
+ return 0;
}
}
}
case CPU_TYPE_ARM64:
state.addAtom(*new UnwindInfoAtom<arm64>(entries, ehFrameSize));
break;
+#endif
+#if SUPPORT_ARCH_arm_any
+ case CPU_TYPE_ARM:
+ if ( opts.armUsesZeroCostExceptions() )
+ state.addAtom(*new UnwindInfoAtom<arm>(entries, ehFrameSize));
+ break;
#endif
default:
assert(0 && "no compact unwind for arch");
template <> ld::Fixup::Kind CompactUnwindAtom<arm64>::_s_pointerKind = ld::Fixup::kindStoreLittleEndian64;
template <> ld::Fixup::Kind CompactUnwindAtom<arm64>::_s_pointerStoreKind = ld::Fixup::kindStoreTargetAddressLittleEndian64;
#endif
+template <> ld::Fixup::Kind CompactUnwindAtom<arm>::_s_pointerKind = ld::Fixup::kindStoreLittleEndian32;
+template <> ld::Fixup::Kind CompactUnwindAtom<arm>::_s_pointerStoreKind = ld::Fixup::kindStoreTargetAddressLittleEndian32;
template <typename A>
CompactUnwindAtom<A>::CompactUnwindAtom(ld::Internal& state,const ld::Atom* funcAtom, uint32_t startOffset,
state.addAtom(*new CompactUnwindAtom<arm64>(state, atom, startOffset, endOffset-startOffset, cui));
break;
#endif
+ case CPU_TYPE_ARM:
+ state.addAtom(*new CompactUnwindAtom<arm>(state, atom, startOffset, endOffset-startOffset, cui));
+ break;
}
}