]> git.saurik.com Git - apple/ld64.git/blob - src/ld/SymbolTable.cpp
2ea690fa2eb1aea3dd2387f00dc404f0e5858ccb
[apple/ld64.git] / src / ld / SymbolTable.cpp
1 /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-*
2 *
3 * Copyright (c) 2009-2010 Apple Inc. All rights reserved.
4 *
5 * @APPLE_LICENSE_HEADER_START@
6 *
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
12 * file.
13 *
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
21 *
22 * @APPLE_LICENSE_HEADER_END@
23 */
24
25
26 #include <stdlib.h>
27 #include <sys/types.h>
28 #include <sys/stat.h>
29 #include <sys/mman.h>
30 #include <sys/sysctl.h>
31 #include <fcntl.h>
32 #include <errno.h>
33 #include <limits.h>
34 #include <unistd.h>
35 #include <assert.h>
36
37 #include <iostream>
38 #include <sstream>
39 #include <string>
40 #include <map>
41 #include <set>
42 #include <vector>
43 #include <algorithm>
44
45 #include "Options.h"
46
47 #include "ld.hpp"
48 #include "InputFiles.h"
49 #include "SymbolTable.h"
50
51
52
53 namespace ld {
54 namespace tool {
55
56
57 // HACK, I can't find a way to pass values in the compare classes (e.g. ContentFuncs)
58 // so use global variable to pass info.
59 static ld::IndirectBindingTable* _s_indirectBindingTable = NULL;
60
61
62 SymbolTable::SymbolTable(const Options& opts, std::vector<const ld::Atom*>& ibt)
63 : _options(opts), _cstringTable(6151), _indirectBindingTable(ibt), _hasExternalTentativeDefinitions(false)
64 {
65 _s_indirectBindingTable = this;
66 }
67
68
69 size_t SymbolTable::ContentFuncs::operator()(const ld::Atom* atom) const
70 {
71 return atom->contentHash(*_s_indirectBindingTable);
72 }
73
74 bool SymbolTable::ContentFuncs::operator()(const ld::Atom* left, const ld::Atom* right) const
75 {
76 return (memcmp(left->rawContentPointer(), right->rawContentPointer(), left->size()) == 0);
77 }
78
79
80
81 size_t SymbolTable::CStringHashFuncs::operator()(const ld::Atom* atom) const
82 {
83 return atom->contentHash(*_s_indirectBindingTable);
84 }
85
86 bool SymbolTable::CStringHashFuncs::operator()(const ld::Atom* left, const ld::Atom* right) const
87 {
88 return (strcmp((char*)left->rawContentPointer(), (char*)right->rawContentPointer()) == 0);
89 }
90
91
92 size_t SymbolTable::UTF16StringHashFuncs::operator()(const ld::Atom* atom) const
93 {
94 return atom->contentHash(*_s_indirectBindingTable);
95 }
96
97 bool SymbolTable::UTF16StringHashFuncs::operator()(const ld::Atom* left, const ld::Atom* right) const
98 {
99 if ( left == right )
100 return true;
101 const void* leftContent = left->rawContentPointer();
102 const void* rightContent = right->rawContentPointer();
103 unsigned int amount = left->size()-2;
104 bool result = (memcmp(leftContent, rightContent, amount) == 0);
105 return result;
106 }
107
108
109 size_t SymbolTable::ReferencesHashFuncs::operator()(const ld::Atom* atom) const
110 {
111 return atom->contentHash(*_s_indirectBindingTable);
112 }
113
114 bool SymbolTable::ReferencesHashFuncs::operator()(const ld::Atom* left, const ld::Atom* right) const
115 {
116 return left->canCoalesceWith(*right, *_s_indirectBindingTable);
117 }
118
119
120 void SymbolTable::addDuplicateSymbol(const char *name, const ld::Atom *atom)
121 {
122 // Look up or create the file list for name.
123 DuplicateSymbols::iterator symbolsIterator = _duplicateSymbols.find(name);
124 DuplicatedSymbolAtomList *atoms = NULL;
125 if (symbolsIterator != _duplicateSymbols.end()) {
126 atoms = symbolsIterator->second;
127 } else {
128 atoms = new std::vector<const ld::Atom *>;
129 _duplicateSymbols.insert(std::pair<const char *, DuplicatedSymbolAtomList *>(name, atoms));
130 }
131
132 // check if file is already in the list, add it if not
133 bool found = false;
134 for (DuplicatedSymbolAtomList::iterator it = atoms->begin(); !found && it != atoms->end(); it++)
135 if (strcmp((*it)->file()->path(), atom->file()->path()) == 0)
136 found = true;
137 if (!found)
138 atoms->push_back(atom);
139 }
140
141 void SymbolTable::checkDuplicateSymbols() const
142 {
143 bool foundDuplicate = false;
144 for (DuplicateSymbols::const_iterator symbolIt = _duplicateSymbols.begin(); symbolIt != _duplicateSymbols.end(); symbolIt++) {
145 DuplicatedSymbolAtomList *atoms = symbolIt->second;
146 bool reportDuplicate;
147 if (_options.deadCodeStrip()) {
148 // search for a live atom
149 reportDuplicate = false;
150 for (DuplicatedSymbolAtomList::iterator it = atoms->begin(); !reportDuplicate && it != atoms->end(); it++) {
151 if ((*it)->live())
152 reportDuplicate = true;
153 }
154 } else {
155 reportDuplicate = true;
156 }
157 if (reportDuplicate) {
158 foundDuplicate = true;
159 fprintf(stderr, "duplicate symbol %s in:\n", symbolIt->first);
160 for (DuplicatedSymbolAtomList::iterator atomIt = atoms->begin(); atomIt != atoms->end(); atomIt++) {
161 fprintf(stderr, " %s\n", (*atomIt)->file()->path());
162 }
163 }
164 }
165 if (foundDuplicate)
166 throwf("%d duplicate symbol%s", (int)_duplicateSymbols.size(), _duplicateSymbols.size()==1?"":"s");
167 }
168
169 // AtomPicker encapsulates the logic for picking which atom to use when adding an atom by name results in a collision
170 class NameCollisionResolution {
171 public:
172 NameCollisionResolution(const ld::Atom& a, const ld::Atom& b, bool ignoreDuplicates, const Options& options) : _atomA(a), _atomB(b), _options(options), _reportDuplicate(false), _ignoreDuplicates(ignoreDuplicates) {
173 pickAtom();
174 }
175
176 // Returns which atom to use
177 const ld::Atom& chosen() { return *_chosen; }
178 bool choseAtom(const ld::Atom& atom) { return _chosen == &atom; }
179
180 // Returns true if the two atoms should be reported as a duplicate symbol
181 bool reportDuplicate() { return _reportDuplicate; }
182
183 private:
184 const ld::Atom& _atomA;
185 const ld::Atom& _atomB;
186 const Options& _options;
187 const ld::Atom* _chosen;
188 bool _reportDuplicate;
189 bool _ignoreDuplicates;
190
191 void pickAtom(const ld::Atom& atom) { _chosen = &atom; } // primitive to set which atom is picked
192 void pickAtomA() { pickAtom(_atomA); } // primitive to pick atom A
193 void pickAtomB() { pickAtom(_atomB); } // primitive to pick atom B
194
195 // use atom A if pickA, otherwise use atom B
196 void pickAOrB(bool pickA) { if (pickA) pickAtomA(); else pickAtomB(); }
197
198 void pickHigherOrdinal() {
199 pickAOrB(_atomA.file()->ordinal() < _atomB.file()->ordinal());
200 }
201
202 void pickLowerOrdinal() {
203 pickAOrB(_atomA.file()->ordinal() > _atomB.file()->ordinal());
204 }
205
206 void pickLargerSize() {
207 if (_atomA.size() == _atomB.size())
208 pickLowerOrdinal();
209 else
210 pickAOrB(_atomA.size() > _atomB.size());
211 }
212
213 void pickGreaterAlignment() {
214 pickAOrB(_atomA.alignment().trailingZeros() > _atomB.alignment().trailingZeros());
215 }
216
217 void pickBetweenRegularAtoms() {
218 if ( _atomA.combine() == ld::Atom::combineByName ) {
219 if ( _atomB.combine() == ld::Atom::combineByName ) {
220 // <rdar://problem/9183821> always choose mach-o over llvm bit code, otherwise LTO may eliminate the llvm atom
221 const bool aIsLTO = (_atomA.contentType() == ld::Atom::typeLTOtemporary);
222 const bool bIsLTO = (_atomB.contentType() == ld::Atom::typeLTOtemporary);
223 // <rdar://problem/9183821> always choose mach-o over llvm bit code, otherwise LTO may eliminate the llvm atom
224 if ( aIsLTO != bIsLTO ) {
225 pickAOrB(!aIsLTO);
226 }
227 else {
228 // both weak, prefer non-auto-hide one
229 if ( _atomA.autoHide() != _atomB.autoHide() ) {
230 // <rdar://problem/6783167> support auto hidden weak symbols: .weak_def_can_be_hidden
231 pickAOrB(!_atomA.autoHide());
232 }
233 else if ( _atomA.autoHide() && _atomB.autoHide() ) {
234 // both have auto-hide, so use one with greater alignment
235 pickGreaterAlignment();
236 }
237 else {
238 // neither auto-hide, check visibility
239 if ( _atomA.scope() != _atomB.scope() ) {
240 // <rdar://problem/8304984> use more visible weak def symbol
241 pickAOrB(_atomA.scope() == ld::Atom::scopeGlobal);
242 }
243 else {
244 // both have same visibility, use one with greater alignment
245 pickGreaterAlignment();
246 }
247 }
248 }
249 }
250 else {
251 pickAtomB(); // pick not-weak
252
253 }
254 }
255 else {
256 if ( _atomB.combine() == ld::Atom::combineByName ) {
257 pickAtomA(); // pick not-weak
258
259 }
260 else {
261 // both are not-weak
262 if ( _atomA.section().type() == ld::Section::typeMachHeader ) {
263 pickAtomA();
264 }
265 else if ( _atomB.section().type() == ld::Section::typeMachHeader ) {
266 pickAtomB();
267 }
268 else {
269 if ( _ignoreDuplicates ) {
270 pickLowerOrdinal();
271 }
272 else {
273 _reportDuplicate = true;
274 }
275 }
276 }
277 }
278 }
279
280 void pickCommonsMode(const ld::Atom& dylib, const ld::Atom& proxy) {
281 assert(dylib.definition() == ld::Atom::definitionTentative);
282 assert(proxy.definition() == ld::Atom::definitionProxy);
283 switch ( _options.commonsMode() ) {
284 case Options::kCommonsIgnoreDylibs:
285 if ( _options.warnCommons() )
286 warning("using common symbol %s from %s and ignoring defintion from dylib %s",
287 proxy.name(), proxy.file()->path(), dylib.file()->path());
288 pickAtom(dylib);
289 break;
290 case Options::kCommonsOverriddenByDylibs:
291 if ( _options.warnCommons() )
292 warning("replacing common symbol %s from %s with true definition from dylib %s",
293 proxy.name(), proxy.file()->path(), dylib.file()->path());
294 pickAtom(proxy);
295 break;
296 case Options::kCommonsConflictsDylibsError:
297 throwf("common symbol %s from %s conflicts with defintion from dylib %s",
298 proxy.name(), proxy.file()->path(), dylib.file()->path());
299 }
300 }
301
302 void pickProxyAtom() {
303 // both atoms are definitionProxy
304 // <rdar://problem/5137732> ld should keep looking when it finds a weak definition in a dylib
305 if ( _atomA.combine() == ld::Atom::combineByName ) {
306 pickAtomB();
307 } else if ( _atomB.combine() == ld::Atom::combineByName ) {
308 pickAtomA();
309 } else {
310 throwf("symbol %s exported from both %s and %s\n", _atomA.name(), _atomA.file()->path(), _atomB.file()->path());
311 }
312 }
313
314 void pickAtom() {
315 // First, discriminate by definition
316 switch (_atomA.definition()) {
317 case ld::Atom::definitionRegular:
318 switch (_atomB.definition()) {
319 case ld::Atom::definitionRegular:
320 pickBetweenRegularAtoms();
321 break;
322 case ld::Atom::definitionTentative:
323 pickAtomA();
324 break;
325 case ld::Atom::definitionAbsolute:
326 _reportDuplicate = true;
327 pickHigherOrdinal();
328 break;
329 case ld::Atom::definitionProxy:
330 pickAtomA();
331 break;
332 }
333 break;
334 case ld::Atom::definitionTentative:
335 switch (_atomB.definition()) {
336 case ld::Atom::definitionRegular:
337 pickAtomB();
338 break;
339 case ld::Atom::definitionTentative:
340 pickLargerSize();
341 break;
342 case ld::Atom::definitionAbsolute:
343 pickHigherOrdinal();
344 break;
345 case ld::Atom::definitionProxy:
346 pickCommonsMode(_atomA, _atomB);
347 break;
348 }
349 break;
350 case ld::Atom::definitionAbsolute:
351 switch (_atomB.definition()) {
352 case ld::Atom::definitionRegular:
353 _reportDuplicate = true;
354 pickHigherOrdinal();
355 break;
356 case ld::Atom::definitionTentative:
357 pickAtomA();
358 break;
359 case ld::Atom::definitionAbsolute:
360 _reportDuplicate = true;
361 pickHigherOrdinal();
362 break;
363 case ld::Atom::definitionProxy:
364 pickAtomA();
365 break;
366 }
367 break;
368 case ld::Atom::definitionProxy:
369 switch (_atomB.definition()) {
370 case ld::Atom::definitionRegular:
371 pickAtomB();
372 break;
373 case ld::Atom::definitionTentative:
374 pickCommonsMode(_atomB, _atomA);
375 break;
376 case ld::Atom::definitionAbsolute:
377 pickAtomB();
378 break;
379 case ld::Atom::definitionProxy:
380 pickProxyAtom();
381 break;
382 }
383 break;
384 }
385 }
386 };
387
388 bool SymbolTable::addByName(const ld::Atom& newAtom, bool ignoreDuplicates)
389 {
390 bool useNew = true;
391 assert(newAtom.name() != NULL);
392 const char* name = newAtom.name();
393 IndirectBindingSlot slot = this->findSlotForName(name);
394 const ld::Atom* existingAtom = _indirectBindingTable[slot];
395 //fprintf(stderr, "addByName(%p) name=%s, slot=%u, existing=%p\n", &newAtom, newAtom.name(), slot, existingAtom);
396 if ( existingAtom != NULL ) {
397 assert(&newAtom != existingAtom);
398 NameCollisionResolution picker(newAtom, *existingAtom, ignoreDuplicates, _options);
399 if (picker.reportDuplicate()) {
400 addDuplicateSymbol(name, existingAtom);
401 addDuplicateSymbol(name, &newAtom);
402 }
403 useNew = picker.choseAtom(newAtom);
404 }
405 if ( useNew ) {
406 _indirectBindingTable[slot] = &newAtom;
407 if ( existingAtom != NULL ) {
408 markCoalescedAway(existingAtom);
409 }
410 if ( newAtom.scope() == ld::Atom::scopeGlobal ) {
411 if ( newAtom.definition() == ld::Atom::definitionTentative ) {
412 _hasExternalTentativeDefinitions = true;
413 }
414 }
415 }
416 else {
417 markCoalescedAway(&newAtom);
418 }
419 // return if existing atom in symbol table was replaced
420 return useNew && (existingAtom != NULL);
421 }
422
423
424 bool SymbolTable::addByContent(const ld::Atom& newAtom)
425 {
426 bool useNew = true;
427 const ld::Atom* existingAtom;
428 IndirectBindingSlot slot = this->findSlotForContent(&newAtom, &existingAtom);
429 //fprintf(stderr, "addByContent(%p) name=%s, slot=%u, existing=%p\n", &newAtom, newAtom.name(), slot, existingAtom);
430 if ( existingAtom != NULL ) {
431 // use existing unless new one has greater alignment requirements
432 useNew = ( newAtom.alignment().trailingZeros() > existingAtom->alignment().trailingZeros() );
433 }
434 if ( useNew ) {
435 _indirectBindingTable[slot] = &newAtom;
436 if ( existingAtom != NULL )
437 markCoalescedAway(existingAtom);
438 }
439 else {
440 _indirectBindingTable[slot] = existingAtom;
441 if ( existingAtom != &newAtom )
442 markCoalescedAway(&newAtom);
443 }
444 // return if existing atom in symbol table was replaced
445 return useNew && (existingAtom != NULL);
446 }
447
448 bool SymbolTable::addByReferences(const ld::Atom& newAtom)
449 {
450 bool useNew = true;
451 const ld::Atom* existingAtom;
452 IndirectBindingSlot slot = this->findSlotForReferences(&newAtom, &existingAtom);
453 //fprintf(stderr, "addByReferences(%p) name=%s, slot=%u, existing=%p\n", &newAtom, newAtom.name(), slot, existingAtom);
454 if ( existingAtom != NULL ) {
455 // use existing unless new one has greater alignment requirements
456 useNew = ( newAtom.alignment().trailingZeros() > existingAtom->alignment().trailingZeros() );
457 }
458 if ( useNew ) {
459 _indirectBindingTable[slot] = &newAtom;
460 if ( existingAtom != NULL )
461 markCoalescedAway(existingAtom);
462 }
463 else {
464 if ( existingAtom != &newAtom )
465 markCoalescedAway(&newAtom);
466 }
467 // return if existing atom in symbol table was replaced
468 return useNew && (existingAtom != NULL);
469 }
470
471
472 bool SymbolTable::add(const ld::Atom& atom, bool ignoreDuplicates)
473 {
474 //fprintf(stderr, "SymbolTable::add(%p), name=%s\n", &atom, atom.name());
475 assert(atom.scope() != ld::Atom::scopeTranslationUnit);
476 switch ( atom.combine() ) {
477 case ld::Atom::combineNever:
478 case ld::Atom::combineByName:
479 return this->addByName(atom, ignoreDuplicates);
480 break;
481 case ld::Atom::combineByNameAndContent:
482 return this->addByContent(atom);
483 break;
484 case ld::Atom::combineByNameAndReferences:
485 return this->addByReferences(atom);
486 break;
487 }
488
489 return false;
490 }
491
492 void SymbolTable::markCoalescedAway(const ld::Atom* atom)
493 {
494 // remove this from list of all atoms used
495 //fprintf(stderr, "markCoalescedAway(%p) from %s\n", atom, atom->file()->path());
496 (const_cast<ld::Atom*>(atom))->setCoalescedAway();
497
498 //
499 // The fixupNoneGroupSubordinate* fixup kind is used to model group comdat.
500 // The "signature" atom in the group has a fixupNoneGroupSubordinate* fixup to
501 // all other members of the group. So, if the signature atom is
502 // coalesced away, all other atoms in the group should also be removed.
503 //
504 for (ld::Fixup::iterator fit=atom->fixupsBegin(), fend=atom->fixupsEnd(); fit != fend; ++fit) {
505 switch ( fit->kind ) {
506 case ld::Fixup::kindNoneGroupSubordinate:
507 case ld::Fixup::kindNoneGroupSubordinateFDE:
508 case ld::Fixup::kindNoneGroupSubordinateLSDA:
509 assert(fit->binding == ld::Fixup::bindingDirectlyBound);
510 this->markCoalescedAway(fit->u.target);
511 break;
512 default:
513 break;
514 }
515 }
516
517 }
518
519
520 struct StrcmpSorter {
521 bool operator() (const char* i,const char* j) {
522 if (i==NULL)
523 return true;
524 if (j==NULL)
525 return false;
526 return strcmp(i, j)<0;}
527 };
528
529 void SymbolTable::undefines(std::vector<const char*>& undefs)
530 {
531 // return all names in _byNameTable that have no associated atom
532 for (NameToSlot::iterator it=_byNameTable.begin(); it != _byNameTable.end(); ++it) {
533 //fprintf(stderr, " _byNameTable[%s] = slot %d which has atom %p\n", it->first, it->second, _indirectBindingTable[it->second]);
534 if ( _indirectBindingTable[it->second] == NULL )
535 undefs.push_back(it->first);
536 }
537 // sort so that undefines are in a stable order (not dependent on hashing functions)
538 struct StrcmpSorter strcmpSorter;
539 std::sort(undefs.begin(), undefs.end(), strcmpSorter);
540 }
541
542
543 void SymbolTable::tentativeDefs(std::vector<const char*>& tents)
544 {
545 // return all names in _byNameTable that have no associated atom
546 for (NameToSlot::iterator it=_byNameTable.begin(); it != _byNameTable.end(); ++it) {
547 const char* name = it->first;
548 const ld::Atom* atom = _indirectBindingTable[it->second];
549 if ( (atom != NULL) && (atom->definition() == ld::Atom::definitionTentative) )
550 tents.push_back(name);
551 }
552 std::sort(tents.begin(), tents.end());
553 }
554
555
556 bool SymbolTable::hasName(const char* name)
557 {
558 NameToSlot::iterator pos = _byNameTable.find(name);
559 if ( pos == _byNameTable.end() )
560 return false;
561 return (_indirectBindingTable[pos->second] != NULL);
562 }
563
564 // find existing or create new slot
565 SymbolTable::IndirectBindingSlot SymbolTable::findSlotForName(const char* name)
566 {
567 NameToSlot::iterator pos = _byNameTable.find(name);
568 if ( pos != _byNameTable.end() )
569 return pos->second;
570 // create new slot for this name
571 SymbolTable::IndirectBindingSlot slot = _indirectBindingTable.size();
572 _indirectBindingTable.push_back(NULL);
573 _byNameTable[name] = slot;
574 _byNameReverseTable[slot] = name;
575 return slot;
576 }
577
578
579 // find existing or create new slot
580 SymbolTable::IndirectBindingSlot SymbolTable::findSlotForContent(const ld::Atom* atom, const ld::Atom** existingAtom)
581 {
582 //fprintf(stderr, "findSlotForContent(%p)\n", atom);
583 SymbolTable::IndirectBindingSlot slot = 0;
584 UTF16StringToSlot::iterator upos;
585 CStringToSlot::iterator cspos;
586 ContentToSlot::iterator pos;
587 switch ( atom->section().type() ) {
588 case ld::Section::typeCString:
589 cspos = _cstringTable.find(atom);
590 if ( cspos != _cstringTable.end() ) {
591 *existingAtom = _indirectBindingTable[cspos->second];
592 return cspos->second;
593 }
594 slot = _indirectBindingTable.size();
595 _cstringTable[atom] = slot;
596 break;
597 case ld::Section::typeNonStdCString:
598 {
599 // use seg/sect name is key to map to avoid coalescing across segments and sections
600 char segsect[64];
601 sprintf(segsect, "%s/%s", atom->section().segmentName(), atom->section().sectionName());
602 NameToMap::iterator mpos = _nonStdCStringSectionToMap.find(segsect);
603 CStringToSlot* map = NULL;
604 if ( mpos == _nonStdCStringSectionToMap.end() ) {
605 map = new CStringToSlot();
606 _nonStdCStringSectionToMap[strdup(segsect)] = map;
607 }
608 else {
609 map = mpos->second;
610 }
611 cspos = map->find(atom);
612 if ( cspos != map->end() ) {
613 *existingAtom = _indirectBindingTable[cspos->second];
614 return cspos->second;
615 }
616 slot = _indirectBindingTable.size();
617 map->operator[](atom) = slot;
618 }
619 break;
620 case ld::Section::typeUTF16Strings:
621 upos = _utf16Table.find(atom);
622 if ( upos != _utf16Table.end() ) {
623 *existingAtom = _indirectBindingTable[upos->second];
624 return upos->second;
625 }
626 slot = _indirectBindingTable.size();
627 _utf16Table[atom] = slot;
628 break;
629 case ld::Section::typeLiteral4:
630 pos = _literal4Table.find(atom);
631 if ( pos != _literal4Table.end() ) {
632 *existingAtom = _indirectBindingTable[pos->second];
633 return pos->second;
634 }
635 slot = _indirectBindingTable.size();
636 _literal4Table[atom] = slot;
637 break;
638 case ld::Section::typeLiteral8:
639 pos = _literal8Table.find(atom);
640 if ( pos != _literal8Table.end() ) {
641 *existingAtom = _indirectBindingTable[pos->second];
642 return pos->second;
643 }
644 slot = _indirectBindingTable.size();
645 _literal8Table[atom] = slot;
646 break;
647 case ld::Section::typeLiteral16:
648 pos = _literal16Table.find(atom);
649 if ( pos != _literal16Table.end() ) {
650 *existingAtom = _indirectBindingTable[pos->second];
651 return pos->second;
652 }
653 slot = _indirectBindingTable.size();
654 _literal16Table[atom] = slot;
655 break;
656 default:
657 assert(0 && "section type does not support coalescing by content");
658 }
659 _indirectBindingTable.push_back(atom);
660 *existingAtom = NULL;
661 return slot;
662 }
663
664
665
666 // find existing or create new slot
667 SymbolTable::IndirectBindingSlot SymbolTable::findSlotForReferences(const ld::Atom* atom, const ld::Atom** existingAtom)
668 {
669 //fprintf(stderr, "findSlotForReferences(%p)\n", atom);
670
671 SymbolTable::IndirectBindingSlot slot = 0;
672 ReferencesToSlot::iterator pos;
673 switch ( atom->section().type() ) {
674 case ld::Section::typeNonLazyPointer:
675 pos = _nonLazyPointerTable.find(atom);
676 if ( pos != _nonLazyPointerTable.end() ) {
677 *existingAtom = _indirectBindingTable[pos->second];
678 return pos->second;
679 }
680 slot = _indirectBindingTable.size();
681 _nonLazyPointerTable[atom] = slot;
682 break;
683 case ld::Section::typeCFString:
684 pos = _cfStringTable.find(atom);
685 if ( pos != _cfStringTable.end() ) {
686 *existingAtom = _indirectBindingTable[pos->second];
687 return pos->second;
688 }
689 slot = _indirectBindingTable.size();
690 _cfStringTable[atom] = slot;
691 break;
692 case ld::Section::typeObjCClassRefs:
693 pos = _objc2ClassRefTable.find(atom);
694 if ( pos != _objc2ClassRefTable.end() ) {
695 *existingAtom = _indirectBindingTable[pos->second];
696 return pos->second;
697 }
698 slot = _indirectBindingTable.size();
699 _objc2ClassRefTable[atom] = slot;
700 break;
701 case ld::Section::typeCStringPointer:
702 pos = _pointerToCStringTable.find(atom);
703 if ( pos != _pointerToCStringTable.end() ) {
704 *existingAtom = _indirectBindingTable[pos->second];
705 return pos->second;
706 }
707 slot = _indirectBindingTable.size();
708 _pointerToCStringTable[atom] = slot;
709 break;
710 default:
711 assert(0 && "section type does not support coalescing by references");
712 }
713 _indirectBindingTable.push_back(atom);
714 *existingAtom = NULL;
715 return slot;
716 }
717
718
719 const char* SymbolTable::indirectName(IndirectBindingSlot slot) const
720 {
721 assert(slot < _indirectBindingTable.size());
722 const ld::Atom* target = _indirectBindingTable[slot];
723 if ( target != NULL ) {
724 return target->name();
725 }
726 // handle case when by-name reference is indirected and no atom yet in _byNameTable
727 SlotToName::const_iterator pos = _byNameReverseTable.find(slot);
728 if ( pos != _byNameReverseTable.end() )
729 return pos->second;
730 assert(0);
731 return NULL;
732 }
733
734 const ld::Atom* SymbolTable::indirectAtom(IndirectBindingSlot slot) const
735 {
736 assert(slot < _indirectBindingTable.size());
737 return _indirectBindingTable[slot];
738 }
739
740 void SymbolTable::printStatistics()
741 {
742 // fprintf(stderr, "cstring table size: %lu, bucket count: %lu, hash func called %u times\n",
743 // _cstringTable.size(), _cstringTable.bucket_count(), cstringHashCount);
744 int count[11];
745 for(unsigned int b=0; b < 11; ++b) {
746 count[b] = 0;
747 }
748 for(unsigned int i=0; i < _cstringTable.bucket_count(); ++i) {
749 unsigned int n = _cstringTable.bucket_size(i);
750 if ( n < 10 )
751 count[n] += 1;
752 else
753 count[10] += 1;
754 }
755 fprintf(stderr, "cstring table distribution\n");
756 for(unsigned int b=0; b < 11; ++b) {
757 fprintf(stderr, "%u buckets have %u elements\n", count[b], b);
758 }
759 fprintf(stderr, "indirect table size: %lu\n", _indirectBindingTable.size());
760 fprintf(stderr, "by-name table size: %lu\n", _byNameTable.size());
761 // fprintf(stderr, "by-content table size: %lu, hash count: %u, equals count: %u, lookup count: %u\n",
762 // _byContentTable.size(), contentHashCount, contentEqualCount, contentLookupCount);
763 // fprintf(stderr, "by-ref table size: %lu, hashed count: %u, equals count: %u, lookup count: %u, insert count: %u\n",
764 // _byReferencesTable.size(), refHashCount, refEqualsCount, refLookupCount, refInsertCount);
765
766 //ReferencesHash obj;
767 //for(ReferencesHashToSlot::iterator it=_byReferencesTable.begin(); it != _byReferencesTable.end(); ++it) {
768 // if ( obj.operator()(it->first) == 0x2F3AC0EAC744EA70 ) {
769 // fprintf(stderr, "hash=0x2F3AC0EAC744EA70 for %p %s from %s\n", it->first, it->first->name(), it->first->file()->path());
770 //
771 // }
772 //}
773
774 }
775
776 } // namespace tool
777 } // namespace ld
778