1 /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-
3 * Copyright (c) 2009 Apple Inc. All rights reserved.
5 * @APPLE_LICENSE_HEADER_START@
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
22 * @APPLE_LICENSE_HEADER_END@
30 #include <libkern/OSByteOrder.h>
35 #include "MachOFileAbstraction.hpp"
37 #include "branch_island.h"
41 namespace branch_island
{
46 struct TargetAndOffset
{ const ld::Atom
* atom
; uint32_t offset
; };
47 class TargetAndOffsetComparor
50 bool operator()(const TargetAndOffset
& left
, const TargetAndOffset
& right
) const
52 if ( left
.atom
!= right
.atom
)
53 return ( left
.atom
< right
.atom
);
54 return ( left
.offset
< right
.offset
);
59 static bool _s_log
= false;
60 static ld::Section
_s_text_section("__TEXT", "__text", ld::Section::typeCode
);
64 class ARMtoARMBranchIslandAtom
: public ld::Atom
{
66 ARMtoARMBranchIslandAtom(const char* nm
, const ld::Atom
* target
, TargetAndOffset finalTarget
)
67 : ld::Atom(_s_text_section
, ld::Atom::definitionRegular
, ld::Atom::combineNever
,
68 ld::Atom::scopeLinkageUnit
, ld::Atom::typeBranchIsland
,
69 ld::Atom::symbolTableIn
, false, false, false, ld::Atom::Alignment(2)),
72 _finalTarget(finalTarget
) { }
74 virtual const ld::File
* file() const { return NULL
; }
75 virtual const char* name() const { return _name
; }
76 virtual uint64_t size() const { return 4; }
77 virtual uint64_t objectAddress() const { return 0; }
78 virtual void copyRawContent(uint8_t buffer
[]) const {
79 int64_t displacement
= _target
->finalAddress() - this->finalAddress() - 8;
80 if ( _target
->contentType() == ld::Atom::typeBranchIsland
) {
81 // an ARM branch can branch farther than a thumb branch. The branch
82 // island generation was conservative and put islands every thumb
83 // branch distance apart. Check to see if this is a an island
84 // hopping branch that could be optimized to go directly to target.
85 int64_t skipToFinalDisplacement
= _finalTarget
.atom
->finalAddress() + _finalTarget
.offset
- this->finalAddress() - 8;
86 if ( (skipToFinalDisplacement
< 33554428LL) && (skipToFinalDisplacement
> (-33554432LL)) ) {
87 // can skip branch island and jump straight to target
88 if (_s_log
) fprintf(stderr
, "%s: optimized jump to final target at 0x%08llX, thisAddr=0x%08llX\n",
89 _target
->name(), _finalTarget
.atom
->finalAddress(), this->finalAddress());
90 displacement
= skipToFinalDisplacement
;
93 // ultimate target is too far, jump to island
94 if (_s_log
) fprintf(stderr
, "%s: jump to branch island at 0x%08llX\n",
95 _target
->name(), _finalTarget
.atom
->finalAddress());
98 uint32_t imm24
= (displacement
>> 2) & 0x00FFFFFF;
99 int32_t branchInstruction
= 0xEA000000 | imm24
;
100 OSWriteLittleInt32(buffer
, 0, branchInstruction
);
102 virtual void setScope(Scope
) { }
106 const ld::Atom
* _target
;
107 TargetAndOffset _finalTarget
;
112 class ARMtoThumb1BranchIslandAtom
: public ld::Atom
{
114 ARMtoThumb1BranchIslandAtom(const char* nm
, const ld::Atom
* target
, TargetAndOffset finalTarget
)
115 : ld::Atom(_s_text_section
, ld::Atom::definitionRegular
, ld::Atom::combineNever
,
116 ld::Atom::scopeLinkageUnit
, ld::Atom::typeBranchIsland
,
117 ld::Atom::symbolTableIn
, false, false, false, ld::Atom::Alignment(2)),
120 _finalTarget(finalTarget
) { }
122 virtual const ld::File
* file() const { return NULL
; }
123 virtual const char* name() const { return _name
; }
124 virtual uint64_t size() const { return 16; }
125 virtual uint64_t objectAddress() const { return 0; }
126 virtual void copyRawContent(uint8_t buffer
[]) const {
127 // There is no large displacement thumb1 branch instruction.
128 // Instead use ARM instructions that can jump to thumb.
129 // we use a 32-bit displacement, so we can directly jump to target which means no island hopping
130 int64_t displacement
= _finalTarget
.atom
->finalAddress() + _finalTarget
.offset
- (this->finalAddress() + 12);
131 if ( _finalTarget
.atom
->isThumb() )
133 if (_s_log
) fprintf(stderr
, "%s: 4 ARM instruction jump to final target at 0x%08llX\n",
134 _target
->name(), _finalTarget
.atom
->finalAddress());
135 OSWriteLittleInt32(&buffer
[ 0], 0, 0xe59fc004); // ldr ip, pc + 4
136 OSWriteLittleInt32(&buffer
[ 4], 0, 0xe08fc00c); // add ip, pc, ip
137 OSWriteLittleInt32(&buffer
[ 8], 0, 0xe12fff1c); // bx ip
138 OSWriteLittleInt32(&buffer
[12], 0, displacement
); // .long target-this
140 virtual void setScope(Scope
) { }
144 const ld::Atom
* _target
;
145 TargetAndOffset _finalTarget
;
150 class Thumb2toThumbBranchIslandAtom
: public ld::Atom
{
152 Thumb2toThumbBranchIslandAtom(const char* nm
, const ld::Atom
* target
, TargetAndOffset finalTarget
)
153 : ld::Atom(_s_text_section
, ld::Atom::definitionRegular
, ld::Atom::combineNever
,
154 ld::Atom::scopeLinkageUnit
, ld::Atom::typeBranchIsland
,
155 ld::Atom::symbolTableIn
, false, true, false, ld::Atom::Alignment(1)),
158 _finalTarget(finalTarget
) { }
160 virtual const ld::File
* file() const { return NULL
; }
161 virtual const char* name() const { return _name
; }
162 virtual uint64_t size() const { return 4; }
163 virtual uint64_t objectAddress() const { return 0; }
164 virtual void copyRawContent(uint8_t buffer
[]) const {
165 int64_t displacement
= _target
->finalAddress() - this->finalAddress() - 4;
166 if ( _target
->contentType() == ld::Atom::typeBranchIsland
) {
167 // an ARM branch can branch farther than a thumb branch. The branch
168 // island generation was conservative and put islands every thumb
169 // branch distance apart. Check to see if this is a an island
170 // hopping branch that could be optimized to go directly to target.
171 int64_t skipToFinalDisplacement
= _finalTarget
.atom
->finalAddress() + _finalTarget
.offset
- this->finalAddress() - 4;
172 if ( (skipToFinalDisplacement
< 16777214) && (skipToFinalDisplacement
> (-16777216LL)) ) {
173 // can skip branch island and jump straight to target
174 if (_s_log
) fprintf(stderr
, "%s: optimized jump to final target at 0x%08llX, thisAddr=0x%08llX\n",
175 _target
->name(), _finalTarget
.atom
->finalAddress(), this->finalAddress());
176 displacement
= skipToFinalDisplacement
;
179 // ultimate target is too far for thumb2 branch, jump to island
180 if (_s_log
) fprintf(stderr
, "%s: jump to branch island at 0x%08llX\n",
181 _target
->name(), _finalTarget
.atom
->finalAddress());
184 // The instruction is really two instructions:
185 // The lower 16 bits are the first instruction, which contains the high
186 // 11 bits of the displacement.
187 // The upper 16 bits are the second instruction, which contains the low
188 // 11 bits of the displacement, as well as differentiating bl and blx.
189 uint32_t s
= (uint32_t)(displacement
>> 24) & 0x1;
190 uint32_t i1
= (uint32_t)(displacement
>> 23) & 0x1;
191 uint32_t i2
= (uint32_t)(displacement
>> 22) & 0x1;
192 uint32_t imm10
= (uint32_t)(displacement
>> 12) & 0x3FF;
193 uint32_t imm11
= (uint32_t)(displacement
>> 1) & 0x7FF;
194 uint32_t j1
= (i1
== s
);
195 uint32_t j2
= (i2
== s
);
196 uint32_t opcode
= 0x9000F000;
197 uint32_t nextDisp
= (j1
<< 13) | (j2
<< 11) | imm11
;
198 uint32_t firstDisp
= (s
<< 10) | imm10
;
199 uint32_t newInstruction
= opcode
| (nextDisp
<< 16) | firstDisp
;
200 //warning("s=%d, j1=%d, j2=%d, imm10=0x%0X, imm11=0x%0X, opcode=0x%08X, first=0x%04X, next=0x%04X, new=0x%08X, disp=0x%llX for %s to %s\n",
201 // s, j1, j2, imm10, imm11, opcode, firstDisp, nextDisp, newInstruction, displacement, inAtom->getDisplayName(), ref->getTarget().getDisplayName());
202 OSWriteLittleInt32(buffer
, 0, newInstruction
);
204 virtual void setScope(Scope
) { }
208 const ld::Atom
* _target
;
209 TargetAndOffset _finalTarget
;
213 class NoPicARMtoThumbMBranchIslandAtom
: public ld::Atom
{
215 NoPicARMtoThumbMBranchIslandAtom(const char* nm
, const ld::Atom
* target
, TargetAndOffset finalTarget
)
216 : ld::Atom(_s_text_section
, ld::Atom::definitionRegular
, ld::Atom::combineNever
,
217 ld::Atom::scopeLinkageUnit
, ld::Atom::typeBranchIsland
,
218 ld::Atom::symbolTableIn
, false, false, false, ld::Atom::Alignment(2)),
221 _finalTarget(finalTarget
) { }
223 virtual const ld::File
* file() const { return NULL
; }
224 virtual const char* name() const { return _name
; }
225 virtual uint64_t size() const { return 8; }
226 virtual uint64_t objectAddress() const { return 0; }
227 virtual void copyRawContent(uint8_t buffer
[]) const {
228 // There is no large displacement thumb1 branch instruction.
229 // Instead use ARM instructions that can jump to thumb.
230 // we use a 32-bit displacement, so we can directly jump to final target which means no island hopping
231 uint32_t targetAddr
= _finalTarget
.atom
->finalAddress();
232 if ( _finalTarget
.atom
->isThumb() )
234 if (_s_log
) fprintf(stderr
, "%s: 2 ARM instruction jump to final target at 0x%08llX\n",
235 _target
->name(), _finalTarget
.atom
->finalAddress());
236 OSWriteLittleInt32(&buffer
[0], 0, 0xe51ff004); // ldr pc, [pc, #-4]
237 OSWriteLittleInt32(&buffer
[4], 0, targetAddr
); // .long target-this
239 virtual void setScope(Scope
) { }
243 const ld::Atom
* _target
;
244 TargetAndOffset _finalTarget
;
248 static ld::Atom
* makeBranchIsland(const Options
& opts
, ld::Fixup::Kind kind
, int islandRegion
, const ld::Atom
* nextTarget
, TargetAndOffset finalTarget
)
251 if ( finalTarget
.offset
== 0 ) {
252 if ( islandRegion
== 0 )
253 asprintf(&name
, "%s.island", finalTarget
.atom
->name());
255 asprintf(&name
, "%s.island.%d", finalTarget
.atom
->name(), islandRegion
+1);
258 asprintf(&name
, "%s_plus_%d.island.%d", finalTarget
.atom
->name(), finalTarget
.offset
, islandRegion
);
262 case ld::Fixup::kindStoreARMBranch24
:
263 case ld::Fixup::kindStoreThumbBranch22
:
264 case ld::Fixup::kindStoreTargetAddressARMBranch24
:
265 case ld::Fixup::kindStoreTargetAddressThumbBranch22
:
266 if ( finalTarget
.atom
->isThumb() ) {
267 if ( opts
.preferSubArchitecture() && opts
.archSupportsThumb2() ) {
268 return new Thumb2toThumbBranchIslandAtom(name
, nextTarget
, finalTarget
);
270 else if ( opts
.outputSlidable() ) {
271 return new ARMtoThumb1BranchIslandAtom(name
, nextTarget
, finalTarget
);
274 return new NoPicARMtoThumbMBranchIslandAtom(name
, nextTarget
, finalTarget
);
278 return new ARMtoARMBranchIslandAtom(name
, nextTarget
, finalTarget
);
282 assert(0 && "unexpected branch kind");
289 static uint64_t textSizeWhenMightNeedBranchIslands(const Options
& opts
, bool seenThumbBranch
)
291 switch ( opts
.architecture() ) {
293 if ( ! seenThumbBranch
)
294 return 32000000; // ARM can branch +/- 32MB
295 else if ( opts
.preferSubArchitecture() && opts
.archSupportsThumb2() )
296 return 16000000; // thumb2 can branch +/- 16MB
298 return 4000000; // thumb1 can branch +/- 4MB
301 assert(0 && "unexpected architecture");
302 return 0x100000000LL
;
306 static uint64_t maxDistanceBetweenIslands(const Options
& opts
, bool seenThumbBranch
)
308 switch ( opts
.architecture() ) {
310 if ( ! seenThumbBranch
)
311 return 30*1024*1024; // 2MB of branch islands per 32MB
312 else if ( opts
.preferSubArchitecture() && opts
.archSupportsThumb2() )
313 return 14*1024*1024; // 2MB of branch islands per 16MB
315 return 3500000; // 0.5MB of branch islands per 4MB
318 assert(0 && "unexpected architecture");
319 return 0x100000000LL
;
324 // PowerPC can do PC relative branches as far as +/-16MB.
325 // If a branch target is >16MB then we insert one or more
326 // "branch islands" between the branch and its target that
327 // allows island hopping to the target.
329 // Branch Island Algorithm
331 // If the __TEXT segment < 16MB, then no branch islands needed
332 // Otherwise, every 14MB into the __TEXT segment a region is
333 // added which can contain branch islands. Every out-of-range
334 // bl instruction is checked. If it crosses a region, an island
335 // is added to that region with the same target and the bl is
336 // adjusted to target the island instead.
338 // In theory, if too many islands are added to one region, it
339 // could grow the __TEXT enough that other previously in-range
340 // bl branches could be pushed out of range. We reduce the
341 // probability this could happen by placing the ranges every
342 // 14MB which means the region would have to be 2MB (512,000 islands)
343 // before any branches could be pushed out of range.
346 void doPass(const Options
& opts
, ld::Internal
& state
)
348 // only make branch islands in final linked images
349 if ( opts
.outputKind() == Options::kObjectFile
)
352 // only ARM needs branch islands
353 switch ( opts
.architecture() ) {
360 // scan to find __text section
361 ld::Internal::FinalSection
* textSection
= NULL
;
362 for (std::vector
<ld::Internal::FinalSection
*>::iterator sit
=state
.sections
.begin(); sit
!= state
.sections
.end(); ++sit
) {
363 ld::Internal::FinalSection
* sect
= *sit
;
364 if ( strcmp(sect
->sectionName(), "__text") == 0 )
367 if ( textSection
== NULL
)
370 // assign section offsets to each atom in __text section, watch for thumb branches, and find total size
371 const bool isARM
= (opts
.architecture() == CPU_TYPE_ARM
);
372 bool hasThumbBranches
= false;
374 for (std::vector
<const ld::Atom
*>::iterator ait
=textSection
->atoms
.begin(); ait
!= textSection
->atoms
.end(); ++ait
) {
375 const ld::Atom
* atom
= *ait
;
376 // check for thumb branches
377 if ( isARM
&& ~hasThumbBranches
) {
378 for (ld::Fixup::iterator fit
= atom
->fixupsBegin(), end
=atom
->fixupsEnd(); fit
!= end
; ++fit
) {
379 switch ( fit
->kind
) {
380 case ld::Fixup::kindStoreThumbBranch22
:
381 case ld::Fixup::kindStoreTargetAddressThumbBranch22
:
382 hasThumbBranches
= true;
390 ld::Atom::Alignment atomAlign
= atom
->alignment();
391 uint64_t atomAlignP2
= (1 << atomAlign
.powerOf2
);
392 uint64_t currentModulus
= (offset
% atomAlignP2
);
393 if ( currentModulus
!= atomAlign
.modulus
) {
394 if ( atomAlign
.modulus
> currentModulus
)
395 offset
+= atomAlign
.modulus
-currentModulus
;
397 offset
+= atomAlign
.modulus
+atomAlignP2
-currentModulus
;
399 (const_cast<ld::Atom
*>(atom
))->setSectionOffset(offset
);
400 offset
+= atom
->size();
402 uint64_t totalTextSize
= offset
;
403 if ( totalTextSize
< textSizeWhenMightNeedBranchIslands(opts
, hasThumbBranches
) )
405 if (_s_log
) fprintf(stderr
, "ld: __text section size=%llu, might need branch islands\n", totalTextSize
);
407 // Figure out how many regions of branch islands will be needed, and their locations.
408 // Construct a vector containing the atoms after which branch islands will be inserted,
409 // taking into account follow on fixups. No atom run without an island can exceed kBetweenRegions.
410 const uint64_t kBetweenRegions
= maxDistanceBetweenIslands(opts
, hasThumbBranches
); // place regions of islands every 14MB in __text section
411 std::vector
<const ld::Atom
*> branchIslandInsertionPoints
; // atoms in the atom list after which branch islands will be inserted
412 uint64_t previousIslandEndAddr
= 0;
413 const ld::Atom
*insertionPoint
;
414 branchIslandInsertionPoints
.reserve(totalTextSize
/kBetweenRegions
*2);
415 for (std::vector
<const ld::Atom
*>::iterator it
=textSection
->atoms
.begin(); it
!= textSection
->atoms
.end(); it
++) {
416 const ld::Atom
* atom
= *it
;
417 // if we move past the next atom, will the run length exceed kBetweenRegions?
418 if ( atom
->sectionOffset() + atom
->size() - previousIslandEndAddr
> kBetweenRegions
) {
419 // yes. Add the last known good location (atom) for inserting a branch island.
420 if ( insertionPoint
== NULL
)
421 throwf("Unable to insert branch island. No insertion point available.");
422 branchIslandInsertionPoints
.push_back(insertionPoint
);
423 previousIslandEndAddr
= insertionPoint
->sectionOffset()+insertionPoint
->size();
424 insertionPoint
= NULL
;
426 // Can we insert an island after this atom? If so then keep track of it.
427 if ( !atom
->hasFixupsOfKind(ld::Fixup::kindNoneFollowOn
) )
428 insertionPoint
= atom
;
430 // add one more island after the last atom
431 if (insertionPoint
!= NULL
)
432 branchIslandInsertionPoints
.push_back(insertionPoint
);
433 const int kIslandRegionsCount
= branchIslandInsertionPoints
.size();
435 fprintf(stderr
, "ld: will use %u branch island regions\n", kIslandRegionsCount
);
436 for (std::vector
<const ld::Atom
*>::iterator it
= branchIslandInsertionPoints
.begin(); it
!= branchIslandInsertionPoints
.end(); ++it
) {
437 const ld::Atom
* atom
= *it
;
438 const ld::File
*file
= atom
->file();
439 fprintf(stderr
, "ld: branch island will be inserted at 0x%llx after %s", atom
->sectionOffset()+atom
->size(), atom
->name());
440 if (file
) fprintf(stderr
, " (%s)", atom
->file()->path());
441 fprintf(stderr
, "\n");
446 typedef std::map
<TargetAndOffset
,const ld::Atom
*, TargetAndOffsetComparor
> AtomToIsland
;
447 AtomToIsland
* regionsMap
[kIslandRegionsCount
];
448 std::vector
<const ld::Atom
*>* regionsIslands
[kIslandRegionsCount
];
449 for(int i
=0; i
< kIslandRegionsCount
; ++i
) {
450 regionsMap
[i
] = new AtomToIsland();
451 regionsIslands
[i
] = new std::vector
<const ld::Atom
*>();
453 unsigned int islandCount
= 0;
455 // create islands for branches in __text that are out of range
456 for (std::vector
<const ld::Atom
*>::iterator ait
=textSection
->atoms
.begin(); ait
!= textSection
->atoms
.end(); ++ait
) {
457 const ld::Atom
* atom
= *ait
;
458 const ld::Atom
* target
= NULL
;
460 ld::Fixup
* fixupWithTarget
= NULL
;
461 for (ld::Fixup::iterator fit
= atom
->fixupsBegin(), end
=atom
->fixupsEnd(); fit
!= end
; ++fit
) {
462 if ( fit
->firstInCluster() ) {
464 fixupWithTarget
= NULL
;
467 switch ( fit
->binding
) {
468 case ld::Fixup::bindingNone
:
469 case ld::Fixup::bindingByNameUnbound
:
471 case ld::Fixup::bindingByContentBound
:
472 case ld::Fixup::bindingDirectlyBound
:
473 target
= fit
->u
.target
;
474 fixupWithTarget
= fit
;
476 case ld::Fixup::bindingsIndirectlyBound
:
477 target
= state
.indirectBindingTable
[fit
->u
.bindingIndex
];
478 fixupWithTarget
= fit
;
481 bool haveBranch
= false;
483 case ld::Fixup::kindAddAddend
:
484 addend
= fit
->u
.addend
;
486 case ld::Fixup::kindStoreARMBranch24
:
487 case ld::Fixup::kindStoreThumbBranch22
:
488 case ld::Fixup::kindStoreTargetAddressARMBranch24
:
489 case ld::Fixup::kindStoreTargetAddressThumbBranch22
:
496 int64_t srcAddr
= atom
->sectionOffset() + fit
->offsetInAtom
;
497 int64_t dstAddr
= target
->sectionOffset() + addend
;
498 if ( target
->section().type() == ld::Section::typeStub
)
499 dstAddr
= totalTextSize
;
500 int64_t displacement
= dstAddr
- srcAddr
;
501 TargetAndOffset finalTargetAndOffset
= { target
, addend
};
502 const int64_t kBranchLimit
= kBetweenRegions
;
503 if ( displacement
> kBranchLimit
) {
504 // create forward branch chain
505 const ld::Atom
* nextTarget
= target
;
506 for (int i
=kIslandRegionsCount
-1; i
>=0 ; --i
) {
507 AtomToIsland
* region
= regionsMap
[i
];
508 int64_t islandRegionAddr
= kBetweenRegions
* (i
+1);
509 if ( (srcAddr
< islandRegionAddr
) && (islandRegionAddr
<= dstAddr
) ) {
510 AtomToIsland::iterator pos
= region
->find(finalTargetAndOffset
);
511 if ( pos
== region
->end() ) {
512 ld::Atom
* island
= makeBranchIsland(opts
, fit
->kind
, i
, nextTarget
, finalTargetAndOffset
);
513 (*region
)[finalTargetAndOffset
] = island
;
514 if (_s_log
) fprintf(stderr
, "added island %s to region %d for %s\n", island
->name(), i
, atom
->name());
515 regionsIslands
[i
]->push_back(island
);
520 nextTarget
= pos
->second
;
524 if (_s_log
) fprintf(stderr
, "using island %s for branch to %s from %s\n", nextTarget
->name(), target
->name(), atom
->name());
525 fixupWithTarget
->u
.target
= nextTarget
;
526 fixupWithTarget
->binding
= ld::Fixup::bindingDirectlyBound
;
528 else if ( displacement
< (-kBranchLimit
) ) {
529 // create back branching chain
530 const ld::Atom
* prevTarget
= target
;
531 for (int i
=0; i
< kIslandRegionsCount
; ++i
) {
532 AtomToIsland
* region
= regionsMap
[i
];
533 int64_t islandRegionAddr
= kBetweenRegions
* (i
+1);
534 if ( (dstAddr
<= islandRegionAddr
) && (islandRegionAddr
< srcAddr
) ) {
535 AtomToIsland::iterator pos
= region
->find(finalTargetAndOffset
);
536 if ( pos
== region
->end() ) {
537 ld::Atom
* island
= makeBranchIsland(opts
, fit
->kind
, i
, prevTarget
, finalTargetAndOffset
);
538 (*region
)[finalTargetAndOffset
] = island
;
539 if (_s_log
) fprintf(stderr
, "added back island %s to region %d for %s\n", island
->name(), i
, atom
->name());
540 regionsIslands
[i
]->push_back(island
);
545 prevTarget
= pos
->second
;
549 if (_s_log
) fprintf(stderr
, "using back island %s for %s\n", prevTarget
->name(), atom
->name());
550 fixupWithTarget
->u
.target
= prevTarget
;
551 fixupWithTarget
->binding
= ld::Fixup::bindingDirectlyBound
;
558 // insert islands into __text section and adjust section offsets
559 if ( islandCount
> 0 ) {
560 if ( _s_log
) fprintf(stderr
, "ld: %u branch islands required in %u regions\n", islandCount
, kIslandRegionsCount
);
561 std::vector
<const ld::Atom
*> newAtomList
;
562 newAtomList
.reserve(textSection
->atoms
.size()+islandCount
);
564 uint64_t regionIndex
= 0;
565 for (std::vector
<const ld::Atom
*>::iterator ait
=textSection
->atoms
.begin(); ait
!= textSection
->atoms
.end(); ait
++) {
566 newAtomList
.push_back(*ait
);
567 // copy over atoms until we find an island insertion point
568 // Note that the last insertion point is the last atom, so this loop never moves the iterator to atoms.end().
569 while (*ait
!= branchIslandInsertionPoints
[regionIndex
]) {
571 newAtomList
.push_back(*ait
);
574 // insert the branch island atoms after the insertion point atom
575 std::vector
<const ld::Atom
*>* regionIslands
= regionsIslands
[regionIndex
];
576 for (std::vector
<const ld::Atom
*>::iterator rit
=regionIslands
->begin(); rit
!= regionIslands
->end(); rit
++) {
577 const ld::Atom
* islandAtom
= *rit
;
578 newAtomList
.push_back(islandAtom
);
579 if ( _s_log
) fprintf(stderr
, "inserting island %s into __text section\n", islandAtom
->name());
583 // swap in new list of atoms for __text section
584 textSection
->atoms
.clear();
585 textSection
->atoms
= newAtomList
;
591 } // namespace branch_island
592 } // namespace passes