1 /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-
3 * Copyright (c) 2009 Apple Inc. All rights reserved.
5 * @APPLE_LICENSE_HEADER_START@
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
22 * @APPLE_LICENSE_HEADER_END@
30 #include <mach/machine.h>
31 #include <mach-o/compact_unwind_encoding.h>
37 #include "compact_unwind.h"
38 #include "Architectures.hpp"
39 #include "MachOFileAbstraction.hpp"
44 namespace compact_unwind
{
48 UnwindEntry(const ld::Atom
* f
, uint64_t a
, uint32_t o
, const ld::Atom
* d
,
49 const ld::Atom
* l
, const ld::Atom
* p
, uint32_t en
)
50 : func(f
), fde(d
), lsda(l
), personalityPointer(p
), funcTentAddress(a
),
51 functionOffset(o
), encoding(en
) { }
55 const ld::Atom
* personalityPointer
;
56 uint64_t funcTentAddress
;
57 uint32_t functionOffset
;
58 compact_unwind_encoding_t encoding
;
68 class UnwindInfoAtom
: public ld::Atom
{
70 UnwindInfoAtom(const std::vector
<UnwindEntry
>& entries
,uint64_t ehFrameSize
);
73 virtual const ld::File
* file() const { return NULL
; }
74 virtual const char* name() const { return "compact unwind info"; }
75 virtual uint64_t size() const { return _headerSize
+_pagesSize
; }
76 virtual uint64_t objectAddress() const { return 0; }
77 virtual void copyRawContent(uint8_t buffer
[]) const;
78 virtual void setScope(Scope
) { }
79 virtual ld::Fixup::iterator
fixupsBegin() const { return (ld::Fixup
*)&_fixups
[0]; }
80 virtual ld::Fixup::iterator
fixupsEnd() const { return (ld::Fixup
*)&_fixups
[_fixups
.size()]; }
83 typedef typename
A::P P
;
84 typedef typename
A::P::E E
;
85 typedef typename
A::P::uint_t pint_t
;
87 typedef macho_unwind_info_compressed_second_level_page_header
<P
> CSLP
;
89 bool encodingMeansUseDwarf(compact_unwind_encoding_t enc
);
90 void compressDuplicates(const std::vector
<UnwindEntry
>& entries
,
91 std::vector
<UnwindEntry
>& uniqueEntries
);
92 void makePersonalityIndexes(std::vector
<UnwindEntry
>& entries
,
93 std::map
<const ld::Atom
*, uint32_t>& personalityIndexMap
);
94 void findCommonEncoding(const std::vector
<UnwindEntry
>& entries
,
95 std::map
<compact_unwind_encoding_t
, unsigned int>& commonEncodings
);
96 void makeLsdaIndex(const std::vector
<UnwindEntry
>& entries
, std::vector
<LSDAEntry
>& lsdaIndex
,
97 std::map
<const ld::Atom
*, uint32_t>& lsdaIndexOffsetMap
);
98 unsigned int makeCompressedSecondLevelPage(const std::vector
<UnwindEntry
>& uniqueInfos
,
99 const std::map
<compact_unwind_encoding_t
,unsigned int> commonEncodings
,
100 uint32_t pageSize
, unsigned int endIndex
, uint8_t*& pageEnd
);
101 unsigned int makeRegularSecondLevelPage(const std::vector
<UnwindEntry
>& uniqueInfos
, uint32_t pageSize
,
102 unsigned int endIndex
, uint8_t*& pageEnd
);
103 void addCompressedAddressOffsetFixup(uint32_t offset
, const ld::Atom
* func
, const ld::Atom
* fromFunc
);
104 void addCompressedEncodingFixup(uint32_t offset
, const ld::Atom
* fde
);
105 void addRegularAddressFixup(uint32_t offset
, const ld::Atom
* func
);
106 void addRegularFDEOffsetFixup(uint32_t offset
, const ld::Atom
* fde
);
107 void addImageOffsetFixup(uint32_t offset
, const ld::Atom
* targ
);
108 void addImageOffsetFixupPlusAddend(uint32_t offset
, const ld::Atom
* targ
, uint32_t addend
);
110 uint8_t* _pagesForDelete
;
111 uint8_t* _pageAlignedPages
;
115 uint64_t _headerSize
;
116 std::vector
<ld::Fixup
> _fixups
;
119 static ld::Section _s_section
;
122 template <typename A
>
123 bool UnwindInfoAtom
<A
>::_s_log
= false;
125 template <typename A
>
126 ld::Section UnwindInfoAtom
<A
>::_s_section("__TEXT", "__unwind_info", ld::Section::typeUnwindInfo
);
129 template <typename A
>
130 UnwindInfoAtom
<A
>::UnwindInfoAtom(const std::vector
<UnwindEntry
>& entries
, uint64_t ehFrameSize
)
131 : ld::Atom(_s_section
, ld::Atom::definitionRegular
, ld::Atom::combineNever
,
132 ld::Atom::scopeLinkageUnit
, ld::Atom::typeUnclassified
,
133 symbolTableNotIn
, false, false, false, ld::Atom::Alignment(2)),
134 _pagesForDelete(NULL
), _pageAlignedPages(NULL
), _pages(NULL
), _pagesSize(0), _header(NULL
), _headerSize(0)
136 // build new compressed list by removing entries where next function has same encoding
137 std::vector
<UnwindEntry
> uniqueEntries
;
138 compressDuplicates(entries
, uniqueEntries
);
140 // reserve room so _fixups vector is not reallocated a bunch of times
141 _fixups
.reserve(uniqueEntries
.size()*3);
143 // build personality index, update encodings with personality index
144 std::map
<const ld::Atom
*, uint32_t> personalityIndexMap
;
145 makePersonalityIndexes(uniqueEntries
, personalityIndexMap
);
146 if ( personalityIndexMap
.size() > 3 ) {
147 throw "too many personality routines for compact unwind to encode";
150 // put the most common encodings into the common table, but at most 127 of them
151 std::map
<compact_unwind_encoding_t
, unsigned int> commonEncodings
;
152 findCommonEncoding(uniqueEntries
, commonEncodings
);
155 std::map
<const ld::Atom
*, uint32_t> lsdaIndexOffsetMap
;
156 std::vector
<LSDAEntry
> lsdaIndex
;
157 makeLsdaIndex(uniqueEntries
, lsdaIndex
, lsdaIndexOffsetMap
);
159 // calculate worst case size for all unwind info pages when allocating buffer
160 const unsigned int entriesPerRegularPage
= (4096-sizeof(unwind_info_regular_second_level_page_header
))/sizeof(unwind_info_regular_second_level_entry
);
161 assert(uniqueEntries
.size() > 0);
162 const unsigned int pageCount
= ((uniqueEntries
.size() - 1)/entriesPerRegularPage
) + 2;
163 _pagesForDelete
= (uint8_t*)calloc(pageCount
+1,4096);
164 if ( _pagesForDelete
== NULL
) {
165 warning("could not allocate space for compact unwind info");
168 _pageAlignedPages
= (uint8_t*)((((uintptr_t)_pagesForDelete
) + 4095) & -4096);
170 // make last second level page smaller so that all other second level pages can be page aligned
171 uint32_t maxLastPageSize
= 4096 - (ehFrameSize
% 4096);
172 uint32_t tailPad
= 0;
173 if ( maxLastPageSize
< 128 ) {
174 tailPad
= maxLastPageSize
;
175 maxLastPageSize
= 4096;
178 // fill in pages in reverse order
179 const ld::Atom
* secondLevelFirstFuncs
[pageCount
*3];
180 uint8_t* secondLevelPagesStarts
[pageCount
*3];
181 unsigned int endIndex
= uniqueEntries
.size();
182 unsigned int secondLevelPageCount
= 0;
183 uint8_t* pageEnd
= &_pageAlignedPages
[pageCount
*4096];
184 uint32_t pageSize
= maxLastPageSize
;
185 while ( endIndex
> 0 ) {
186 endIndex
= makeCompressedSecondLevelPage(uniqueEntries
, commonEncodings
, pageSize
, endIndex
, pageEnd
);
187 secondLevelPagesStarts
[secondLevelPageCount
] = pageEnd
;
188 secondLevelFirstFuncs
[secondLevelPageCount
] = uniqueEntries
[endIndex
].func
;
189 ++secondLevelPageCount
;
190 // if this requires more than one page, align so that next starts on page boundary
191 if ( (pageSize
!= 4096) && (endIndex
> 0) ) {
192 pageEnd
= (uint8_t*)((uintptr_t)(pageEnd
) & -4096);
193 pageSize
= 4096; // last page can be odd size, make rest up to 4096 bytes in size
197 _pagesSize
= &_pageAlignedPages
[pageCount
*4096] - pageEnd
;
199 // calculate section layout
200 const uint32_t commonEncodingsArraySectionOffset
= sizeof(macho_unwind_info_section_header
<P
>);
201 const uint32_t commonEncodingsArrayCount
= commonEncodings
.size();
202 const uint32_t commonEncodingsArraySize
= commonEncodingsArrayCount
* sizeof(compact_unwind_encoding_t
);
203 const uint32_t personalityArraySectionOffset
= commonEncodingsArraySectionOffset
+ commonEncodingsArraySize
;
204 const uint32_t personalityArrayCount
= personalityIndexMap
.size();
205 const uint32_t personalityArraySize
= personalityArrayCount
* sizeof(uint32_t);
206 const uint32_t indexSectionOffset
= personalityArraySectionOffset
+ personalityArraySize
;
207 const uint32_t indexCount
= secondLevelPageCount
+1;
208 const uint32_t indexSize
= indexCount
* sizeof(macho_unwind_info_section_header_index_entry
<P
>);
209 const uint32_t lsdaIndexArraySectionOffset
= indexSectionOffset
+ indexSize
;
210 const uint32_t lsdaIndexArrayCount
= lsdaIndex
.size();
211 const uint32_t lsdaIndexArraySize
= lsdaIndexArrayCount
* sizeof(macho_unwind_info_section_header_lsda_index_entry
<P
>);
212 const uint32_t headerEndSectionOffset
= lsdaIndexArraySectionOffset
+ lsdaIndexArraySize
;
214 // now that we know the size of the header, slide all existing fixups on the pages
215 const int32_t fixupSlide
= headerEndSectionOffset
+ (_pageAlignedPages
- _pages
);
216 for(std::vector
<ld::Fixup
>::iterator it
= _fixups
.begin(); it
!= _fixups
.end(); ++it
) {
217 it
->offsetInAtom
+= fixupSlide
;
220 // allocate and fill in section header
221 _headerSize
= headerEndSectionOffset
;
222 _header
= new uint8_t[_headerSize
];
223 bzero(_header
, _headerSize
);
224 macho_unwind_info_section_header
<P
>* sectionHeader
= (macho_unwind_info_section_header
<P
>*)_header
;
225 sectionHeader
->set_version(UNWIND_SECTION_VERSION
);
226 sectionHeader
->set_commonEncodingsArraySectionOffset(commonEncodingsArraySectionOffset
);
227 sectionHeader
->set_commonEncodingsArrayCount(commonEncodingsArrayCount
);
228 sectionHeader
->set_personalityArraySectionOffset(personalityArraySectionOffset
);
229 sectionHeader
->set_personalityArrayCount(personalityArrayCount
);
230 sectionHeader
->set_indexSectionOffset(indexSectionOffset
);
231 sectionHeader
->set_indexCount(indexCount
);
233 // copy common encodings
234 uint32_t* commonEncodingsTable
= (uint32_t*)&_header
[commonEncodingsArraySectionOffset
];
235 for (std::map
<uint32_t, unsigned int>::iterator it
=commonEncodings
.begin(); it
!= commonEncodings
.end(); ++it
)
236 E::set32(commonEncodingsTable
[it
->second
], it
->first
);
238 // make references for personality entries
239 uint32_t* personalityArray
= (uint32_t*)&_header
[sectionHeader
->personalityArraySectionOffset()];
240 for (std::map
<const ld::Atom
*, unsigned int>::iterator it
=personalityIndexMap
.begin(); it
!= personalityIndexMap
.end(); ++it
) {
241 uint32_t offset
= (uint8_t*)&personalityArray
[it
->second
-1] - _header
;
242 this->addImageOffsetFixup(offset
, it
->first
);
245 // build first level index and references
246 macho_unwind_info_section_header_index_entry
<P
>* indexTable
= (macho_unwind_info_section_header_index_entry
<P
>*)&_header
[indexSectionOffset
];
248 for (unsigned int i
=0; i
< secondLevelPageCount
; ++i
) {
249 unsigned int reverseIndex
= secondLevelPageCount
- 1 - i
;
250 indexTable
[i
].set_functionOffset(0);
251 indexTable
[i
].set_secondLevelPagesSectionOffset(secondLevelPagesStarts
[reverseIndex
]-_pages
+headerEndSectionOffset
);
252 indexTable
[i
].set_lsdaIndexArraySectionOffset(lsdaIndexOffsetMap
[secondLevelFirstFuncs
[reverseIndex
]]+lsdaIndexArraySectionOffset
);
253 refOffset
= (uint8_t*)&indexTable
[i
] - _header
;
254 this->addImageOffsetFixup(refOffset
, secondLevelFirstFuncs
[reverseIndex
]);
256 indexTable
[secondLevelPageCount
].set_functionOffset(0);
257 indexTable
[secondLevelPageCount
].set_secondLevelPagesSectionOffset(0);
258 indexTable
[secondLevelPageCount
].set_lsdaIndexArraySectionOffset(lsdaIndexArraySectionOffset
+lsdaIndexArraySize
);
259 refOffset
= (uint8_t*)&indexTable
[secondLevelPageCount
] - _header
;
260 this->addImageOffsetFixupPlusAddend(refOffset
, entries
.back().func
, entries
.back().func
->size()+1);
262 // build lsda references
263 uint32_t lsdaEntrySectionOffset
= lsdaIndexArraySectionOffset
;
264 for (std::vector
<LSDAEntry
>::iterator it
= lsdaIndex
.begin(); it
!= lsdaIndex
.end(); ++it
) {
265 this->addImageOffsetFixup(lsdaEntrySectionOffset
, it
->func
);
266 this->addImageOffsetFixup(lsdaEntrySectionOffset
+4, it
->lsda
);
267 lsdaEntrySectionOffset
+= sizeof(unwind_info_section_header_lsda_index_entry
);
272 template <typename A
>
273 UnwindInfoAtom
<A
>::~UnwindInfoAtom()
275 free(_pagesForDelete
);
279 template <typename A
>
280 void UnwindInfoAtom
<A
>::copyRawContent(uint8_t buffer
[]) const
282 // content is in two parts
283 memcpy(buffer
, _header
, _headerSize
);
284 memcpy(&buffer
[_headerSize
], _pages
, _pagesSize
);
289 bool UnwindInfoAtom
<x86
>::encodingMeansUseDwarf(compact_unwind_encoding_t enc
)
291 return ((enc
& UNWIND_X86_MODE_MASK
) == UNWIND_X86_MODE_DWARF
);
295 bool UnwindInfoAtom
<x86_64
>::encodingMeansUseDwarf(compact_unwind_encoding_t enc
)
297 return ((enc
& UNWIND_X86_64_MODE_MASK
) == UNWIND_X86_64_MODE_DWARF
);
301 bool UnwindInfoAtom
<arm64
>::encodingMeansUseDwarf(compact_unwind_encoding_t enc
)
303 return ((enc
& UNWIND_ARM64_MODE_MASK
) == UNWIND_ARM64_MODE_DWARF
);
307 bool UnwindInfoAtom
<arm
>::encodingMeansUseDwarf(compact_unwind_encoding_t enc
)
309 return ((enc
& UNWIND_ARM_MODE_MASK
) == UNWIND_ARM_MODE_DWARF
);
313 template <typename A
>
314 void UnwindInfoAtom
<A
>::compressDuplicates(const std::vector
<UnwindEntry
>& entries
, std::vector
<UnwindEntry
>& uniqueEntries
)
316 // build new list removing entries where next function has same encoding
317 uniqueEntries
.reserve(entries
.size());
318 UnwindEntry
last(NULL
, 0, 0, NULL
, NULL
, NULL
, 0xFFFFFFFF);
319 for(std::vector
<UnwindEntry
>::const_iterator it
=entries
.begin(); it
!= entries
.end(); ++it
) {
320 const UnwindEntry
& next
= *it
;
321 bool newNeedsDwarf
= encodingMeansUseDwarf(next
.encoding
);
322 // remove entries which have same encoding and personalityPointer as last one
323 if ( newNeedsDwarf
|| (next
.encoding
!= last
.encoding
) || (next
.personalityPointer
!= last
.personalityPointer
)
324 || (next
.lsda
!= NULL
) || (last
.lsda
!= NULL
) ) {
325 uniqueEntries
.push_back(next
);
329 if (_s_log
) fprintf(stderr
, "compressDuplicates() entries.size()=%lu, uniqueEntries.size()=%lu\n",
330 entries
.size(), uniqueEntries
.size());
333 template <typename A
>
334 void UnwindInfoAtom
<A
>::makePersonalityIndexes(std::vector
<UnwindEntry
>& entries
, std::map
<const ld::Atom
*, uint32_t>& personalityIndexMap
)
336 for(std::vector
<UnwindEntry
>::iterator it
=entries
.begin(); it
!= entries
.end(); ++it
) {
337 if ( it
->personalityPointer
!= NULL
) {
338 std::map
<const ld::Atom
*, uint32_t>::iterator pos
= personalityIndexMap
.find(it
->personalityPointer
);
339 if ( pos
== personalityIndexMap
.end() ) {
340 const uint32_t nextIndex
= personalityIndexMap
.size() + 1;
341 personalityIndexMap
[it
->personalityPointer
] = nextIndex
;
343 uint32_t personalityIndex
= personalityIndexMap
[it
->personalityPointer
];
344 it
->encoding
|= (personalityIndex
<< (__builtin_ctz(UNWIND_PERSONALITY_MASK
)) );
347 if (_s_log
) fprintf(stderr
, "makePersonalityIndexes() %lu personality routines used\n", personalityIndexMap
.size());
351 template <typename A
>
352 void UnwindInfoAtom
<A
>::findCommonEncoding(const std::vector
<UnwindEntry
>& entries
,
353 std::map
<compact_unwind_encoding_t
, unsigned int>& commonEncodings
)
355 // scan infos to get frequency counts for each encoding
356 std::map
<compact_unwind_encoding_t
, unsigned int> encodingsUsed
;
357 unsigned int mostCommonEncodingUsageCount
= 0;
358 for(std::vector
<UnwindEntry
>::const_iterator it
=entries
.begin(); it
!= entries
.end(); ++it
) {
359 // never put dwarf into common table
360 if ( encodingMeansUseDwarf(it
->encoding
) )
362 std::map
<compact_unwind_encoding_t
, unsigned int>::iterator pos
= encodingsUsed
.find(it
->encoding
);
363 if ( pos
== encodingsUsed
.end() ) {
364 encodingsUsed
[it
->encoding
] = 1;
367 encodingsUsed
[it
->encoding
] += 1;
368 if ( mostCommonEncodingUsageCount
< encodingsUsed
[it
->encoding
] )
369 mostCommonEncodingUsageCount
= encodingsUsed
[it
->encoding
];
372 // put the most common encodings into the common table, but at most 127 of them
373 for(unsigned int usages
=mostCommonEncodingUsageCount
; usages
> 1; --usages
) {
374 for (std::map
<compact_unwind_encoding_t
, unsigned int>::iterator euit
=encodingsUsed
.begin(); euit
!= encodingsUsed
.end(); ++euit
) {
375 if ( euit
->second
== usages
) {
376 unsigned int sz
= commonEncodings
.size();
378 commonEncodings
[euit
->first
] = sz
;
383 if (_s_log
) fprintf(stderr
, "findCommonEncoding() %lu common encodings found\n", commonEncodings
.size());
387 template <typename A
>
388 void UnwindInfoAtom
<A
>::makeLsdaIndex(const std::vector
<UnwindEntry
>& entries
, std::vector
<LSDAEntry
>& lsdaIndex
, std::map
<const ld::Atom
*, uint32_t>& lsdaIndexOffsetMap
)
390 for(std::vector
<UnwindEntry
>::const_iterator it
=entries
.begin(); it
!= entries
.end(); ++it
) {
391 lsdaIndexOffsetMap
[it
->func
] = lsdaIndex
.size() * sizeof(unwind_info_section_header_lsda_index_entry
);
392 if ( it
->lsda
!= NULL
) {
394 entry
.func
= it
->func
;
395 entry
.lsda
= it
->lsda
;
396 lsdaIndex
.push_back(entry
);
399 if (_s_log
) fprintf(stderr
, "makeLsdaIndex() %lu LSDAs found\n", lsdaIndex
.size());
404 void UnwindInfoAtom
<x86
>::addCompressedAddressOffsetFixup(uint32_t offset
, const ld::Atom
* func
, const ld::Atom
* fromFunc
)
406 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of3
, ld::Fixup::kindSetTargetAddress
, func
));
407 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of3
, ld::Fixup::kindSubtractTargetAddress
, fromFunc
));
408 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k3of3
, ld::Fixup::kindStoreLittleEndianLow24of32
));
412 void UnwindInfoAtom
<x86_64
>::addCompressedAddressOffsetFixup(uint32_t offset
, const ld::Atom
* func
, const ld::Atom
* fromFunc
)
414 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of3
, ld::Fixup::kindSetTargetAddress
, func
));
415 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of3
, ld::Fixup::kindSubtractTargetAddress
, fromFunc
));
416 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k3of3
, ld::Fixup::kindStoreLittleEndianLow24of32
));
420 void UnwindInfoAtom
<arm64
>::addCompressedAddressOffsetFixup(uint32_t offset
, const ld::Atom
* func
, const ld::Atom
* fromFunc
)
422 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of3
, ld::Fixup::kindSetTargetAddress
, func
));
423 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of3
, ld::Fixup::kindSubtractTargetAddress
, fromFunc
));
424 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k3of3
, ld::Fixup::kindStoreLittleEndianLow24of32
));
428 void UnwindInfoAtom
<arm
>::addCompressedAddressOffsetFixup(uint32_t offset
, const ld::Atom
* func
, const ld::Atom
* fromFunc
)
430 if ( fromFunc
->isThumb() ) {
431 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of4
, ld::Fixup::kindSetTargetAddress
, func
));
432 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of4
, ld::Fixup::kindSubtractTargetAddress
, fromFunc
));
433 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k3of4
, ld::Fixup::kindSubtractAddend
, 1));
434 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k4of4
, ld::Fixup::kindStoreLittleEndianLow24of32
));
437 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of3
, ld::Fixup::kindSetTargetAddress
, func
));
438 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of3
, ld::Fixup::kindSubtractTargetAddress
, fromFunc
));
439 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k3of3
, ld::Fixup::kindStoreLittleEndianLow24of32
));
444 void UnwindInfoAtom
<x86
>::addCompressedEncodingFixup(uint32_t offset
, const ld::Atom
* fde
)
446 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetSectionOffset
, fde
));
447 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndianLow24of32
));
451 void UnwindInfoAtom
<x86_64
>::addCompressedEncodingFixup(uint32_t offset
, const ld::Atom
* fde
)
453 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetSectionOffset
, fde
));
454 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndianLow24of32
));
458 void UnwindInfoAtom
<arm64
>::addCompressedEncodingFixup(uint32_t offset
, const ld::Atom
* fde
)
460 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetSectionOffset
, fde
));
461 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndianLow24of32
));
465 void UnwindInfoAtom
<arm
>::addCompressedEncodingFixup(uint32_t offset
, const ld::Atom
* fde
)
467 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetSectionOffset
, fde
));
468 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndianLow24of32
));
472 void UnwindInfoAtom
<x86
>::addRegularAddressFixup(uint32_t offset
, const ld::Atom
* func
)
474 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetImageOffset
, func
));
475 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndian32
));
479 void UnwindInfoAtom
<x86_64
>::addRegularAddressFixup(uint32_t offset
, const ld::Atom
* func
)
481 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetImageOffset
, func
));
482 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndian32
));
486 void UnwindInfoAtom
<arm64
>::addRegularAddressFixup(uint32_t offset
, const ld::Atom
* func
)
488 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetImageOffset
, func
));
489 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndian32
));
493 void UnwindInfoAtom
<arm
>::addRegularAddressFixup(uint32_t offset
, const ld::Atom
* func
)
495 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetImageOffset
, func
));
496 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndian32
));
500 void UnwindInfoAtom
<x86
>::addRegularFDEOffsetFixup(uint32_t offset
, const ld::Atom
* fde
)
502 _fixups
.push_back(ld::Fixup(offset
+4, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetSectionOffset
, fde
));
503 _fixups
.push_back(ld::Fixup(offset
+4, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndianLow24of32
));
507 void UnwindInfoAtom
<x86_64
>::addRegularFDEOffsetFixup(uint32_t offset
, const ld::Atom
* fde
)
509 _fixups
.push_back(ld::Fixup(offset
+4, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetSectionOffset
, fde
));
510 _fixups
.push_back(ld::Fixup(offset
+4, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndianLow24of32
));
514 void UnwindInfoAtom
<arm64
>::addRegularFDEOffsetFixup(uint32_t offset
, const ld::Atom
* fde
)
516 _fixups
.push_back(ld::Fixup(offset
+4, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetSectionOffset
, fde
));
517 _fixups
.push_back(ld::Fixup(offset
+4, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndianLow24of32
));
521 void UnwindInfoAtom
<arm
>::addRegularFDEOffsetFixup(uint32_t offset
, const ld::Atom
* fde
)
523 _fixups
.push_back(ld::Fixup(offset
+4, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetSectionOffset
, fde
));
524 _fixups
.push_back(ld::Fixup(offset
+4, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndianLow24of32
));
528 void UnwindInfoAtom
<x86
>::addImageOffsetFixup(uint32_t offset
, const ld::Atom
* targ
)
530 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetImageOffset
, targ
));
531 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndian32
));
535 void UnwindInfoAtom
<x86_64
>::addImageOffsetFixup(uint32_t offset
, const ld::Atom
* targ
)
537 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetImageOffset
, targ
));
538 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndian32
));
542 void UnwindInfoAtom
<arm64
>::addImageOffsetFixup(uint32_t offset
, const ld::Atom
* targ
)
544 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetImageOffset
, targ
));
545 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndian32
));
549 void UnwindInfoAtom
<arm
>::addImageOffsetFixup(uint32_t offset
, const ld::Atom
* targ
)
551 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of2
, ld::Fixup::kindSetTargetImageOffset
, targ
));
552 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of2
, ld::Fixup::kindStoreLittleEndian32
));
556 void UnwindInfoAtom
<x86
>::addImageOffsetFixupPlusAddend(uint32_t offset
, const ld::Atom
* targ
, uint32_t addend
)
558 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of3
, ld::Fixup::kindSetTargetImageOffset
, targ
));
559 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of3
, ld::Fixup::kindAddAddend
, addend
));
560 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k3of3
, ld::Fixup::kindStoreLittleEndian32
));
564 void UnwindInfoAtom
<x86_64
>::addImageOffsetFixupPlusAddend(uint32_t offset
, const ld::Atom
* targ
, uint32_t addend
)
566 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of3
, ld::Fixup::kindSetTargetImageOffset
, targ
));
567 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of3
, ld::Fixup::kindAddAddend
, addend
));
568 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k3of3
, ld::Fixup::kindStoreLittleEndian32
));
572 void UnwindInfoAtom
<arm64
>::addImageOffsetFixupPlusAddend(uint32_t offset
, const ld::Atom
* targ
, uint32_t addend
)
574 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of3
, ld::Fixup::kindSetTargetImageOffset
, targ
));
575 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of3
, ld::Fixup::kindAddAddend
, addend
));
576 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k3of3
, ld::Fixup::kindStoreLittleEndian32
));
580 void UnwindInfoAtom
<arm
>::addImageOffsetFixupPlusAddend(uint32_t offset
, const ld::Atom
* targ
, uint32_t addend
)
582 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k1of3
, ld::Fixup::kindSetTargetImageOffset
, targ
));
583 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k2of3
, ld::Fixup::kindAddAddend
, addend
));
584 _fixups
.push_back(ld::Fixup(offset
, ld::Fixup::k3of3
, ld::Fixup::kindStoreLittleEndian32
));
590 template <typename A
>
591 unsigned int UnwindInfoAtom
<A
>::makeRegularSecondLevelPage(const std::vector
<UnwindEntry
>& uniqueInfos
, uint32_t pageSize
,
592 unsigned int endIndex
, uint8_t*& pageEnd
)
594 const unsigned int maxEntriesPerPage
= (pageSize
- sizeof(unwind_info_regular_second_level_page_header
))/sizeof(unwind_info_regular_second_level_entry
);
595 const unsigned int entriesToAdd
= ((endIndex
> maxEntriesPerPage
) ? maxEntriesPerPage
: endIndex
);
596 uint8_t* pageStart
= pageEnd
597 - entriesToAdd
*sizeof(unwind_info_regular_second_level_entry
)
598 - sizeof(unwind_info_regular_second_level_page_header
);
599 macho_unwind_info_regular_second_level_page_header
<P
>* page
= (macho_unwind_info_regular_second_level_page_header
<P
>*)pageStart
;
600 page
->set_kind(UNWIND_SECOND_LEVEL_REGULAR
);
601 page
->set_entryPageOffset(sizeof(macho_unwind_info_regular_second_level_page_header
<P
>));
602 page
->set_entryCount(entriesToAdd
);
603 macho_unwind_info_regular_second_level_entry
<P
>* entryTable
= (macho_unwind_info_regular_second_level_entry
<P
>*)(pageStart
+ page
->entryPageOffset());
604 for (unsigned int i
=0; i
< entriesToAdd
; ++i
) {
605 const UnwindEntry
& info
= uniqueInfos
[endIndex
-entriesToAdd
+i
];
606 entryTable
[i
].set_functionOffset(0);
607 entryTable
[i
].set_encoding(info
.encoding
);
608 // add fixup for address part of entry
609 uint32_t offset
= (uint8_t*)(&entryTable
[i
]) - _pageAlignedPages
;
610 this->addRegularAddressFixup(offset
, info
.func
);
611 if ( encodingMeansUseDwarf(info
.encoding
) ) {
612 // add fixup for dwarf offset part of page specific encoding
613 uint32_t encOffset
= (uint8_t*)(&entryTable
[i
]) - _pageAlignedPages
;
614 this->addRegularFDEOffsetFixup(encOffset
, info
.fde
);
617 if (_s_log
) fprintf(stderr
, "regular page with %u entries\n", entriesToAdd
);
619 return endIndex
- entriesToAdd
;
623 template <typename A
>
624 unsigned int UnwindInfoAtom
<A
>::makeCompressedSecondLevelPage(const std::vector
<UnwindEntry
>& uniqueInfos
,
625 const std::map
<compact_unwind_encoding_t
,unsigned int> commonEncodings
,
626 uint32_t pageSize
, unsigned int endIndex
, uint8_t*& pageEnd
)
628 if (_s_log
) fprintf(stderr
, "makeCompressedSecondLevelPage(pageSize=%u, endIndex=%u)\n", pageSize
, endIndex
);
629 // first pass calculates how many compressed entries we could fit in this sized page
630 // keep adding entries to page until:
631 // 1) encoding table plus entry table plus header exceed page size
632 // 2) the file offset delta from the first to last function > 24 bits
633 // 3) custom encoding index reaches 255
634 // 4) run out of uniqueInfos to encode
635 std::map
<compact_unwind_encoding_t
, unsigned int> pageSpecificEncodings
;
636 uint32_t space4
= (pageSize
- sizeof(unwind_info_compressed_second_level_page_header
))/sizeof(uint32_t);
637 int index
= endIndex
-1;
639 uint64_t lastEntryAddress
= uniqueInfos
[index
].funcTentAddress
;
641 while ( canDo
&& (index
>= 0) ) {
642 const UnwindEntry
& info
= uniqueInfos
[index
--];
643 // compute encoding index
644 unsigned int encodingIndex
;
645 std::map
<compact_unwind_encoding_t
, unsigned int>::const_iterator pos
= commonEncodings
.find(info
.encoding
);
646 if ( pos
!= commonEncodings
.end() ) {
647 encodingIndex
= pos
->second
;
648 if (_s_log
) fprintf(stderr
, "makeCompressedSecondLevelPage(): funcIndex=%d, re-use commonEncodings[%d]=0x%08X\n", index
, encodingIndex
, info
.encoding
);
651 // no commmon entry, so add one on this page
652 uint32_t encoding
= info
.encoding
;
653 if ( encodingMeansUseDwarf(encoding
) ) {
654 // make unique pseudo encoding so this dwarf will gets is own encoding entry slot
655 encoding
+= (index
+1);
657 std::map
<compact_unwind_encoding_t
, unsigned int>::iterator ppos
= pageSpecificEncodings
.find(encoding
);
658 if ( ppos
!= pageSpecificEncodings
.end() ) {
659 encodingIndex
= pos
->second
;
660 if (_s_log
) fprintf(stderr
, "makeCompressedSecondLevelPage(): funcIndex=%d, re-use pageSpecificEncodings[%d]=0x%08X\n", index
, encodingIndex
, encoding
);
663 encodingIndex
= commonEncodings
.size() + pageSpecificEncodings
.size();
664 if ( encodingIndex
<= 255 ) {
665 pageSpecificEncodings
[encoding
] = encodingIndex
;
666 if (_s_log
) fprintf(stderr
, "makeCompressedSecondLevelPage(): funcIndex=%d, pageSpecificEncodings[%d]=0x%08X\n", index
, encodingIndex
, encoding
);
669 canDo
= false; // case 3)
670 if (_s_log
) fprintf(stderr
, "end of compressed page with %u entries, %lu custom encodings because too many custom encodings\n",
671 entryCount
, pageSpecificEncodings
.size());
675 // compute function offset
676 uint32_t funcOffsetWithInPage
= lastEntryAddress
- info
.funcTentAddress
;
677 if ( funcOffsetWithInPage
> 0x00FFFF00 ) {
678 // don't use 0x00FFFFFF because addresses may vary after atoms are laid out again
679 canDo
= false; // case 2)
680 if (_s_log
) fprintf(stderr
, "can't use compressed page with %u entries because function offset too big\n", entryCount
);
682 // check room for entry
683 if ( (pageSpecificEncodings
.size()+entryCount
) > space4
) {
684 canDo
= false; // case 1)
686 if (_s_log
) fprintf(stderr
, "end of compressed page with %u entries because full\n", entryCount
);
688 //if (_s_log) fprintf(stderr, "space4=%d, pageSpecificEncodings.size()=%ld, entryCount=%d\n", space4, pageSpecificEncodings.size(), entryCount);
694 // check for cases where it would be better to use a regular (non-compressed) page
695 const unsigned int compressPageUsed
= sizeof(unwind_info_compressed_second_level_page_header
)
696 + pageSpecificEncodings
.size()*sizeof(uint32_t)
697 + entryCount
*sizeof(uint32_t);
698 if ( (compressPageUsed
< (pageSize
-4) && (index
>= 0) ) ) {
699 const int regularEntriesPerPage
= (pageSize
- sizeof(unwind_info_regular_second_level_page_header
))/sizeof(unwind_info_regular_second_level_entry
);
700 if ( entryCount
< regularEntriesPerPage
) {
701 return makeRegularSecondLevelPage(uniqueInfos
, pageSize
, endIndex
, pageEnd
);
705 // check if we need any padding because adding another entry would take 8 bytes but only have room for 4
707 if ( compressPageUsed
== (pageSize
-4) )
710 // second pass fills in page
711 uint8_t* pageStart
= pageEnd
- compressPageUsed
- pad
;
712 CSLP
* page
= (CSLP
*)pageStart
;
713 page
->set_kind(UNWIND_SECOND_LEVEL_COMPRESSED
);
714 page
->set_entryPageOffset(sizeof(CSLP
));
715 page
->set_entryCount(entryCount
);
716 page
->set_encodingsPageOffset(page
->entryPageOffset()+entryCount
*sizeof(uint32_t));
717 page
->set_encodingsCount(pageSpecificEncodings
.size());
718 uint32_t* const encodingsArray
= (uint32_t*)&pageStart
[page
->encodingsPageOffset()];
719 // fill in entry table
720 uint32_t* const entiresArray
= (uint32_t*)&pageStart
[page
->entryPageOffset()];
721 const ld::Atom
* firstFunc
= uniqueInfos
[endIndex
-entryCount
].func
;
722 for(unsigned int i
=endIndex
-entryCount
; i
< endIndex
; ++i
) {
723 const UnwindEntry
& info
= uniqueInfos
[i
];
724 uint8_t encodingIndex
;
725 if ( encodingMeansUseDwarf(info
.encoding
) ) {
726 // dwarf entries are always in page specific encodings
727 assert(pageSpecificEncodings
.find(info
.encoding
+i
) != pageSpecificEncodings
.end());
728 encodingIndex
= pageSpecificEncodings
[info
.encoding
+i
];
731 std::map
<uint32_t, unsigned int>::const_iterator pos
= commonEncodings
.find(info
.encoding
);
732 if ( pos
!= commonEncodings
.end() )
733 encodingIndex
= pos
->second
;
735 encodingIndex
= pageSpecificEncodings
[info
.encoding
];
737 uint32_t entryIndex
= i
- endIndex
+ entryCount
;
738 E::set32(entiresArray
[entryIndex
], encodingIndex
<< 24);
739 // add fixup for address part of entry
740 uint32_t offset
= (uint8_t*)(&entiresArray
[entryIndex
]) - _pageAlignedPages
;
741 this->addCompressedAddressOffsetFixup(offset
, info
.func
, firstFunc
);
742 if ( encodingMeansUseDwarf(info
.encoding
) ) {
743 // add fixup for dwarf offset part of page specific encoding
744 uint32_t encOffset
= (uint8_t*)(&encodingsArray
[encodingIndex
-commonEncodings
.size()]) - _pageAlignedPages
;
745 this->addCompressedEncodingFixup(encOffset
, info
.fde
);
748 // fill in encodings table
749 for(std::map
<uint32_t, unsigned int>::const_iterator it
= pageSpecificEncodings
.begin(); it
!= pageSpecificEncodings
.end(); ++it
) {
750 E::set32(encodingsArray
[it
->second
-commonEncodings
.size()], it
->first
);
753 if (_s_log
) fprintf(stderr
, "compressed page with %u entries, %lu custom encodings\n", entryCount
, pageSpecificEncodings
.size());
757 return endIndex
-entryCount
; // endIndex for next page
763 static uint64_t calculateEHFrameSize(ld::Internal
& state
)
767 for (ld::Internal::FinalSection
* sect
: state
.sections
) {
768 if ( sect
->type() == ld::Section::typeCFI
) {
769 for (const ld::Atom
* atom
: sect
->atoms
) {
770 size
+= atom
->size();
771 if ( strcmp(atom
->name(), "CIE") != 0 )
775 // <rdar://problem/21427393> Linker generates eh_frame data even when there's only an unused CIEs in it
777 state
.sections
.erase(std::remove(state
.sections
.begin(), state
.sections
.end(), sect
), state
.sections
.end());
785 static void getAllUnwindInfos(const ld::Internal
& state
, std::vector
<UnwindEntry
>& entries
)
787 uint64_t address
= 0;
788 for (std::vector
<ld::Internal::FinalSection
*>::const_iterator sit
=state
.sections
.begin(); sit
!= state
.sections
.end(); ++sit
) {
789 ld::Internal::FinalSection
* sect
= *sit
;
790 for (std::vector
<const ld::Atom
*>::iterator ait
=sect
->atoms
.begin(); ait
!= sect
->atoms
.end(); ++ait
) {
791 const ld::Atom
* atom
= *ait
;
792 // adjust address for atom alignment
793 uint64_t alignment
= 1 << atom
->alignment().powerOf2
;
794 uint64_t currentModulus
= (address
% alignment
);
795 uint64_t requiredModulus
= atom
->alignment().modulus
;
796 if ( currentModulus
!= requiredModulus
) {
797 if ( requiredModulus
> currentModulus
)
798 address
+= requiredModulus
-currentModulus
;
800 address
+= requiredModulus
+alignment
-currentModulus
;
803 if ( atom
->beginUnwind() == atom
->endUnwind() ) {
804 // be sure to mark that we have no unwind info for stuff in the TEXT segment without unwind info
805 if ( (atom
->section().type() == ld::Section::typeCode
) && (atom
->size() !=0) ) {
806 entries
.push_back(UnwindEntry(atom
, address
, 0, NULL
, NULL
, NULL
, 0));
810 // atom has unwind info(s), add entry for each
811 const ld::Atom
* fde
= NULL
;
812 const ld::Atom
* lsda
= NULL
;
813 const ld::Atom
* personalityPointer
= NULL
;
814 for (ld::Fixup::iterator fit
= atom
->fixupsBegin(), end
=atom
->fixupsEnd(); fit
!= end
; ++fit
) {
815 switch ( fit
->kind
) {
816 case ld::Fixup::kindNoneGroupSubordinateFDE
:
817 assert(fit
->binding
== ld::Fixup::bindingDirectlyBound
);
820 case ld::Fixup::kindNoneGroupSubordinateLSDA
:
821 assert(fit
->binding
== ld::Fixup::bindingDirectlyBound
);
822 lsda
= fit
->u
.target
;
824 case ld::Fixup::kindNoneGroupSubordinatePersonality
:
825 assert(fit
->binding
== ld::Fixup::bindingDirectlyBound
);
826 personalityPointer
= fit
->u
.target
;
827 assert(personalityPointer
->section().type() == ld::Section::typeNonLazyPointer
);
834 // find CIE for this FDE
835 const ld::Atom
* cie
= NULL
;
836 for (ld::Fixup::iterator fit
= fde
->fixupsBegin(), end
=fde
->fixupsEnd(); fit
!= end
; ++fit
) {
837 if ( fit
->kind
!= ld::Fixup::kindSubtractTargetAddress
)
839 if ( fit
->binding
!= ld::Fixup::bindingDirectlyBound
)
842 // CIE is only direct subtracted target in FDE
843 assert(cie
->section().type() == ld::Section::typeCFI
);
847 // if CIE can have just one fixup - to the personality pointer
848 for (ld::Fixup::iterator fit
= cie
->fixupsBegin(), end
=cie
->fixupsEnd(); fit
!= end
; ++fit
) {
849 if ( fit
->kind
== ld::Fixup::kindSetTargetAddress
) {
850 switch ( fit
->binding
) {
851 case ld::Fixup::bindingsIndirectlyBound
:
852 personalityPointer
= state
.indirectBindingTable
[fit
->u
.bindingIndex
];
853 assert(personalityPointer
->section().type() == ld::Section::typeNonLazyPointer
);
855 case ld::Fixup::bindingDirectlyBound
:
856 personalityPointer
= fit
->u
.target
;
857 assert(personalityPointer
->section().type() == ld::Section::typeNonLazyPointer
);
866 for ( ld::Atom::UnwindInfo::iterator uit
= atom
->beginUnwind(); uit
!= atom
->endUnwind(); ++uit
) {
867 entries
.push_back(UnwindEntry(atom
, address
, uit
->startOffset
, fde
, lsda
, personalityPointer
, uit
->unwindInfo
));
870 address
+= atom
->size();
876 static void makeFinalLinkedImageCompactUnwindSection(const Options
& opts
, ld::Internal
& state
)
878 // walk every atom and gets its unwind info
879 std::vector
<UnwindEntry
> entries
;
881 getAllUnwindInfos(state
, entries
);
883 // don't generate an __unwind_info section if there is no code in this linkage unit
884 if ( entries
.size() == 0 )
887 // calculate size of __eh_frame section, so __unwind_info can go before it and page align
888 uint64_t ehFrameSize
= calculateEHFrameSize(state
);
890 // create atom that contains the whole compact unwind table
891 switch ( opts
.architecture() ) {
892 #if SUPPORT_ARCH_x86_64
893 case CPU_TYPE_X86_64
:
894 state
.addAtom(*new UnwindInfoAtom
<x86_64
>(entries
, ehFrameSize
));
897 #if SUPPORT_ARCH_i386
899 state
.addAtom(*new UnwindInfoAtom
<x86
>(entries
, ehFrameSize
));
902 #if SUPPORT_ARCH_arm64
904 state
.addAtom(*new UnwindInfoAtom
<arm64
>(entries
, ehFrameSize
));
907 #if SUPPORT_ARCH_arm_any
909 if ( opts
.armUsesZeroCostExceptions() )
910 state
.addAtom(*new UnwindInfoAtom
<arm
>(entries
, ehFrameSize
));
914 assert(0 && "no compact unwind for arch");
920 template <typename A
>
921 class CompactUnwindAtom
: public ld::Atom
{
923 CompactUnwindAtom(ld::Internal
& state
,const ld::Atom
* funcAtom
,
924 uint32_t startOffset
, uint32_t len
, uint32_t cui
);
925 ~CompactUnwindAtom() {}
927 virtual const ld::File
* file() const { return NULL
; }
928 virtual const char* name() const { return "compact unwind info"; }
929 virtual uint64_t size() const { return sizeof(macho_compact_unwind_entry
<P
>); }
930 virtual uint64_t objectAddress() const { return 0; }
931 virtual void copyRawContent(uint8_t buffer
[]) const;
932 virtual void setScope(Scope
) { }
933 virtual ld::Fixup::iterator
fixupsBegin() const { return (ld::Fixup
*)&_fixups
[0]; }
934 virtual ld::Fixup::iterator
fixupsEnd() const { return (ld::Fixup
*)&_fixups
[_fixups
.size()]; }
937 typedef typename
A::P P
;
938 typedef typename
A::P::E E
;
939 typedef typename
A::P::uint_t pint_t
;
942 const ld::Atom
* _atom
;
943 const uint32_t _startOffset
;
945 const uint32_t _compactUnwindInfo
;
946 std::vector
<ld::Fixup
> _fixups
;
948 static ld::Fixup::Kind _s_pointerKind
;
949 static ld::Fixup::Kind _s_pointerStoreKind
;
950 static ld::Section _s_section
;
954 template <typename A
>
955 ld::Section CompactUnwindAtom
<A
>::_s_section("__LD", "__compact_unwind", ld::Section::typeDebug
);
957 template <> ld::Fixup::Kind CompactUnwindAtom
<x86
>::_s_pointerKind
= ld::Fixup::kindStoreLittleEndian32
;
958 template <> ld::Fixup::Kind CompactUnwindAtom
<x86
>::_s_pointerStoreKind
= ld::Fixup::kindStoreTargetAddressLittleEndian32
;
959 template <> ld::Fixup::Kind CompactUnwindAtom
<x86_64
>::_s_pointerKind
= ld::Fixup::kindStoreLittleEndian64
;
960 template <> ld::Fixup::Kind CompactUnwindAtom
<x86_64
>::_s_pointerStoreKind
= ld::Fixup::kindStoreTargetAddressLittleEndian64
;
961 #if SUPPORT_ARCH_arm64
962 template <> ld::Fixup::Kind CompactUnwindAtom
<arm64
>::_s_pointerKind
= ld::Fixup::kindStoreLittleEndian64
;
963 template <> ld::Fixup::Kind CompactUnwindAtom
<arm64
>::_s_pointerStoreKind
= ld::Fixup::kindStoreTargetAddressLittleEndian64
;
965 template <> ld::Fixup::Kind CompactUnwindAtom
<arm
>::_s_pointerKind
= ld::Fixup::kindStoreLittleEndian32
;
966 template <> ld::Fixup::Kind CompactUnwindAtom
<arm
>::_s_pointerStoreKind
= ld::Fixup::kindStoreTargetAddressLittleEndian32
;
968 template <typename A
>
969 CompactUnwindAtom
<A
>::CompactUnwindAtom(ld::Internal
& state
,const ld::Atom
* funcAtom
, uint32_t startOffset
,
970 uint32_t len
, uint32_t cui
)
971 : ld::Atom(_s_section
, ld::Atom::definitionRegular
, ld::Atom::combineNever
,
972 ld::Atom::scopeTranslationUnit
, ld::Atom::typeUnclassified
,
973 symbolTableNotIn
, false, false, false, ld::Atom::Alignment(log2(sizeof(pint_t
)))),
974 _atom(funcAtom
), _startOffset(startOffset
), _len(len
), _compactUnwindInfo(cui
)
976 _fixups
.push_back(ld::Fixup(macho_compact_unwind_entry
<P
>::codeStartFieldOffset(), ld::Fixup::k1of3
, ld::Fixup::kindSetTargetAddress
, funcAtom
));
977 _fixups
.push_back(ld::Fixup(macho_compact_unwind_entry
<P
>::codeStartFieldOffset(), ld::Fixup::k2of3
, ld::Fixup::kindAddAddend
, _startOffset
));
978 _fixups
.push_back(ld::Fixup(macho_compact_unwind_entry
<P
>::codeStartFieldOffset(), ld::Fixup::k3of3
, _s_pointerKind
));
979 // see if atom has subordinate personality function or lsda
980 for (ld::Fixup::iterator fit
= funcAtom
->fixupsBegin(), end
=funcAtom
->fixupsEnd(); fit
!= end
; ++fit
) {
981 switch ( fit
->kind
) {
982 case ld::Fixup::kindNoneGroupSubordinatePersonality
:
983 assert(fit
->binding
== ld::Fixup::bindingsIndirectlyBound
);
984 _fixups
.push_back(ld::Fixup(macho_compact_unwind_entry
<P
>::personalityFieldOffset(), ld::Fixup::k1of1
, _s_pointerStoreKind
, state
.indirectBindingTable
[fit
->u
.bindingIndex
]));
986 case ld::Fixup::kindNoneGroupSubordinateLSDA
:
987 assert(fit
->binding
== ld::Fixup::bindingDirectlyBound
);
988 _fixups
.push_back(ld::Fixup(macho_compact_unwind_entry
<P
>::lsdaFieldOffset(), ld::Fixup::k1of1
, _s_pointerStoreKind
, fit
->u
.target
));
997 template <typename A
>
998 void CompactUnwindAtom
<A
>::copyRawContent(uint8_t buffer
[]) const
1000 macho_compact_unwind_entry
<P
>* buf
= (macho_compact_unwind_entry
<P
>*)buffer
;
1001 buf
->set_codeStart(0);
1002 buf
->set_codeLen(_len
);
1003 buf
->set_compactUnwindInfo(_compactUnwindInfo
);
1004 buf
->set_personality(0);
1009 static void makeCompactUnwindAtom(const Options
& opts
, ld::Internal
& state
, const ld::Atom
* atom
,
1010 uint32_t startOffset
, uint32_t endOffset
, uint32_t cui
)
1012 switch ( opts
.architecture() ) {
1013 #if SUPPORT_ARCH_x86_64
1014 case CPU_TYPE_X86_64
:
1015 state
.addAtom(*new CompactUnwindAtom
<x86_64
>(state
, atom
, startOffset
, endOffset
-startOffset
, cui
));
1018 #if SUPPORT_ARCH_i386
1020 state
.addAtom(*new CompactUnwindAtom
<x86
>(state
, atom
, startOffset
, endOffset
-startOffset
, cui
));
1023 #if SUPPORT_ARCH_arm64
1024 case CPU_TYPE_ARM64
:
1025 state
.addAtom(*new CompactUnwindAtom
<arm64
>(state
, atom
, startOffset
, endOffset
-startOffset
, cui
));
1029 state
.addAtom(*new CompactUnwindAtom
<arm
>(state
, atom
, startOffset
, endOffset
-startOffset
, cui
));
1034 static void makeRelocateableCompactUnwindSection(const Options
& opts
, ld::Internal
& state
)
1036 // can't add CompactUnwindAtom atoms will iterating, so pre-scan
1037 std::vector
<const ld::Atom
*> atomsWithUnwind
;
1038 for (std::vector
<ld::Internal::FinalSection
*>::const_iterator sit
=state
.sections
.begin(); sit
!= state
.sections
.end(); ++sit
) {
1039 ld::Internal::FinalSection
* sect
= *sit
;
1040 for (std::vector
<const ld::Atom
*>::iterator ait
=sect
->atoms
.begin(); ait
!= sect
->atoms
.end(); ++ait
) {
1041 const ld::Atom
* atom
= *ait
;
1042 if ( atom
->beginUnwind() != atom
->endUnwind() )
1043 atomsWithUnwind
.push_back(atom
);
1046 // make one CompactUnwindAtom for each compact unwind range in each atom
1047 for (std::vector
<const ld::Atom
*>::iterator it
= atomsWithUnwind
.begin(); it
!= atomsWithUnwind
.end(); ++it
) {
1048 const ld::Atom
* atom
= *it
;
1049 uint32_t lastOffset
= 0;
1050 uint32_t lastCUE
= 0;
1052 for (ld::Atom::UnwindInfo::iterator uit
=atom
->beginUnwind(); uit
!= atom
->endUnwind(); ++uit
) {
1054 makeCompactUnwindAtom(opts
, state
, atom
, lastOffset
, uit
->startOffset
, lastCUE
);
1056 lastOffset
= uit
->startOffset
;
1057 lastCUE
= uit
->unwindInfo
;
1060 makeCompactUnwindAtom(opts
, state
, atom
, lastOffset
, (uint32_t)atom
->size(), lastCUE
);
1065 void doPass(const Options
& opts
, ld::Internal
& state
)
1067 if ( opts
.outputKind() == Options::kObjectFile
)
1068 makeRelocateableCompactUnwindSection(opts
, state
);
1070 else if ( opts
.needsUnwindInfoSection() )
1071 makeFinalLinkedImageCompactUnwindSection(opts
, state
);
1075 } // namespace compact_unwind
1076 } // namespace passes