--- /dev/null
+/* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-
+ *
+ * Copyright (c) 2009 Apple Inc. All rights reserved.
+ *
+ * @APPLE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this
+ * file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_LICENSE_HEADER_END@
+ */
+
+
+#include <stdint.h>
+#include <math.h>
+#include <unistd.h>
+#include <dlfcn.h>
+#include <mach/machine.h>
+#include <mach-o/compact_unwind_encoding.h>
+
+#include <vector>
+#include <map>
+
+#include "ld.hpp"
+#include "compact_unwind.h"
+#include "Architectures.hpp"
+#include "MachOFileAbstraction.hpp"
+
+
+namespace ld {
+namespace passes {
+namespace compact_unwind {
+
+
+struct UnwindEntry {
+ UnwindEntry(const ld::Atom* f, uint64_t a, uint32_t o, const ld::Atom* d,
+ const ld::Atom* l, const ld::Atom* p, uint32_t en)
+ : func(f), fde(d), lsda(l), personalityPointer(p), funcTentAddress(a),
+ functionOffset(o), encoding(en) { }
+ const ld::Atom* func;
+ const ld::Atom* fde;
+ const ld::Atom* lsda;
+ const ld::Atom* personalityPointer;
+ uint64_t funcTentAddress;
+ uint32_t functionOffset;
+ compact_unwind_encoding_t encoding;
+};
+
+struct LSDAEntry {
+ const ld::Atom* func;
+ const ld::Atom* lsda;
+};
+
+
+template <typename A>
+class UnwindInfoAtom : public ld::Atom {
+public:
+ UnwindInfoAtom(const std::vector<UnwindEntry>& entries,uint64_t ehFrameSize);
+ ~UnwindInfoAtom();
+
+ virtual const ld::File* file() const { return NULL; }
+ virtual bool translationUnitSource(const char** dir, const char**) const
+ { return false; }
+ virtual const char* name() const { return "compact unwind info"; }
+ virtual uint64_t size() const { return _headerSize+_pagesSize; }
+ virtual uint64_t objectAddress() const { return 0; }
+ virtual void copyRawContent(uint8_t buffer[]) const;
+ virtual void setScope(Scope) { }
+ virtual ld::Fixup::iterator fixupsBegin() const { return (ld::Fixup*)&_fixups[0]; }
+ virtual ld::Fixup::iterator fixupsEnd() const { return (ld::Fixup*)&_fixups[_fixups.size()]; }
+
+private:
+ typedef typename A::P P;
+ typedef typename A::P::E E;
+ typedef typename A::P::uint_t pint_t;
+
+ typedef macho_unwind_info_compressed_second_level_page_header<P> CSLP;
+
+ bool encodingMeansUseDwarf(compact_unwind_encoding_t enc);
+ void compressDuplicates(const std::vector<UnwindEntry>& entries,
+ std::vector<UnwindEntry>& uniqueEntries);
+ void makePersonalityIndexes(std::vector<UnwindEntry>& entries,
+ std::map<const ld::Atom*, uint32_t>& personalityIndexMap);
+ void findCommonEncoding(const std::vector<UnwindEntry>& entries,
+ std::map<compact_unwind_encoding_t, unsigned int>& commonEncodings);
+ void makeLsdaIndex(const std::vector<UnwindEntry>& entries, std::vector<LSDAEntry>& lsdaIndex,
+ std::map<const ld::Atom*, uint32_t>& lsdaIndexOffsetMap);
+ unsigned int makeCompressedSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos,
+ const std::map<compact_unwind_encoding_t,unsigned int> commonEncodings,
+ uint32_t pageSize, unsigned int endIndex, uint8_t*& pageEnd);
+ unsigned int makeRegularSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, uint32_t pageSize,
+ unsigned int endIndex, uint8_t*& pageEnd);
+ void addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc);
+ void addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde);
+ void addRegularAddressFixup(uint32_t offset, const ld::Atom* func);
+ void addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde);
+ void addImageOffsetFixup(uint32_t offset, const ld::Atom* targ);
+ void addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend);
+
+ uint8_t* _pagesForDelete;
+ uint8_t* _pages;
+ uint64_t _pagesSize;
+ uint8_t* _header;
+ uint64_t _headerSize;
+ std::vector<ld::Fixup> _fixups;
+
+ static bool _s_log;
+ static ld::Section _s_section;
+};
+
+template <typename A>
+bool UnwindInfoAtom<A>::_s_log = false;
+
+template <typename A>
+ld::Section UnwindInfoAtom<A>::_s_section("__TEXT", "__unwind_info", ld::Section::typeUnwindInfo);
+
+
+template <typename A>
+UnwindInfoAtom<A>::UnwindInfoAtom(const std::vector<UnwindEntry>& entries, uint64_t ehFrameSize)
+ : ld::Atom(_s_section, ld::Atom::definitionRegular, ld::Atom::combineNever,
+ ld::Atom::scopeLinkageUnit, ld::Atom::typeUnclassified,
+ symbolTableNotIn, false, false, false, ld::Atom::Alignment(0)),
+ _pagesForDelete(NULL), _pages(NULL), _pagesSize(0), _header(NULL), _headerSize(0)
+{
+ // build new compressed list by removing entries where next function has same encoding
+ std::vector<UnwindEntry> uniqueEntries;
+ compressDuplicates(entries, uniqueEntries);
+
+ // reserve room so _fixups vector is not reallocated a bunch of times
+ _fixups.reserve(uniqueEntries.size()*3);
+
+ // build personality index, update encodings with personality index
+ std::map<const ld::Atom*, uint32_t> personalityIndexMap;
+ makePersonalityIndexes(uniqueEntries, personalityIndexMap);
+ if ( personalityIndexMap.size() > 3 ) {
+ warning("too many personality routines for compact unwind to encode");
+ return;
+ }
+
+ // put the most common encodings into the common table, but at most 127 of them
+ std::map<compact_unwind_encoding_t, unsigned int> commonEncodings;
+ findCommonEncoding(uniqueEntries, commonEncodings);
+
+ // build lsda index
+ std::map<const ld::Atom*, uint32_t> lsdaIndexOffsetMap;
+ std::vector<LSDAEntry> lsdaIndex;
+ makeLsdaIndex(uniqueEntries, lsdaIndex, lsdaIndexOffsetMap);
+
+
+ // calculate worst case size for all unwind info pages when allocating buffer
+ const unsigned int entriesPerRegularPage = (4096-sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry);
+ assert(uniqueEntries.size() > 0);
+ const unsigned int pageCount = ((uniqueEntries.size() - 1)/entriesPerRegularPage) + 1;
+ _pagesForDelete = (uint8_t*)calloc(pageCount,4096);
+ if ( _pagesForDelete == NULL ) {
+ warning("could not allocate space for compact unwind info");
+ return;
+ }
+
+ // make last second level page smaller so that all other second level pages can be page aligned
+ uint32_t maxLastPageSize = 4096 - (ehFrameSize % 4096);
+ uint32_t tailPad = 0;
+ if ( maxLastPageSize < 128 ) {
+ tailPad = maxLastPageSize;
+ maxLastPageSize = 4096;
+ }
+
+ // fill in pages in reverse order
+ const ld::Atom* secondLevelFirstFuncs[pageCount*3];
+ uint8_t* secondLevelPagesStarts[pageCount*3];
+ unsigned int endIndex = uniqueEntries.size();
+ unsigned int secondLevelPageCount = 0;
+ uint8_t* pageEnd = &_pagesForDelete[pageCount*4096];
+ uint32_t pageSize = maxLastPageSize;
+ while ( endIndex > 0 ) {
+ endIndex = makeCompressedSecondLevelPage(uniqueEntries, commonEncodings, pageSize, endIndex, pageEnd);
+ secondLevelPagesStarts[secondLevelPageCount] = pageEnd;
+ secondLevelFirstFuncs[secondLevelPageCount] = uniqueEntries[endIndex].func;
+ ++secondLevelPageCount;
+ pageSize = 4096; // last page can be odd size, make rest up to 4096 bytes in size
+ }
+ _pages = pageEnd;
+ _pagesSize = &_pagesForDelete[pageCount*4096] - pageEnd;
+
+
+ // calculate section layout
+ const uint32_t commonEncodingsArraySectionOffset = sizeof(macho_unwind_info_section_header<P>);
+ const uint32_t commonEncodingsArrayCount = commonEncodings.size();
+ const uint32_t commonEncodingsArraySize = commonEncodingsArrayCount * sizeof(compact_unwind_encoding_t);
+ const uint32_t personalityArraySectionOffset = commonEncodingsArraySectionOffset + commonEncodingsArraySize;
+ const uint32_t personalityArrayCount = personalityIndexMap.size();
+ const uint32_t personalityArraySize = personalityArrayCount * sizeof(uint32_t);
+ const uint32_t indexSectionOffset = personalityArraySectionOffset + personalityArraySize;
+ const uint32_t indexCount = secondLevelPageCount+1;
+ const uint32_t indexSize = indexCount * sizeof(macho_unwind_info_section_header_index_entry<P>);
+ const uint32_t lsdaIndexArraySectionOffset = indexSectionOffset + indexSize;
+ const uint32_t lsdaIndexArrayCount = lsdaIndex.size();
+ const uint32_t lsdaIndexArraySize = lsdaIndexArrayCount * sizeof(macho_unwind_info_section_header_lsda_index_entry<P>);
+ const uint32_t headerEndSectionOffset = lsdaIndexArraySectionOffset + lsdaIndexArraySize;
+
+ // now that we know the size of the header, slide all existing fixups on the pages
+ const int32_t fixupSlide = headerEndSectionOffset + (_pagesForDelete - _pages);
+ for(std::vector<ld::Fixup>::iterator it = _fixups.begin(); it != _fixups.end(); ++it) {
+ it->offsetInAtom += fixupSlide;
+ }
+
+ // allocate and fill in section header
+ _headerSize = headerEndSectionOffset;
+ _header = new uint8_t[_headerSize];
+ bzero(_header, _headerSize);
+ macho_unwind_info_section_header<P>* sectionHeader = (macho_unwind_info_section_header<P>*)_header;
+ sectionHeader->set_version(UNWIND_SECTION_VERSION);
+ sectionHeader->set_commonEncodingsArraySectionOffset(commonEncodingsArraySectionOffset);
+ sectionHeader->set_commonEncodingsArrayCount(commonEncodingsArrayCount);
+ sectionHeader->set_personalityArraySectionOffset(personalityArraySectionOffset);
+ sectionHeader->set_personalityArrayCount(personalityArrayCount);
+ sectionHeader->set_indexSectionOffset(indexSectionOffset);
+ sectionHeader->set_indexCount(indexCount);
+
+ // copy common encodings
+ uint32_t* commonEncodingsTable = (uint32_t*)&_header[commonEncodingsArraySectionOffset];
+ for (std::map<uint32_t, unsigned int>::iterator it=commonEncodings.begin(); it != commonEncodings.end(); ++it)
+ E::set32(commonEncodingsTable[it->second], it->first);
+
+ // make references for personality entries
+ uint32_t* personalityArray = (uint32_t*)&_header[sectionHeader->personalityArraySectionOffset()];
+ for (std::map<const ld::Atom*, unsigned int>::iterator it=personalityIndexMap.begin(); it != personalityIndexMap.end(); ++it) {
+ uint32_t offset = (uint8_t*)&personalityArray[it->second-1] - _header;
+ this->addImageOffsetFixup(offset, it->first);
+ }
+
+ // build first level index and references
+ macho_unwind_info_section_header_index_entry<P>* indexTable = (macho_unwind_info_section_header_index_entry<P>*)&_header[indexSectionOffset];
+ uint32_t refOffset;
+ for (unsigned int i=0; i < secondLevelPageCount; ++i) {
+ unsigned int reverseIndex = secondLevelPageCount - 1 - i;
+ indexTable[i].set_functionOffset(0);
+ indexTable[i].set_secondLevelPagesSectionOffset(secondLevelPagesStarts[reverseIndex]-_pages+headerEndSectionOffset);
+ indexTable[i].set_lsdaIndexArraySectionOffset(lsdaIndexOffsetMap[secondLevelFirstFuncs[reverseIndex]]+lsdaIndexArraySectionOffset);
+ refOffset = (uint8_t*)&indexTable[i] - _header;
+ this->addImageOffsetFixup(refOffset, secondLevelFirstFuncs[reverseIndex]);
+ }
+ indexTable[secondLevelPageCount].set_functionOffset(0);
+ indexTable[secondLevelPageCount].set_secondLevelPagesSectionOffset(0);
+ indexTable[secondLevelPageCount].set_lsdaIndexArraySectionOffset(lsdaIndexArraySectionOffset+lsdaIndexArraySize);
+ refOffset = (uint8_t*)&indexTable[secondLevelPageCount] - _header;
+ this->addImageOffsetFixupPlusAddend(refOffset, entries.back().func, entries.back().func->size()+1);
+
+ // build lsda references
+ uint32_t lsdaEntrySectionOffset = lsdaIndexArraySectionOffset;
+ for (std::vector<LSDAEntry>::iterator it = lsdaIndex.begin(); it != lsdaIndex.end(); ++it) {
+ this->addImageOffsetFixup(lsdaEntrySectionOffset, it->func);
+ this->addImageOffsetFixup(lsdaEntrySectionOffset+4, it->lsda);
+ lsdaEntrySectionOffset += sizeof(unwind_info_section_header_lsda_index_entry);
+ }
+
+}
+
+template <typename A>
+UnwindInfoAtom<A>::~UnwindInfoAtom()
+{
+ free(_pagesForDelete);
+ free(_header);
+}
+
+template <typename A>
+void UnwindInfoAtom<A>::copyRawContent(uint8_t buffer[]) const
+{
+ // content is in two parts
+ memcpy(buffer, _header, _headerSize);
+ memcpy(&buffer[_headerSize], _pages, _pagesSize);
+}
+
+
+template <>
+bool UnwindInfoAtom<x86>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
+{
+ return ((enc & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF);
+}
+
+template <>
+bool UnwindInfoAtom<x86_64>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
+{
+ return ((enc & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF);
+}
+
+template <typename A>
+void UnwindInfoAtom<A>::compressDuplicates(const std::vector<UnwindEntry>& entries, std::vector<UnwindEntry>& uniqueEntries)
+{
+ // build new list removing entries where next function has same encoding
+ uniqueEntries.reserve(entries.size());
+ UnwindEntry last(NULL, 0, 0, NULL, NULL, NULL, 0xFFFFFFFF);
+ for(std::vector<UnwindEntry>::const_iterator it=entries.begin(); it != entries.end(); ++it) {
+ const UnwindEntry& next = *it;
+ bool newNeedsDwarf = encodingMeansUseDwarf(next.encoding);
+ // remove entries which have same encoding and personalityPointer as last one
+ if ( newNeedsDwarf || (next.encoding != last.encoding) || (next.personalityPointer != last.personalityPointer)
+ || (next.lsda != NULL) || (last.lsda != NULL) ) {
+ uniqueEntries.push_back(next);
+ }
+ last = next;
+ }
+ if (_s_log) fprintf(stderr, "compressDuplicates() entries.size()=%lu, uniqueEntries.size()=%lu\n",
+ entries.size(), uniqueEntries.size());
+}
+
+template <typename A>
+void UnwindInfoAtom<A>::makePersonalityIndexes(std::vector<UnwindEntry>& entries, std::map<const ld::Atom*, uint32_t>& personalityIndexMap)
+{
+ for(std::vector<UnwindEntry>::iterator it=entries.begin(); it != entries.end(); ++it) {
+ if ( it->personalityPointer != NULL ) {
+ std::map<const ld::Atom*, uint32_t>::iterator pos = personalityIndexMap.find(it->personalityPointer);
+ if ( pos == personalityIndexMap.end() ) {
+ const uint32_t nextIndex = personalityIndexMap.size() + 1;
+ personalityIndexMap[it->personalityPointer] = nextIndex;
+ }
+ uint32_t personalityIndex = personalityIndexMap[it->personalityPointer];
+ it->encoding |= (personalityIndex << (__builtin_ctz(UNWIND_PERSONALITY_MASK)) );
+ }
+ }
+ if (_s_log) fprintf(stderr, "makePersonalityIndexes() %lu personality routines used\n", personalityIndexMap.size());
+}
+
+
+template <typename A>
+void UnwindInfoAtom<A>::findCommonEncoding(const std::vector<UnwindEntry>& entries,
+ std::map<compact_unwind_encoding_t, unsigned int>& commonEncodings)
+{
+ // scan infos to get frequency counts for each encoding
+ std::map<compact_unwind_encoding_t, unsigned int> encodingsUsed;
+ unsigned int mostCommonEncodingUsageCount = 0;
+ for(std::vector<UnwindEntry>::const_iterator it=entries.begin(); it != entries.end(); ++it) {
+ // never put dwarf into common table
+ if ( encodingMeansUseDwarf(it->encoding) )
+ continue;
+ std::map<compact_unwind_encoding_t, unsigned int>::iterator pos = encodingsUsed.find(it->encoding);
+ if ( pos == encodingsUsed.end() ) {
+ encodingsUsed[it->encoding] = 1;
+ }
+ else {
+ encodingsUsed[it->encoding] += 1;
+ if ( mostCommonEncodingUsageCount < encodingsUsed[it->encoding] )
+ mostCommonEncodingUsageCount = encodingsUsed[it->encoding];
+ }
+ }
+ // put the most common encodings into the common table, but at most 127 of them
+ for(unsigned int usages=mostCommonEncodingUsageCount; usages > 1; --usages) {
+ for (std::map<compact_unwind_encoding_t, unsigned int>::iterator euit=encodingsUsed.begin(); euit != encodingsUsed.end(); ++euit) {
+ if ( euit->second == usages ) {
+ unsigned int sz = commonEncodings.size();
+ if ( sz < 127 ) {
+ commonEncodings[euit->first] = sz;
+ }
+ }
+ }
+ }
+ if (_s_log) fprintf(stderr, "findCommonEncoding() %lu common encodings found\n", commonEncodings.size());
+}
+
+
+template <typename A>
+void UnwindInfoAtom<A>::makeLsdaIndex(const std::vector<UnwindEntry>& entries, std::vector<LSDAEntry>& lsdaIndex, std::map<const ld::Atom*, uint32_t>& lsdaIndexOffsetMap)
+{
+ for(std::vector<UnwindEntry>::const_iterator it=entries.begin(); it != entries.end(); ++it) {
+ lsdaIndexOffsetMap[it->func] = lsdaIndex.size() * sizeof(unwind_info_section_header_lsda_index_entry);
+ if ( it->lsda != NULL ) {
+ LSDAEntry entry;
+ entry.func = it->func;
+ entry.lsda = it->lsda;
+ lsdaIndex.push_back(entry);
+ }
+ }
+ if (_s_log) fprintf(stderr, "makeLsdaIndex() %lu LSDAs found\n", lsdaIndex.size());
+}
+
+
+template <>
+void UnwindInfoAtom<x86>::addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, func));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindSubtractTargetAddress, fromFunc));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndianLow24of32));
+}
+
+template <>
+void UnwindInfoAtom<x86_64>::addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, func));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindSubtractTargetAddress, fromFunc));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndianLow24of32));
+}
+
+template <>
+void UnwindInfoAtom<x86>::addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32));
+}
+
+template <>
+void UnwindInfoAtom<x86_64>::addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32));
+}
+
+
+template <>
+void UnwindInfoAtom<x86>::addRegularAddressFixup(uint32_t offset, const ld::Atom* func)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, func));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32));
+}
+
+template <>
+void UnwindInfoAtom<x86_64>::addRegularAddressFixup(uint32_t offset, const ld::Atom* func)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, func));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32));
+}
+
+template <>
+void UnwindInfoAtom<x86>::addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde)
+{
+ _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde));
+ _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32));
+}
+
+template <>
+void UnwindInfoAtom<x86_64>::addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde)
+{
+ _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde));
+ _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32));
+}
+
+template <>
+void UnwindInfoAtom<x86>::addImageOffsetFixup(uint32_t offset, const ld::Atom* targ)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, targ));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32));
+}
+
+template <>
+void UnwindInfoAtom<x86_64>::addImageOffsetFixup(uint32_t offset, const ld::Atom* targ)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, targ));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32));
+}
+
+template <>
+void UnwindInfoAtom<x86>::addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetImageOffset, targ));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, addend));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndian32));
+}
+
+template <>
+void UnwindInfoAtom<x86_64>::addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend)
+{
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetImageOffset, targ));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, addend));
+ _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndian32));
+}
+
+
+
+
+
+template <typename A>
+unsigned int UnwindInfoAtom<A>::makeRegularSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, uint32_t pageSize,
+ unsigned int endIndex, uint8_t*& pageEnd)
+{
+ const unsigned int maxEntriesPerPage = (pageSize - sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry);
+ const unsigned int entriesToAdd = ((endIndex > maxEntriesPerPage) ? maxEntriesPerPage : endIndex);
+ uint8_t* pageStart = pageEnd
+ - entriesToAdd*sizeof(unwind_info_regular_second_level_entry)
+ - sizeof(unwind_info_regular_second_level_page_header);
+ macho_unwind_info_regular_second_level_page_header<P>* page = (macho_unwind_info_regular_second_level_page_header<P>*)pageStart;
+ page->set_kind(UNWIND_SECOND_LEVEL_REGULAR);
+ page->set_entryPageOffset(sizeof(macho_unwind_info_regular_second_level_page_header<P>));
+ page->set_entryCount(entriesToAdd);
+ macho_unwind_info_regular_second_level_entry<P>* entryTable = (macho_unwind_info_regular_second_level_entry<P>*)(pageStart + page->entryPageOffset());
+ for (unsigned int i=0; i < entriesToAdd; ++i) {
+ const UnwindEntry& info = uniqueInfos[endIndex-entriesToAdd+i];
+ entryTable[i].set_functionOffset(0);
+ entryTable[i].set_encoding(info.encoding);
+ // add fixup for address part of entry
+ uint32_t offset = (uint8_t*)(&entryTable[i]) - _pagesForDelete;
+ this->addRegularAddressFixup(offset, info.func);
+ if ( encodingMeansUseDwarf(info.encoding) ) {
+ // add fixup for dwarf offset part of page specific encoding
+ uint32_t encOffset = (uint8_t*)(&entryTable[i]) - _pagesForDelete;
+ this->addRegularFDEOffsetFixup(encOffset, info.fde);
+ }
+ }
+ if (_s_log) fprintf(stderr, "regular page with %u entries\n", entriesToAdd);
+ pageEnd = pageStart;
+ return endIndex - entriesToAdd;
+}
+
+
+template <typename A>
+unsigned int UnwindInfoAtom<A>::makeCompressedSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos,
+ const std::map<compact_unwind_encoding_t,unsigned int> commonEncodings,
+ uint32_t pageSize, unsigned int endIndex, uint8_t*& pageEnd)
+{
+ if (_s_log) fprintf(stderr, "makeCompressedSecondLevelPage(pageSize=%u, endIndex=%u)\n", pageSize, endIndex);
+ // first pass calculates how many compressed entries we could fit in this sized page
+ // keep adding entries to page until:
+ // 1) encoding table plus entry table plus header exceed page size
+ // 2) the file offset delta from the first to last function > 24 bits
+ // 3) custom encoding index reachs 255
+ // 4) run out of uniqueInfos to encode
+ std::map<compact_unwind_encoding_t, unsigned int> pageSpecificEncodings;
+ uint32_t space4 = (pageSize - sizeof(unwind_info_compressed_second_level_page_header))/sizeof(uint32_t);
+ std::vector<uint8_t> encodingIndexes;
+ int index = endIndex-1;
+ int entryCount = 0;
+ uint64_t lastEntryAddress = uniqueInfos[index].funcTentAddress;
+ bool canDo = true;
+ while ( canDo && (index >= 0) ) {
+ const UnwindEntry& info = uniqueInfos[index--];
+ // compute encoding index
+ unsigned int encodingIndex;
+ std::map<compact_unwind_encoding_t, unsigned int>::const_iterator pos = commonEncodings.find(info.encoding);
+ if ( pos != commonEncodings.end() ) {
+ encodingIndex = pos->second;
+ }
+ else {
+ // no commmon entry, so add one on this page
+ uint32_t encoding = info.encoding;
+ if ( encodingMeansUseDwarf(encoding) ) {
+ // make unique pseudo encoding so this dwarf will gets is own encoding entry slot
+ encoding += (index+1);
+ }
+ std::map<compact_unwind_encoding_t, unsigned int>::iterator ppos = pageSpecificEncodings.find(encoding);
+ if ( ppos != pageSpecificEncodings.end() ) {
+ encodingIndex = pos->second;
+ }
+ else {
+ encodingIndex = commonEncodings.size() + pageSpecificEncodings.size();
+ if ( encodingIndex <= 255 ) {
+ pageSpecificEncodings[encoding] = encodingIndex;
+ }
+ else {
+ canDo = false; // case 3)
+ if (_s_log) fprintf(stderr, "end of compressed page with %u entries, %lu custom encodings because too many custom encodings\n",
+ entryCount, pageSpecificEncodings.size());
+ }
+ }
+ }
+ if ( canDo )
+ encodingIndexes.push_back(encodingIndex);
+ // compute function offset
+ uint32_t funcOffsetWithInPage = lastEntryAddress - info.funcTentAddress;
+ if ( funcOffsetWithInPage > 0x00FFFF00 ) {
+ // don't use 0x00FFFFFF because addresses may vary after atoms are laid out again
+ canDo = false; // case 2)
+ if (_s_log) fprintf(stderr, "can't use compressed page with %u entries because function offset too big\n", entryCount);
+ }
+ else {
+ ++entryCount;
+ }
+ // check room for entry
+ if ( (pageSpecificEncodings.size()+entryCount) >= space4 ) {
+ canDo = false; // case 1)
+ --entryCount;
+ if (_s_log) fprintf(stderr, "end of compressed page with %u entries because full\n", entryCount);
+ }
+ //if (_s_log) fprintf(stderr, "space4=%d, pageSpecificEncodings.size()=%ld, entryCount=%d\n", space4, pageSpecificEncodings.size(), entryCount);
+ }
+
+ // check for cases where it would be better to use a regular (non-compressed) page
+ const unsigned int compressPageUsed = sizeof(unwind_info_compressed_second_level_page_header)
+ + pageSpecificEncodings.size()*sizeof(uint32_t)
+ + entryCount*sizeof(uint32_t);
+ if ( (compressPageUsed < (pageSize-4) && (index >= 0) ) ) {
+ const int regularEntriesPerPage = (pageSize - sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry);
+ if ( entryCount < regularEntriesPerPage ) {
+ return makeRegularSecondLevelPage(uniqueInfos, pageSize, endIndex, pageEnd);
+ }
+ }
+
+ // check if we need any padding because adding another entry would take 8 bytes but only have room for 4
+ uint32_t pad = 0;
+ if ( compressPageUsed == (pageSize-4) )
+ pad = 4;
+
+ // second pass fills in page
+ uint8_t* pageStart = pageEnd - compressPageUsed - pad;
+ CSLP* page = (CSLP*)pageStart;
+ page->set_kind(UNWIND_SECOND_LEVEL_COMPRESSED);
+ page->set_entryPageOffset(sizeof(CSLP));
+ page->set_entryCount(entryCount);
+ page->set_encodingsPageOffset(page->entryPageOffset()+entryCount*sizeof(uint32_t));
+ page->set_encodingsCount(pageSpecificEncodings.size());
+ uint32_t* const encodingsArray = (uint32_t*)&pageStart[page->encodingsPageOffset()];
+ // fill in entry table
+ uint32_t* const entiresArray = (uint32_t*)&pageStart[page->entryPageOffset()];
+ const ld::Atom* firstFunc = uniqueInfos[endIndex-entryCount].func;
+ for(unsigned int i=endIndex-entryCount; i < endIndex; ++i) {
+ const UnwindEntry& info = uniqueInfos[i];
+ uint8_t encodingIndex;
+ if ( encodingMeansUseDwarf(info.encoding) ) {
+ // dwarf entries are always in page specific encodings
+ encodingIndex = pageSpecificEncodings[info.encoding+i];
+ }
+ else {
+ std::map<uint32_t, unsigned int>::const_iterator pos = commonEncodings.find(info.encoding);
+ if ( pos != commonEncodings.end() )
+ encodingIndex = pos->second;
+ else
+ encodingIndex = pageSpecificEncodings[info.encoding];
+ }
+ uint32_t entryIndex = i - endIndex + entryCount;
+ E::set32(entiresArray[entryIndex], encodingIndex << 24);
+ // add fixup for address part of entry
+ uint32_t offset = (uint8_t*)(&entiresArray[entryIndex]) - _pagesForDelete;
+ this->addCompressedAddressOffsetFixup(offset, info.func, firstFunc);
+ if ( encodingMeansUseDwarf(info.encoding) ) {
+ // add fixup for dwarf offset part of page specific encoding
+ uint32_t encOffset = (uint8_t*)(&encodingsArray[encodingIndex-commonEncodings.size()]) - _pagesForDelete;
+ this->addCompressedEncodingFixup(encOffset, info.fde);
+ }
+ }
+ // fill in encodings table
+ for(std::map<uint32_t, unsigned int>::const_iterator it = pageSpecificEncodings.begin(); it != pageSpecificEncodings.end(); ++it) {
+ E::set32(encodingsArray[it->second-commonEncodings.size()], it->first);
+ }
+
+ if (_s_log) fprintf(stderr, "compressed page with %u entries, %lu custom encodings\n", entryCount, pageSpecificEncodings.size());
+
+ // update pageEnd;
+ pageEnd = pageStart;
+ return endIndex-entryCount; // endIndex for next page
+}
+
+
+
+
+
+
+static uint64_t calculateEHFrameSize(const ld::Internal& state)
+{
+ uint64_t size = 0;
+ for (std::vector<ld::Internal::FinalSection*>::const_iterator sit=state.sections.begin(); sit != state.sections.end(); ++sit) {
+ ld::Internal::FinalSection* sect = *sit;
+ if ( sect->type() == ld::Section::typeCFI ) {
+ for (std::vector<const ld::Atom*>::iterator ait=sect->atoms.begin(); ait != sect->atoms.end(); ++ait) {
+ size += (*ait)->size();
+ }
+ }
+ }
+ return size;
+}
+
+static void getAllUnwindInfos(const ld::Internal& state, std::vector<UnwindEntry>& entries)
+{
+ uint64_t address = 0;
+ for (std::vector<ld::Internal::FinalSection*>::const_iterator sit=state.sections.begin(); sit != state.sections.end(); ++sit) {
+ ld::Internal::FinalSection* sect = *sit;
+ for (std::vector<const ld::Atom*>::iterator ait=sect->atoms.begin(); ait != sect->atoms.end(); ++ait) {
+ const ld::Atom* atom = *ait;
+ // adjust address for atom alignment
+ uint64_t alignment = 1 << atom->alignment().powerOf2;
+ uint64_t currentModulus = (address % alignment);
+ uint64_t requiredModulus = atom->alignment().modulus;
+ if ( currentModulus != requiredModulus ) {
+ if ( requiredModulus > currentModulus )
+ address += requiredModulus-currentModulus;
+ else
+ address += requiredModulus+alignment-currentModulus;
+ }
+
+ if ( atom->beginUnwind() == atom->endUnwind() ) {
+ // be sure to mark that we have no unwind info for stuff in the TEXT segment without unwind info
+ if ( atom->section().type() == ld::Section::typeCode ) {
+ entries.push_back(UnwindEntry(atom, address, 0, NULL, NULL, NULL, 0));
+ }
+ }
+ else {
+ // atom has unwind info(s), add entry for each
+ const ld::Atom* fde = NULL;
+ const ld::Atom* lsda = NULL;
+ const ld::Atom* personalityPointer = NULL;
+ for (ld::Fixup::iterator fit = atom->fixupsBegin(), end=atom->fixupsEnd(); fit != end; ++fit) {
+ switch ( fit->kind ) {
+ case ld::Fixup::kindNoneGroupSubordinateFDE:
+ assert(fit->binding == ld::Fixup::bindingDirectlyBound);
+ fde = fit->u.target;
+ break;
+ case ld::Fixup::kindNoneGroupSubordinateLSDA:
+ assert(fit->binding == ld::Fixup::bindingDirectlyBound);
+ lsda = fit->u.target;
+ break;
+ default:
+ break;
+ }
+ }
+ if ( fde != NULL ) {
+ // find CIE for this FDE
+ const ld::Atom* cie = NULL;
+ for (ld::Fixup::iterator fit = fde->fixupsBegin(), end=fde->fixupsEnd(); fit != end; ++fit) {
+ if ( fit->kind != ld::Fixup::kindSubtractTargetAddress )
+ continue;
+ if ( fit->binding != ld::Fixup::bindingDirectlyBound )
+ continue;
+ cie = fit->u.target;
+ // CIE is only direct subtracted target in FDE
+ assert(cie->section().type() == ld::Section::typeCFI);
+ break;
+ }
+ if ( cie != NULL ) {
+ // if CIE can have just one fixup - to the personality pointer
+ for (ld::Fixup::iterator fit = cie->fixupsBegin(), end=cie->fixupsEnd(); fit != end; ++fit) {
+ if ( fit->kind == ld::Fixup::kindSetTargetAddress ) {
+ switch ( fit->binding ) {
+ case ld::Fixup::bindingsIndirectlyBound:
+ personalityPointer = state.indirectBindingTable[fit->u.bindingIndex];
+ assert(personalityPointer->section().type() == ld::Section::typeNonLazyPointer);
+ break;
+ case ld::Fixup::bindingDirectlyBound:
+ personalityPointer = fit->u.target;
+ assert(personalityPointer->section().type() == ld::Section::typeNonLazyPointer);
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ }
+ }
+ for ( ld::Atom::UnwindInfo::iterator uit = atom->beginUnwind(); uit != atom->endUnwind(); ++uit ) {
+ entries.push_back(UnwindEntry(atom, address, uit->startOffset, fde, lsda, personalityPointer, uit->unwindInfo));
+ }
+ }
+ address += atom->size();
+ }
+ }
+}
+
+
+
+
+void doPass(const Options& opts, ld::Internal& state)
+{
+ //const bool log = false;
+
+ // only make make __unwind_info in final linked images
+ if ( !opts.needsUnwindInfoSection() )
+ return;
+
+ // walk every atom and gets its unwind info
+ std::vector<UnwindEntry> entries;
+ entries.reserve(64);
+ getAllUnwindInfos(state, entries);
+
+ // don't generate an __unwind_info section if there is no code in this linkage unit
+ if ( entries.size() == 0 )
+ return;
+
+ // calculate size of __eh_frame section, so __unwind_info can go before it and page align
+ uint64_t ehFrameSize = calculateEHFrameSize(state);
+
+ // create atom that contains the whole compact unwind table
+ switch ( opts.architecture() ) {
+ case CPU_TYPE_X86_64:
+ state.addAtom(*new UnwindInfoAtom<x86_64>(entries, ehFrameSize));
+ break;
+ case CPU_TYPE_I386:
+ state.addAtom(*new UnwindInfoAtom<x86>(entries, ehFrameSize));
+ break;
+ default:
+ assert(0 && "no compact unwind for arch");
+ }
+}
+
+
+} // namespace compact_unwind
+} // namespace passes
+} // namespace ld