]> git.saurik.com Git - apple/ld64.git/blame - src/ld/parsers/macho_relocatable_file.cpp
ld64-224.1.tar.gz
[apple/ld64.git] / src / ld / parsers / macho_relocatable_file.cpp
CommitLineData
a645023d
A
1/* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-
2 *
3 * Copyright (c) 2009-2010 Apple Inc. All rights reserved.
4 *
5 * @APPLE_LICENSE_HEADER_START@
6 *
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
12 * file.
13 *
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
21 *
22 * @APPLE_LICENSE_HEADER_END@
23 */
afe874b1 24
a645023d
A
25
26#include <stdint.h>
27#include <stdlib.h>
28#include <math.h>
29#include <unistd.h>
30#include <fcntl.h>
31#include <sys/param.h>
32#include <sys/stat.h>
33#include <sys/mman.h>
34
35#include "MachOFileAbstraction.hpp"
36
afe874b1
A
37#include "libunwind/DwarfInstructions.hpp"
38#include "libunwind/AddressSpace.hpp"
39#include "libunwind/Registers.hpp"
a645023d
A
40
41#include <vector>
42#include <set>
43#include <map>
44#include <algorithm>
45
46#include "dwarf2.h"
47#include "debugline.h"
48
49#include "Architectures.hpp"
50#include "ld.hpp"
51#include "macho_relocatable_file.h"
52
53
54
55extern void throwf(const char* format, ...) __attribute__ ((noreturn,format(printf, 1, 2)));
56extern void warning(const char* format, ...) __attribute__((format(printf, 1, 2)));
57
58namespace mach_o {
59namespace relocatable {
60
61
62// forward reference
63template <typename A> class Parser;
64template <typename A> class Atom;
65template <typename A> class Section;
66template <typename A> class CFISection;
afe874b1 67template <typename A> class CUSection;
a645023d
A
68
69template <typename A>
70class File : public ld::relocatable::File
71{
72public:
ebf6f434 73 File(const char* p, time_t mTime, const uint8_t* content, ld::File::Ordinal ord) :
a645023d
A
74 ld::relocatable::File(p,mTime,ord), _fileContent(content),
75 _sectionsArray(NULL), _atomsArray(NULL),
76 _sectionsArrayCount(0), _atomsArrayCount(0),
77 _debugInfoKind(ld::relocatable::File::kDebugInfoNone),
b1f7435d 78 _dwarfTranslationUnitPath(NULL),
a645023d
A
79 _dwarfDebugInfoSect(NULL), _dwarfDebugAbbrevSect(NULL),
80 _dwarfDebugLineSect(NULL), _dwarfDebugStringSect(NULL),
81 _objConstraint(ld::File::objcConstraintNone),
82 _cpuSubType(0),
ebf6f434 83 _canScatterAtoms(false) {}
a645023d
A
84 virtual ~File();
85
86 // overrides of ld::File
87 virtual bool forEachAtom(ld::File::AtomHandler&) const;
88 virtual bool justInTimeforEachAtom(const char* name, ld::File::AtomHandler&) const
89 { return false; }
90
91 // overrides of ld::relocatable::File
a645023d
A
92 virtual ObjcConstraint objCConstraint() const { return _objConstraint; }
93 virtual uint32_t cpuSubType() const { return _cpuSubType; }
94 virtual DebugInfoKind debugInfo() const { return _debugInfoKind; }
f80fe69f 95 virtual const std::vector<ld::relocatable::File::Stab>* stabs() const { return &_stabs; }
a645023d 96 virtual bool canScatterAtoms() const { return _canScatterAtoms; }
b1f7435d 97 virtual const char* translationUnitSource() const;
f80fe69f 98 virtual LinkerOptionsList* linkerOptions() const { return &_linkerOptions; }
a645023d
A
99
100 const uint8_t* fileContent() { return _fileContent; }
101private:
102 friend class Atom<A>;
103 friend class Section<A>;
104 friend class Parser<A>;
105 friend class CFISection<A>::OAS;
106
107 typedef typename A::P P;
108
109 const uint8_t* _fileContent;
110 Section<A>** _sectionsArray;
111 uint8_t* _atomsArray;
112 uint32_t _sectionsArrayCount;
113 uint32_t _atomsArrayCount;
114 std::vector<ld::Fixup> _fixups;
115 std::vector<ld::Atom::UnwindInfo> _unwindInfos;
116 std::vector<ld::Atom::LineInfo> _lineInfos;
117 std::vector<ld::relocatable::File::Stab>_stabs;
118 ld::relocatable::File::DebugInfoKind _debugInfoKind;
b1f7435d 119 const char* _dwarfTranslationUnitPath;
a645023d
A
120 const macho_section<P>* _dwarfDebugInfoSect;
121 const macho_section<P>* _dwarfDebugAbbrevSect;
122 const macho_section<P>* _dwarfDebugLineSect;
123 const macho_section<P>* _dwarfDebugStringSect;
124 ld::File::ObjcConstraint _objConstraint;
125 uint32_t _cpuSubType;
a645023d 126 bool _canScatterAtoms;
f80fe69f 127 std::vector<std::vector<const char*> > _linkerOptions;
a645023d
A
128};
129
130
131template <typename A>
132class Section : public ld::Section
133{
134public:
135 typedef typename A::P::uint_t pint_t;
136 typedef typename A::P P;
137 typedef typename A::P::E E;
138
139 virtual ~Section() { }
140 class File<A>& file() const { return _file; }
141 const macho_section<P>* machoSection() const { return _machOSection; }
142 uint32_t sectionNum(class Parser<A>&) const;
143 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr);
144 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeUnclassified; }
145 virtual bool dontDeadStrip() { return (this->_machOSection->flags() & S_ATTR_NO_DEAD_STRIP); }
146 virtual Atom<A>* findAtomByAddress(pint_t addr) { return this->findContentAtomByAddress(addr, this->_beginAtoms, this->_endAtoms); }
147 virtual bool addFollowOnFixups() const { return ! _file.canScatterAtoms(); }
148 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer,
149 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 150 const struct Parser<A>::CFI_CU_InfoArrays&) = 0;
a645023d
A
151 virtual uint32_t computeAtomCount(class Parser<A>& parser,
152 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1
A
153 const struct Parser<A>::CFI_CU_InfoArrays&) = 0;
154 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&);
a645023d
A
155 virtual bool addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>*);
156 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const { return 0; }
157 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
158 const ld::IndirectBindingTable& ind) const { return false; }
f80fe69f 159 virtual bool ignoreLabel(const char* label) const { return false; }
afe874b1 160 static const char* makeSectionName(const macho_section<typename A::P>* s);
a645023d
A
161
162protected:
163 Section(File<A>& f, const macho_section<typename A::P>* s)
164 : ld::Section(makeSegmentName(s), makeSectionName(s), sectionType(s)),
165 _file(f), _machOSection(s), _beginAtoms(NULL), _endAtoms(NULL), _hasAliases(false) { }
166 Section(File<A>& f, const char* segName, const char* sectName, ld::Section::Type t, bool hidden=false)
167 : ld::Section(segName, sectName, t, hidden), _file(f), _machOSection(NULL),
168 _beginAtoms(NULL), _endAtoms(NULL), _hasAliases(false) { }
169
170
a645023d
A
171 Atom<A>* findContentAtomByAddress(pint_t addr, class Atom<A>* start, class Atom<A>* end);
172 uint32_t x86_64PcRelOffset(uint8_t r_type);
173 static const char* makeSegmentName(const macho_section<typename A::P>* s);
a645023d
A
174 static bool readable(const macho_section<typename A::P>* s);
175 static bool writable(const macho_section<typename A::P>* s);
176 static bool exectuable(const macho_section<typename A::P>* s);
177 static ld::Section::Type sectionType(const macho_section<typename A::P>* s);
178
179 File<A>& _file;
180 const macho_section<P>* _machOSection;
181 class Atom<A>* _beginAtoms;
182 class Atom<A>* _endAtoms;
183 bool _hasAliases;
184};
185
186
187template <typename A>
188class CFISection : public Section<A>
189{
190public:
191 CFISection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
192 : Section<A>(f, s) { }
193 uint32_t cfiCount();
194
195 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeCFI; }
afe874b1
A
196 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&);
197 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&);
198 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&);
a645023d
A
199 virtual bool addFollowOnFixups() const { return false; }
200
201
202 ///
203 /// ObjectFileAddressSpace is used as a template parameter to UnwindCursor for parsing
204 /// dwarf CFI information in an object file.
205 ///
206 class OAS
207 {
208 public:
209 typedef typename A::P::uint_t pint_t;
210 typedef typename A::P P;
211 typedef typename A::P::E E;
212 typedef typename A::P::uint_t sint_t;
213
214 OAS(CFISection<A>& ehFrameSection, const uint8_t* ehFrameBuffer) :
215 _ehFrameSection(ehFrameSection),
216 _ehFrameContent(ehFrameBuffer),
217 _ehFrameStartAddr(ehFrameSection.machoSection()->addr()),
218 _ehFrameEndAddr(ehFrameSection.machoSection()->addr()+ehFrameSection.machoSection()->size()) {}
219
220 uint8_t get8(pint_t addr) { return *((uint8_t*)mappedAddress(addr)); }
221 uint16_t get16(pint_t addr) { return E::get16(*((uint16_t*)mappedAddress(addr))); }
222 uint32_t get32(pint_t addr) { return E::get32(*((uint32_t*)mappedAddress(addr))); }
223 uint64_t get64(pint_t addr) { return E::get64(*((uint64_t*)mappedAddress(addr))); }
224 pint_t getP(pint_t addr) { return P::getP(*((pint_t*)mappedAddress(addr))); }
225 uint64_t getULEB128(pint_t& addr, pint_t end);
226 int64_t getSLEB128(pint_t& addr, pint_t end);
227 pint_t getEncodedP(pint_t& addr, pint_t end, uint8_t encoding);
228 private:
229 const void* mappedAddress(pint_t addr);
230
231 CFISection<A>& _ehFrameSection;
232 const uint8_t* _ehFrameContent;
233 pint_t _ehFrameStartAddr;
234 pint_t _ehFrameEndAddr;
235 };
236
237
238 typedef typename A::P::uint_t pint_t;
239 typedef libunwind::CFI_Atom_Info<OAS> CFI_Atom_Info;
240
f80fe69f 241 void cfiParse(class Parser<A>& parser, uint8_t* buffer, CFI_Atom_Info cfiArray[], uint32_t& cfiCount, const pint_t cuStarts[], uint32_t cuCount);
a645023d
A
242 bool needsRelocating();
243
244 static bool bigEndian();
245private:
246 void addCiePersonalityFixups(class Parser<A>& parser, const CFI_Atom_Info* cieInfo);
247 static void warnFunc(void* ref, uint64_t funcAddr, const char* msg);
248};
249
250
afe874b1
A
251template <typename A>
252class CUSection : public Section<A>
253{
254public:
255 CUSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
256 : Section<A>(f, s) { }
257
258 typedef typename A::P::uint_t pint_t;
259 typedef typename A::P P;
260 typedef typename A::P::E E;
261
262 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&) { return 0; }
263 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&) { return 0; }
264 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&);
265 virtual bool addFollowOnFixups() const { return false; }
266
267 struct Info {
268 pint_t functionStartAddress;
269 uint32_t functionSymbolIndex;
270 uint32_t rangeLength;
271 uint32_t compactUnwindInfo;
272 const char* personality;
273 pint_t lsdaAddress;
274 Atom<A>* function;
275 Atom<A>* lsda;
276 };
277
278 uint32_t count();
279 void parse(class Parser<A>& parser, uint32_t cnt, Info array[]);
f80fe69f 280 static bool encodingMeansUseDwarf(compact_unwind_encoding_t enc);
afe874b1
A
281
282
283private:
284
285 const char* personalityName(class Parser<A>& parser, const macho_relocation_info<P>* reloc);
286
287 static int infoSorter(const void* l, const void* r);
288
289};
290
291
a645023d
A
292template <typename A>
293class TentativeDefinitionSection : public Section<A>
294{
295public:
296 TentativeDefinitionSection(Parser<A>& parser, File<A>& f)
297 : Section<A>(f, "__DATA", "__comm/tent", ld::Section::typeTentativeDefs) {}
298
299 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeZeroFill; }
300 virtual bool addFollowOnFixups() const { return false; }
301 virtual Atom<A>* findAtomByAddress(typename A::P::uint_t addr) { throw "TentativeDefinitionSection::findAtomByAddress() should never be called"; }
302 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 303 const struct Parser<A>::CFI_CU_InfoArrays&);
a645023d
A
304 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer,
305 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1
A
306 const struct Parser<A>::CFI_CU_InfoArrays&);
307 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&) {}
a645023d
A
308private:
309 typedef typename A::P::uint_t pint_t;
310 typedef typename A::P P;
311};
312
313
314template <typename A>
315class AbsoluteSymbolSection : public Section<A>
316{
317public:
318 AbsoluteSymbolSection(Parser<A>& parser, File<A>& f)
319 : Section<A>(f, "__DATA", "__abs", ld::Section::typeAbsoluteSymbols, true) {}
320
321 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeUnclassified; }
322 virtual bool dontDeadStrip() { return false; }
323 virtual ld::Atom::Alignment alignmentForAddress(typename A::P::uint_t addr) { return ld::Atom::Alignment(0); }
324 virtual bool addFollowOnFixups() const { return false; }
325 virtual Atom<A>* findAtomByAddress(typename A::P::uint_t addr) { throw "AbsoluteSymbolSection::findAtomByAddress() should never be called"; }
326 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 327 const struct Parser<A>::CFI_CU_InfoArrays&);
a645023d
A
328 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer,
329 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1
A
330 const struct Parser<A>::CFI_CU_InfoArrays&);
331 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&) {}
a645023d
A
332 virtual Atom<A>* findAbsAtomForValue(typename A::P::uint_t);
333
334private:
335 typedef typename A::P::uint_t pint_t;
336 typedef typename A::P P;
337};
338
339
340template <typename A>
341class SymboledSection : public Section<A>
342{
343public:
344 SymboledSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s);
345 virtual ld::Atom::ContentType contentType() { return _type; }
346 virtual bool dontDeadStrip();
347 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 348 const struct Parser<A>::CFI_CU_InfoArrays&);
a645023d
A
349 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer,
350 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 351 const struct Parser<A>::CFI_CU_InfoArrays&);
a645023d
A
352protected:
353 typedef typename A::P::uint_t pint_t;
354 typedef typename A::P P;
355
356 ld::Atom::ContentType _type;
357};
358
359
360template <typename A>
361class TLVDefsSection : public SymboledSection<A>
362{
363public:
364 TLVDefsSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s) :
365 SymboledSection<A>(parser, f, s) { }
366
367private:
368
369};
370
371
372template <typename A>
373class ImplicitSizeSection : public Section<A>
374{
375public:
376 ImplicitSizeSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
377 : Section<A>(f, s) { }
afe874b1
A
378 virtual uint32_t computeAtomCount(class Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&);
379 virtual uint32_t appendAtoms(class Parser<A>& parser, uint8_t* buffer, struct Parser<A>::LabelAndCFIBreakIterator& it, const struct Parser<A>::CFI_CU_InfoArrays&);
a645023d
A
380protected:
381 typedef typename A::P::uint_t pint_t;
382 typedef typename A::P P;
383
384 virtual bool addFollowOnFixups() const { return false; }
385 virtual const char* unlabeledAtomName(Parser<A>& parser, pint_t addr) = 0;
f80fe69f 386 virtual ld::Atom::SymbolTableInclusion symbolTableInclusion();
a645023d
A
387 virtual pint_t elementSizeAtAddress(pint_t addr) = 0;
388 virtual ld::Atom::Scope scopeAtAddress(Parser<A>& parser, pint_t addr) { return ld::Atom::scopeLinkageUnit; }
389 virtual bool useElementAt(Parser<A>& parser,
390 struct Parser<A>::LabelAndCFIBreakIterator& it, pint_t addr) = 0;
391 virtual ld::Atom::Definition definition() { return ld::Atom::definitionRegular; }
392 virtual ld::Atom::Combine combine(Parser<A>& parser, pint_t addr) = 0;
f80fe69f 393 virtual bool ignoreLabel(const char* label) const { return (label[0] == 'L'); }
a645023d
A
394};
395
f80fe69f 396
a645023d
A
397template <typename A>
398class FixedSizeSection : public ImplicitSizeSection<A>
399{
400public:
401 FixedSizeSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
402 : ImplicitSizeSection<A>(parser, f, s) { }
403protected:
404 typedef typename A::P::uint_t pint_t;
405 typedef typename A::P P;
406 typedef typename A::P::E E;
407
408 virtual bool useElementAt(Parser<A>& parser,
409 struct Parser<A>::LabelAndCFIBreakIterator& it, pint_t addr)
410 { return true; }
411};
412
413
414template <typename A>
415class Literal4Section : public FixedSizeSection<A>
416{
417public:
418 Literal4Section(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
419 : FixedSizeSection<A>(parser, f, s) {}
420protected:
421 typedef typename A::P::uint_t pint_t;
422 typedef typename A::P P;
423
424 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(2); }
425 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "4-byte-literal"; }
426 virtual pint_t elementSizeAtAddress(pint_t addr) { return 4; }
427 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
428 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
429 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
430 const ld::IndirectBindingTable& ind) const;
431};
432
433template <typename A>
434class Literal8Section : public FixedSizeSection<A>
435{
436public:
437 Literal8Section(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
438 : FixedSizeSection<A>(parser, f, s) {}
439protected:
440 typedef typename A::P::uint_t pint_t;
441 typedef typename A::P P;
442
443 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(3); }
444 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "8-byte-literal"; }
445 virtual pint_t elementSizeAtAddress(pint_t addr) { return 8; }
446 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
447 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
448 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
449 const ld::IndirectBindingTable& ind) const;
450};
451
452template <typename A>
453class Literal16Section : public FixedSizeSection<A>
454{
455public:
456 Literal16Section(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
457 : FixedSizeSection<A>(parser, f, s) {}
458protected:
459 typedef typename A::P::uint_t pint_t;
460 typedef typename A::P P;
461
462 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(4); }
463 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "16-byte-literal"; }
464 virtual pint_t elementSizeAtAddress(pint_t addr) { return 16; }
465 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
466 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
467 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
468 const ld::IndirectBindingTable& ind) const;
469};
470
471
472template <typename A>
473class NonLazyPointerSection : public FixedSizeSection<A>
474{
475public:
476 NonLazyPointerSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
477 : FixedSizeSection<A>(parser, f, s) {}
478protected:
479 typedef typename A::P::uint_t pint_t;
480 typedef typename A::P P;
481
afe874b1 482 virtual void makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&);
a645023d
A
483 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeNonLazyPointer; }
484 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
485 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "non_lazy_ptr"; }
486 virtual pint_t elementSizeAtAddress(pint_t addr) { return sizeof(pint_t); }
487 virtual ld::Atom::Scope scopeAtAddress(Parser<A>& parser, pint_t addr);
488 virtual ld::Atom::Combine combine(Parser<A>&, pint_t);
f80fe69f 489 virtual bool ignoreLabel(const char* label) const { return true; }
a645023d
A
490 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
491 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
492 const ld::IndirectBindingTable& ind) const;
493
494private:
495 static const char* targetName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind);
496 static ld::Fixup::Kind fixupKind();
497};
498
499
500template <typename A>
501class CFStringSection : public FixedSizeSection<A>
502{
503public:
504 CFStringSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
505 : FixedSizeSection<A>(parser, f, s) {}
506protected:
507 typedef typename A::P::uint_t pint_t;
508
509 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
510 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "CFString"; }
511 virtual pint_t elementSizeAtAddress(pint_t addr) { return 4*sizeof(pint_t); }
512 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndReferences; }
f80fe69f 513 virtual bool ignoreLabel(const char* label) const { return true; }
a645023d
A
514 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
515 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
516 const ld::IndirectBindingTable& ind) const;
517private:
518 enum ContentType { contentUTF8, contentUTF16, contentUnknown };
519 static const uint8_t* targetContent(const class Atom<A>* atom, const ld::IndirectBindingTable& ind,
520 ContentType* ct, unsigned int* count);
521};
522
523
524template <typename A>
525class ObjC1ClassSection : public FixedSizeSection<A>
526{
527public:
528 ObjC1ClassSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
529 : FixedSizeSection<A>(parser, f, s) {}
530protected:
531 typedef typename A::P::uint_t pint_t;
532 typedef typename A::P P;
533 typedef typename A::P::E E;
534
535 virtual ld::Atom::Scope scopeAtAddress(Parser<A>& , pint_t ) { return ld::Atom::scopeGlobal; }
536 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(2); }
537 virtual const char* unlabeledAtomName(Parser<A>&, pint_t);
538 virtual ld::Atom::SymbolTableInclusion symbolTableInclusion() { return ld::Atom::symbolTableIn; }
539 virtual pint_t elementSizeAtAddress(pint_t addr);
540 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineNever; }
f80fe69f 541 virtual bool ignoreLabel(const char* label) const { return true; }
a645023d
A
542 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
543 { return 0; }
544 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
545 const ld::IndirectBindingTable& ind) const { return false; }
546 virtual bool addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>*);
547};
548
549
550template <typename A>
551class ObjC2ClassRefsSection : public FixedSizeSection<A>
552{
553public:
554 ObjC2ClassRefsSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
555 : FixedSizeSection<A>(parser, f, s) {}
556protected:
557 typedef typename A::P::uint_t pint_t;
558
559 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
560 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "objc-class-ref"; }
561 virtual pint_t elementSizeAtAddress(pint_t addr) { return sizeof(pint_t); }
562 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndReferences; }
f80fe69f 563 virtual bool ignoreLabel(const char* label) const { return true; }
a645023d
A
564 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
565 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
566 const ld::IndirectBindingTable& ind) const;
567private:
568 const char* targetClassName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
569};
570
571
572template <typename A>
573class ObjC2CategoryListSection : public FixedSizeSection<A>
574{
575public:
576 ObjC2CategoryListSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
577 : FixedSizeSection<A>(parser, f, s) {}
578protected:
579 typedef typename A::P::uint_t pint_t;
580
581 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
582 virtual ld::Atom::Scope scopeAtAddress(Parser<A>& parser, pint_t addr) { return ld::Atom::scopeTranslationUnit; }
583 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "objc-cat-list"; }
584 virtual pint_t elementSizeAtAddress(pint_t addr) { return sizeof(pint_t); }
585 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineNever; }
f80fe69f 586 virtual bool ignoreLabel(const char* label) const { return true; }
a645023d
A
587private:
588 const char* targetClassName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
589};
590
591
592template <typename A>
593class PointerToCStringSection : public FixedSizeSection<A>
594{
595public:
596 PointerToCStringSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
597 : FixedSizeSection<A>(parser, f, s) {}
598protected:
599 typedef typename A::P::uint_t pint_t;
600
601 virtual ld::Atom::Alignment alignmentForAddress(pint_t addr) { return ld::Atom::Alignment(log2(sizeof(pint_t))); }
602 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "pointer-to-literal-cstring"; }
603 virtual pint_t elementSizeAtAddress(pint_t addr) { return sizeof(pint_t); }
604 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndReferences; }
f80fe69f 605 virtual bool ignoreLabel(const char* label) const { return true; }
a645023d
A
606 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
607 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
608 const ld::IndirectBindingTable& ind) const;
609 virtual const char* targetCString(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
610};
611
612
613template <typename A>
614class Objc1ClassReferences : public PointerToCStringSection<A>
615{
616public:
617 Objc1ClassReferences(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
618 : PointerToCStringSection<A>(parser, f, s) {}
619
620 typedef typename A::P::uint_t pint_t;
621 typedef typename A::P P;
622
623 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "pointer-to-literal-objc-class-name"; }
624 virtual bool addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>*);
625 virtual const char* targetCString(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
626};
627
628
629template <typename A>
630class CStringSection : public ImplicitSizeSection<A>
631{
632public:
633 CStringSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
634 : ImplicitSizeSection<A>(parser, f, s) {}
635protected:
636 typedef typename A::P::uint_t pint_t;
637 typedef typename A::P P;
638
639 virtual ld::Atom::ContentType contentType() { return ld::Atom::typeCString; }
640 virtual Atom<A>* findAtomByAddress(pint_t addr);
641 virtual const char* unlabeledAtomName(Parser<A>&, pint_t) { return "cstring"; }
642 virtual pint_t elementSizeAtAddress(pint_t addr);
f80fe69f 643 virtual bool ignoreLabel(const char* label) const;
a645023d
A
644 virtual bool useElementAt(Parser<A>& parser,
645 struct Parser<A>::LabelAndCFIBreakIterator& it, pint_t addr);
646 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
647 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
648 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
649 const ld::IndirectBindingTable& ind) const;
650
651};
652
653
654template <typename A>
655class UTF16StringSection : public SymboledSection<A>
656{
657public:
658 UTF16StringSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
659 : SymboledSection<A>(parser, f, s) {}
660protected:
661 typedef typename A::P::uint_t pint_t;
662 typedef typename A::P P;
663
664 virtual ld::Atom::Combine combine(Parser<A>&, pint_t) { return ld::Atom::combineByNameAndContent; }
665 virtual unsigned long contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const;
666 virtual bool canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
667 const ld::IndirectBindingTable& ind) const;
668};
669
670
671//
672// Atoms in mach-o files
673//
674template <typename A>
675class Atom : public ld::Atom
676{
677public:
678 // overrides of ld::Atom
679 virtual ld::File* file() const { return &sect().file(); }
b1f7435d
A
680 virtual const char* translationUnitSource() const
681 { return sect().file().translationUnitSource(); }
a645023d
A
682 virtual const char* name() const { return _name; }
683 virtual uint64_t size() const { return _size; }
684 virtual uint64_t objectAddress() const { return _objAddress; }
685 virtual void copyRawContent(uint8_t buffer[]) const;
686 virtual const uint8_t* rawContentPointer() const { return contentPointer(); }
687 virtual unsigned long contentHash(const ld::IndirectBindingTable& ind) const
688 { if ( _hash == 0 ) _hash = sect().contentHash(this, ind); return _hash; }
689 virtual bool canCoalesceWith(const ld::Atom& rhs, const ld::IndirectBindingTable& ind) const
690 { return sect().canCoalesceWith(this, rhs, ind); }
691 virtual ld::Fixup::iterator fixupsBegin() const { return &machofile()._fixups[_fixupsStartIndex]; }
692 virtual ld::Fixup::iterator fixupsEnd() const { return &machofile()._fixups[_fixupsStartIndex+_fixupsCount]; }
693 virtual ld::Atom::UnwindInfo::iterator beginUnwind() const { return &machofile()._unwindInfos[_unwindInfoStartIndex]; }
694 virtual ld::Atom::UnwindInfo::iterator endUnwind() const { return &machofile()._unwindInfos[_unwindInfoStartIndex+_unwindInfoCount]; }
695 virtual ld::Atom::LineInfo::iterator beginLineInfo() const{ return &machofile()._lineInfos[_lineInfoStartIndex]; }
696 virtual ld::Atom::LineInfo::iterator endLineInfo() const { return &machofile()._lineInfos[_lineInfoStartIndex+_lineInfoCount]; }
697
698private:
699
700 enum { kFixupStartIndexBits = 32,
701 kLineInfoStartIndexBits = 32,
702 kUnwindInfoStartIndexBits = 24,
703 kFixupCountBits = 24,
704 kLineInfoCountBits = 12,
705 kUnwindInfoCountBits = 4
706 }; // must sum to 128
707
708public:
709 // methods for all atoms from mach-o object file
710 Section<A>& sect() const { return (Section<A>&)section(); }
711 File<A>& machofile() const { return ((Section<A>*)(this->_section))->file(); }
712 void setFixupsRange(uint32_t s, uint32_t c);
713 void setUnwindInfoRange(uint32_t s, uint32_t c);
afe874b1 714 void extendUnwindInfoRange();
a645023d
A
715 void setLineInfoRange(uint32_t s, uint32_t c);
716 bool roomForMoreLineInfoCount() { return (_lineInfoCount < ((1<<kLineInfoCountBits)-1)); }
717 void incrementLineInfoCount() { assert(roomForMoreLineInfoCount()); ++_lineInfoCount; }
718 void incrementFixupCount() { if (_fixupsCount == ((1 << kFixupCountBits)-1))
719 throwf("too may fixups in %s", name()); ++_fixupsCount; }
720 const uint8_t* contentPointer() const;
721 uint32_t fixupCount() const { return _fixupsCount; }
722 void verifyAlignment() const;
723
724 typedef typename A::P P;
725 typedef typename A::P::E E;
726 typedef typename A::P::uint_t pint_t;
727 // constuct via all attributes
728 Atom(Section<A>& sct, const char* nm, pint_t addr, uint64_t sz,
729 ld::Atom::Definition d, ld::Atom::Combine c, ld::Atom::Scope s,
730 ld::Atom::ContentType ct, ld::Atom::SymbolTableInclusion i,
731 bool dds, bool thumb, bool al, ld::Atom::Alignment a)
732 : ld::Atom((ld::Section&)sct, d, c, s, ct, i, dds, thumb, al, a),
733 _size(sz), _objAddress(addr), _name(nm), _hash(0),
734 _fixupsStartIndex(0), _lineInfoStartIndex(0),
735 _unwindInfoStartIndex(0), _fixupsCount(0),
736 _lineInfoCount(0), _unwindInfoCount(0) { }
737 // construct via symbol table entry
738 Atom(Section<A>& sct, Parser<A>& parser, const macho_nlist<P>& sym,
739 uint64_t sz, bool alias=false)
740 : ld::Atom((ld::Section&)sct, parser.definitionFromSymbol(sym),
741 parser.combineFromSymbol(sym), parser.scopeFromSymbol(sym),
742 parser.resolverFromSymbol(sym) ? ld::Atom::typeResolver : sct.contentType(),
743 parser.inclusionFromSymbol(sym),
744 parser.dontDeadStripFromSymbol(sym) || sct.dontDeadStrip(),
745 parser.isThumbFromSymbol(sym), alias,
746 sct.alignmentForAddress(sym.n_value())),
747 _size(sz), _objAddress(sym.n_value()),
748 _name(parser.nameFromSymbol(sym)), _hash(0),
749 _fixupsStartIndex(0), _lineInfoStartIndex(0),
750 _unwindInfoStartIndex(0), _fixupsCount(0),
751 _lineInfoCount(0), _unwindInfoCount(0) {
752 // <rdar://problem/6783167> support auto-hidden weak symbols
753 if ( _scope == ld::Atom::scopeGlobal &&
754 (sym.n_desc() & (N_WEAK_DEF|N_WEAK_REF)) == (N_WEAK_DEF|N_WEAK_REF) )
755 this->setAutoHide();
756 this->verifyAlignment();
757 }
758
759private:
760 friend class Parser<A>;
761 friend class Section<A>;
762 friend class CStringSection<A>;
763 friend class AbsoluteSymbolSection<A>;
764
765 pint_t _size;
766 pint_t _objAddress;
767 const char* _name;
768 mutable unsigned long _hash;
769
770 uint64_t _fixupsStartIndex : kFixupStartIndexBits,
771 _lineInfoStartIndex : kLineInfoStartIndexBits,
772 _unwindInfoStartIndex : kUnwindInfoStartIndexBits,
773 _fixupsCount : kFixupCountBits,
774 _lineInfoCount : kLineInfoCountBits,
775 _unwindInfoCount : kUnwindInfoCountBits;
776
777};
778
779
780
781template <typename A>
782void Atom<A>::setFixupsRange(uint32_t startIndex, uint32_t count)
783{
784 if ( count >= (1 << kFixupCountBits) )
785 throwf("too many fixups in function %s", this->name());
786 if ( startIndex >= (1 << kFixupStartIndexBits) )
787 throwf("too many fixups in file");
788 assert(((startIndex+count) <= sect().file()._fixups.size()) && "fixup index out of range");
789 _fixupsStartIndex = startIndex;
790 _fixupsCount = count;
791}
792
793template <typename A>
794void Atom<A>::setUnwindInfoRange(uint32_t startIndex, uint32_t count)
795{
796 if ( count >= (1 << kUnwindInfoCountBits) )
797 throwf("too many compact unwind infos in function %s", this->name());
798 if ( startIndex >= (1 << kUnwindInfoStartIndexBits) )
799 throwf("too many compact unwind infos (%d) in file", startIndex);
800 assert((startIndex+count) <= sect().file()._unwindInfos.size() && "unwindinfo index out of range");
801 _unwindInfoStartIndex = startIndex;
802 _unwindInfoCount = count;
803}
804
afe874b1
A
805template <typename A>
806void Atom<A>::extendUnwindInfoRange()
807{
808 if ( _unwindInfoCount+1 >= (1 << kUnwindInfoCountBits) )
809 throwf("too many compact unwind infos in function %s", this->name());
810 _unwindInfoCount += 1;
811}
812
a645023d
A
813template <typename A>
814void Atom<A>::setLineInfoRange(uint32_t startIndex, uint32_t count)
815{
816 assert((count < (1 << kLineInfoCountBits)) && "too many line infos");
817 assert((startIndex+count) < sect().file()._lineInfos.size() && "line info index out of range");
818 _lineInfoStartIndex = startIndex;
819 _lineInfoCount = count;
820}
821
822template <typename A>
823const uint8_t* Atom<A>::contentPointer() const
824{
825 const macho_section<P>* sct = this->sect().machoSection();
d425e388
A
826 if ( this->_objAddress > sct->addr() + sct->size() )
827 throwf("malformed .o file, symbol has address 0x%0llX which is outside range of its section", (uint64_t)this->_objAddress);
a645023d
A
828 uint32_t fileOffset = sct->offset() - sct->addr() + this->_objAddress;
829 return this->sect().file().fileContent()+fileOffset;
830}
831
832
833template <typename A>
834void Atom<A>::copyRawContent(uint8_t buffer[]) const
835{
836 // copy base bytes
837 if ( this->contentType() == ld::Atom::typeZeroFill ) {
838 bzero(buffer, _size);
839 }
840 else if ( _size != 0 ) {
841 memcpy(buffer, this->contentPointer(), _size);
842 }
843}
844
845template <>
846void Atom<arm>::verifyAlignment() const
847{
848 if ( (this->section().type() == ld::Section::typeCode) && ! isThumb() ) {
afe874b1
A
849 if ( ((_objAddress % 4) != 0) || (this->alignment().powerOf2 < 2) )
850 warning("ARM function not 4-byte aligned: %s from %s", this->name(), this->file()->path());
a645023d
A
851 }
852}
853
854template <typename A>
855void Atom<A>::verifyAlignment() const
856{
857}
858
859
860template <typename A>
861class Parser
862{
863public:
864 static bool validFile(const uint8_t* fileContent, bool subtypeMustMatch=false,
865 cpu_subtype_t subtype=0);
866 static const char* fileKind(const uint8_t* fileContent);
867 static bool hasObjC2Categories(const uint8_t* fileContent);
ebf6f434 868 static bool hasObjC1Categories(const uint8_t* fileContent);
a645023d 869 static ld::relocatable::File* parse(const uint8_t* fileContent, uint64_t fileLength,
ebf6f434 870 const char* path, time_t modTime, ld::File::Ordinal ordinal,
a645023d
A
871 const ParserOptions& opts) {
872 Parser p(fileContent, fileLength, path, modTime,
f80fe69f
A
873 ordinal, opts.warnUnwindConversionProblems,
874 opts.keepDwarfUnwind, opts.forceDwarfConversion);
a645023d
A
875 return p.parse(opts);
876 }
877
878 typedef typename A::P P;
879 typedef typename A::P::E E;
880 typedef typename A::P::uint_t pint_t;
881
882 struct SourceLocation {
883 SourceLocation() {}
884 SourceLocation(Atom<A>* a, uint32_t o) : atom(a), offsetInAtom(o) {}
885 Atom<A>* atom;
886 uint32_t offsetInAtom;
887 };
888
889 struct TargetDesc {
890 Atom<A>* atom;
891 const char* name; // only used if targetAtom is NULL
892 int64_t addend;
893 bool weakImport; // only used if targetAtom is NULL
894 };
895
896 struct FixupInAtom {
897 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, Atom<A>* target) :
898 fixup(src.offsetInAtom, c, k, target), atom(src.atom) { src.atom->incrementFixupCount(); }
899
900 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, ld::Fixup::TargetBinding b, Atom<A>* target) :
901 fixup(src.offsetInAtom, c, k, b, target), atom(src.atom) { src.atom->incrementFixupCount(); }
902
903 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, bool wi, const char* name) :
904 fixup(src.offsetInAtom, c, k, wi, name), atom(src.atom) { src.atom->incrementFixupCount(); }
905
906 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, ld::Fixup::TargetBinding b, const char* name) :
907 fixup(src.offsetInAtom, c, k, b, name), atom(src.atom) { src.atom->incrementFixupCount(); }
908
909 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, uint64_t addend) :
910 fixup(src.offsetInAtom, c, k, addend), atom(src.atom) { src.atom->incrementFixupCount(); }
911
912 FixupInAtom(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k) :
913 fixup(src.offsetInAtom, c, k, (uint64_t)0), atom(src.atom) { src.atom->incrementFixupCount(); }
914
915 ld::Fixup fixup;
916 Atom<A>* atom;
917 };
918
919 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, Atom<A>* target) {
920 _allFixups.push_back(FixupInAtom(src, c, k, target));
921 }
922
923 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, ld::Fixup::TargetBinding b, Atom<A>* target) {
924 _allFixups.push_back(FixupInAtom(src, c, k, b, target));
925 }
926
927 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, bool wi, const char* name) {
928 _allFixups.push_back(FixupInAtom(src, c, k, wi, name));
929 }
930
931 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, ld::Fixup::TargetBinding b, const char* name) {
932 _allFixups.push_back(FixupInAtom(src, c, k, b, name));
933 }
934
935 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k, uint64_t addend) {
936 _allFixups.push_back(FixupInAtom(src, c, k, addend));
937 }
938
939 void addFixup(const SourceLocation& src, ld::Fixup::Cluster c, ld::Fixup::Kind k) {
940 _allFixups.push_back(FixupInAtom(src, c, k));
941 }
942
f80fe69f 943 const char* path() { return _path; }
a645023d
A
944 uint32_t symbolCount() { return _symbolCount; }
945 uint32_t indirectSymbol(uint32_t indirectIndex);
946 const macho_nlist<P>& symbolFromIndex(uint32_t index);
947 const char* nameFromSymbol(const macho_nlist<P>& sym);
948 ld::Atom::Scope scopeFromSymbol(const macho_nlist<P>& sym);
949 static ld::Atom::Definition definitionFromSymbol(const macho_nlist<P>& sym);
950 static ld::Atom::Combine combineFromSymbol(const macho_nlist<P>& sym);
951 ld::Atom::SymbolTableInclusion inclusionFromSymbol(const macho_nlist<P>& sym);
952 static bool dontDeadStripFromSymbol(const macho_nlist<P>& sym);
953 static bool isThumbFromSymbol(const macho_nlist<P>& sym);
954 static bool weakImportFromSymbol(const macho_nlist<P>& sym);
955 static bool resolverFromSymbol(const macho_nlist<P>& sym);
956 uint32_t symbolIndexFromIndirectSectionAddress(pint_t,const macho_section<P>*);
957 const macho_section<P>* firstMachOSection() { return _sectionsStart; }
958 const macho_section<P>* machOSectionFromSectionIndex(uint32_t index);
959 uint32_t machOSectionCount() { return _machOSectionsCount; }
960 uint32_t undefinedStartIndex() { return _undefinedStartIndex; }
961 uint32_t undefinedEndIndex() { return _undefinedEndIndex; }
962 void addFixup(FixupInAtom f) { _allFixups.push_back(f); }
963 Section<A>* sectionForNum(unsigned int sectNum);
964 Section<A>* sectionForAddress(pint_t addr);
965 Atom<A>* findAtomByAddress(pint_t addr);
966 Atom<A>* findAtomByAddressOrNullIfStub(pint_t addr);
967 Atom<A>* findAtomByAddressOrLocalTargetOfStub(pint_t addr, uint32_t* offsetInAtom);
968 Atom<A>* findAtomByName(const char* name); // slow!
969 void findTargetFromAddress(pint_t addr, TargetDesc& target);
970 void findTargetFromAddress(pint_t baseAddr, pint_t addr, TargetDesc& target);
971 void findTargetFromAddressAndSectionNum(pint_t addr, unsigned int sectNum,
972 TargetDesc& target);
973 uint32_t tentativeDefinitionCount() { return _tentativeDefinitionCount; }
974 uint32_t absoluteSymbolCount() { return _absoluteSymbolCount; }
975
976 bool hasStubsSection() { return (_stubsSectionNum != 0); }
977 unsigned int stubsSectionNum() { return _stubsSectionNum; }
978 void addDtraceExtraInfos(const SourceLocation& src, const char* provider);
979 const char* scanSymbolTableForAddress(uint64_t addr);
f80fe69f 980 bool warnUnwindConversionProblems() { return _warnUnwindConversionProblems; }
ebf6f434 981 bool hasDataInCodeLabels() { return _hasDataInCodeLabels; }
f80fe69f
A
982 bool keepDwarfUnwind() { return _keepDwarfUnwind; }
983 bool forceDwarfConversion() { return _forceDwarfConversion; }
984
b1f7435d
A
985 macho_data_in_code_entry<P>* dataInCodeStart() { return _dataInCodeStart; }
986 macho_data_in_code_entry<P>* dataInCodeEnd() { return _dataInCodeEnd; }
a645023d
A
987
988 void addFixups(const SourceLocation& src, ld::Fixup::Kind kind, const TargetDesc& target);
989 void addFixups(const SourceLocation& src, ld::Fixup::Kind kind, const TargetDesc& target, const TargetDesc& picBase);
990
991
992
993 struct LabelAndCFIBreakIterator {
994 typedef typename CFISection<A>::CFI_Atom_Info CFI_Atom_Info;
995 LabelAndCFIBreakIterator(const uint32_t* ssa, uint32_t ssc, const pint_t* cfisa,
996 uint32_t cfisc, bool ols)
997 : sortedSymbolIndexes(ssa), sortedSymbolCount(ssc), cfiStartsArray(cfisa),
998 cfiStartsCount(cfisc), fileHasOverlappingSymbols(ols),
999 newSection(false), cfiIndex(0), symIndex(0) {}
f80fe69f 1000 bool next(Parser<A>& parser, const Section<A>& sect, uint32_t sectNum, pint_t startAddr, pint_t endAddr,
a645023d
A
1001 pint_t* addr, pint_t* size, const macho_nlist<P>** sym);
1002 pint_t peek(Parser<A>& parser, pint_t startAddr, pint_t endAddr);
1003 void beginSection() { newSection = true; symIndex = 0; }
1004
1005 const uint32_t* const sortedSymbolIndexes;
1006 const uint32_t sortedSymbolCount;
1007 const pint_t* cfiStartsArray;
1008 const uint32_t cfiStartsCount;
1009 const bool fileHasOverlappingSymbols;
1010 bool newSection;
1011 uint32_t cfiIndex;
1012 uint32_t symIndex;
1013 };
1014
afe874b1 1015 struct CFI_CU_InfoArrays {
a645023d 1016 typedef typename CFISection<A>::CFI_Atom_Info CFI_Atom_Info;
afe874b1
A
1017 typedef typename CUSection<A>::Info CU_Info;
1018 CFI_CU_InfoArrays(const CFI_Atom_Info* cfiAr, uint32_t cfiC, CU_Info* cuAr, uint32_t cuC)
1019 : cfiArray(cfiAr), cuArray(cuAr), cfiCount(cfiC), cuCount(cuC) {}
1020 const CFI_Atom_Info* const cfiArray;
1021 CU_Info* const cuArray;
1022 const uint32_t cfiCount;
1023 const uint32_t cuCount;
a645023d
A
1024 };
1025
1026
afe874b1 1027
a645023d
A
1028private:
1029 friend class Section<A>;
1030
1031 enum SectionType { sectionTypeIgnore, sectionTypeLiteral4, sectionTypeLiteral8, sectionTypeLiteral16,
1032 sectionTypeNonLazy, sectionTypeCFI, sectionTypeCString, sectionTypeCStringPointer,
1033 sectionTypeUTF16Strings, sectionTypeCFString, sectionTypeObjC2ClassRefs, typeObjC2CategoryList,
1034 sectionTypeObjC1Classes, sectionTypeSymboled, sectionTypeObjC1ClassRefs,
afe874b1
A
1035 sectionTypeTentativeDefinitions, sectionTypeAbsoluteSymbols, sectionTypeTLVDefs,
1036 sectionTypeCompactUnwind };
a645023d
A
1037
1038 template <typename P>
1039 struct MachOSectionAndSectionClass
1040 {
1041 const macho_section<P>* sect;
1042 SectionType type;
1043
1044 static int sorter(const void* l, const void* r) {
1045 const MachOSectionAndSectionClass<P>* left = (MachOSectionAndSectionClass<P>*)l;
1046 const MachOSectionAndSectionClass<P>* right = (MachOSectionAndSectionClass<P>*)r;
1047 int64_t diff = left->sect->addr() - right->sect->addr();
1048 if ( diff == 0 )
1049 return 0;
1050 if ( diff < 0 )
1051 return -1;
1052 else
1053 return 1;
1054 }
1055 };
afe874b1
A
1056
1057 struct ParserAndSectionsArray { Parser* parser; const uint32_t* sortedSectionsArray; };
1058
a645023d
A
1059
1060 Parser(const uint8_t* fileContent, uint64_t fileLength,
f80fe69f
A
1061 const char* path, time_t modTime, ld::File::Ordinal ordinal,
1062 bool warnUnwindConversionProblems, bool keepDwarfUnwind, bool forceDwarfConversion);
a645023d
A
1063 ld::relocatable::File* parse(const ParserOptions& opts);
1064 uint8_t loadCommandSizeMask();
1065 bool parseLoadCommands();
1066 void makeSections();
a645023d 1067 void prescanSymbolTable();
afe874b1
A
1068 void makeSortedSymbolsArray(uint32_t symArray[], const uint32_t sectionArray[]);
1069 void makeSortedSectionsArray(uint32_t array[]);
a645023d
A
1070 static int pointerSorter(const void* l, const void* r);
1071 static int symbolIndexSorter(void* extra, const void* l, const void* r);
afe874b1
A
1072 static int sectionIndexSorter(void* extra, const void* l, const void* r);
1073
a645023d
A
1074 void parseDebugInfo();
1075 void parseStabs();
1076 static bool isConstFunStabs(const char *stabStr);
1077 bool read_comp_unit(const char ** name, const char ** comp_dir,
1078 uint64_t *stmt_list);
1079 const char* getDwarfString(uint64_t form, const uint8_t* p);
1080 bool skip_form(const uint8_t ** offset, const uint8_t * end,
1081 uint64_t form, uint8_t addr_size, bool dwarf64);
1082
1083
1084 // filled in by constructor
1085 const uint8_t* _fileContent;
1086 uint32_t _fileLength;
1087 const char* _path;
1088 time_t _modTime;
ebf6f434 1089 ld::File::Ordinal _ordinal;
a645023d
A
1090
1091 // filled in by parseLoadCommands()
1092 File<A>* _file;
1093 const macho_nlist<P>* _symbols;
1094 uint32_t _symbolCount;
1095 const char* _strings;
1096 uint32_t _stringsSize;
1097 const uint32_t* _indirectTable;
1098 uint32_t _indirectTableCount;
1099 uint32_t _undefinedStartIndex;
1100 uint32_t _undefinedEndIndex;
1101 const macho_section<P>* _sectionsStart;
1102 uint32_t _machOSectionsCount;
1103 bool _hasUUID;
b1f7435d
A
1104 macho_data_in_code_entry<P>* _dataInCodeStart;
1105 macho_data_in_code_entry<P>* _dataInCodeEnd;
1106
a645023d
A
1107 // filled in by parse()
1108 CFISection<A>* _EHFrameSection;
afe874b1 1109 CUSection<A>* _compactUnwindSection;
a645023d 1110 AbsoluteSymbolSection<A>* _absoluteSection;
a645023d
A
1111 uint32_t _tentativeDefinitionCount;
1112 uint32_t _absoluteSymbolCount;
1113 uint32_t _symbolsInSections;
1114 bool _hasLongBranchStubs;
1115 bool _AppleObjc; // FSF has objc that uses different data layout
1116 bool _overlappingSymbols;
f80fe69f 1117 bool _warnUnwindConversionProblems;
ebf6f434 1118 bool _hasDataInCodeLabels;
f80fe69f
A
1119 bool _keepDwarfUnwind;
1120 bool _forceDwarfConversion;
a645023d
A
1121 unsigned int _stubsSectionNum;
1122 const macho_section<P>* _stubsMachOSection;
1123 std::vector<const char*> _dtraceProviderInfo;
1124 std::vector<FixupInAtom> _allFixups;
1125};
1126
1127
1128
1129template <typename A>
1130Parser<A>::Parser(const uint8_t* fileContent, uint64_t fileLength, const char* path, time_t modTime,
f80fe69f 1131 ld::File::Ordinal ordinal, bool convertDUI, bool keepDwarfUnwind, bool forceDwarfConversion)
a645023d
A
1132 : _fileContent(fileContent), _fileLength(fileLength), _path(path), _modTime(modTime),
1133 _ordinal(ordinal), _file(NULL),
1134 _symbols(NULL), _symbolCount(0), _strings(NULL), _stringsSize(0),
1135 _indirectTable(NULL), _indirectTableCount(0),
1136 _undefinedStartIndex(0), _undefinedEndIndex(0),
1137 _sectionsStart(NULL), _machOSectionsCount(0), _hasUUID(false),
b1f7435d 1138 _dataInCodeStart(NULL), _dataInCodeEnd(NULL),
afe874b1 1139 _EHFrameSection(NULL), _compactUnwindSection(NULL), _absoluteSection(NULL),
a645023d
A
1140 _tentativeDefinitionCount(0), _absoluteSymbolCount(0),
1141 _symbolsInSections(0), _hasLongBranchStubs(false), _AppleObjc(false),
f80fe69f
A
1142 _overlappingSymbols(false), _warnUnwindConversionProblems(convertDUI), _hasDataInCodeLabels(false),
1143 _keepDwarfUnwind(keepDwarfUnwind), _forceDwarfConversion(forceDwarfConversion),
a645023d
A
1144 _stubsSectionNum(0), _stubsMachOSection(NULL)
1145{
1146}
1147
a645023d
A
1148
1149template <>
1150bool Parser<x86>::validFile(const uint8_t* fileContent, bool, cpu_subtype_t)
1151{
1152 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1153 if ( header->magic() != MH_MAGIC )
1154 return false;
1155 if ( header->cputype() != CPU_TYPE_I386 )
1156 return false;
1157 if ( header->filetype() != MH_OBJECT )
1158 return false;
1159 return true;
1160}
1161
1162template <>
1163bool Parser<x86_64>::validFile(const uint8_t* fileContent, bool, cpu_subtype_t)
1164{
1165 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1166 if ( header->magic() != MH_MAGIC_64 )
1167 return false;
1168 if ( header->cputype() != CPU_TYPE_X86_64 )
1169 return false;
1170 if ( header->filetype() != MH_OBJECT )
1171 return false;
1172 return true;
1173}
1174
1175template <>
1176bool Parser<arm>::validFile(const uint8_t* fileContent, bool subtypeMustMatch, cpu_subtype_t subtype)
1177{
1178 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1179 if ( header->magic() != MH_MAGIC )
1180 return false;
1181 if ( header->cputype() != CPU_TYPE_ARM )
1182 return false;
1183 if ( header->filetype() != MH_OBJECT )
1184 return false;
1185 if ( subtypeMustMatch ) {
1186 if ( (cpu_subtype_t)header->cpusubtype() == subtype )
1187 return true;
1188 // hack until libcc_kext.a is made fat
1189 if ( header->cpusubtype() == CPU_SUBTYPE_ARM_ALL )
1190 return true;
1191 return false;
1192 }
1193 return true;
1194}
1195
1196
f80fe69f
A
1197template <>
1198bool Parser<arm64>::validFile(const uint8_t* fileContent, bool subtypeMustMatch, cpu_subtype_t subtype)
1199{
1200 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1201 if ( header->magic() != MH_MAGIC_64 )
1202 return false;
1203 if ( header->cputype() != CPU_TYPE_ARM64 )
1204 return false;
1205 if ( header->filetype() != MH_OBJECT )
1206 return false;
1207 return true;
1208}
1209
a645023d
A
1210
1211template <>
1212const char* Parser<x86>::fileKind(const uint8_t* fileContent)
1213{
1214 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1215 if ( header->magic() != MH_MAGIC )
1216 return NULL;
1217 if ( header->cputype() != CPU_TYPE_I386 )
1218 return NULL;
1219 return "i386";
1220}
1221
1222template <>
1223const char* Parser<x86_64>::fileKind(const uint8_t* fileContent)
1224{
1225 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1226 if ( header->magic() != MH_MAGIC )
1227 return NULL;
1228 if ( header->cputype() != CPU_TYPE_X86_64 )
1229 return NULL;
1230 return "x86_64";
1231}
1232
1233template <>
1234const char* Parser<arm>::fileKind(const uint8_t* fileContent)
1235{
1236 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1237 if ( header->magic() != MH_MAGIC )
1238 return NULL;
1239 if ( header->cputype() != CPU_TYPE_ARM )
1240 return NULL;
ebf6f434
A
1241 for (const ArchInfo* t=archInfoArray; t->archName != NULL; ++t) {
1242 if ( (t->cpuType == CPU_TYPE_ARM) && ((cpu_subtype_t)header->cpusubtype() == t->cpuSubType) ) {
1243 return t->archName;
afe874b1 1244 }
a645023d
A
1245 }
1246 return "arm???";
1247}
1248
f80fe69f
A
1249#if SUPPORT_ARCH_arm64
1250template <>
1251const char* Parser<arm64>::fileKind(const uint8_t* fileContent)
1252{
1253 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1254 if ( header->magic() != MH_MAGIC )
1255 return NULL;
1256 if ( header->cputype() != CPU_TYPE_ARM64 )
1257 return NULL;
1258 return "arm64";
1259}
1260#endif
a645023d
A
1261
1262template <typename A>
1263bool Parser<A>::hasObjC2Categories(const uint8_t* fileContent)
1264{
1265 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1266 const uint32_t cmd_count = header->ncmds();
1267 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>));
1268 const macho_load_command<P>* const cmdsEnd = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>) + header->sizeofcmds());
1269 const macho_load_command<P>* cmd = cmds;
1270 for (uint32_t i = 0; i < cmd_count; ++i) {
1271 if ( cmd->cmd() == macho_segment_command<P>::CMD ) {
1272 const macho_segment_command<P>* segment = (macho_segment_command<P>*)cmd;
1273 const macho_section<P>* sectionsStart = (macho_section<P>*)((char*)segment + sizeof(macho_segment_command<P>));
1274 for (uint32_t si=0; si < segment->nsects(); ++si) {
1275 const macho_section<P>* sect = &sectionsStart[si];
1276 if ( (sect->size() > 0)
1277 && (strcmp(sect->sectname(), "__objc_catlist") == 0)
1278 && (strcmp(sect->segname(), "__DATA") == 0) ) {
1279 return true;
1280 }
1281 }
1282 }
1283 cmd = (const macho_load_command<P>*)(((char*)cmd)+cmd->cmdsize());
1284 if ( cmd > cmdsEnd )
1285 throwf("malformed mach-o file, load command #%d is outside size of load commands", i);
1286 }
1287 return false;
1288}
1289
ebf6f434
A
1290
1291template <typename A>
1292bool Parser<A>::hasObjC1Categories(const uint8_t* fileContent)
1293{
1294 const macho_header<P>* header = (const macho_header<P>*)fileContent;
1295 const uint32_t cmd_count = header->ncmds();
1296 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>));
1297 const macho_load_command<P>* const cmdsEnd = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>) + header->sizeofcmds());
1298 const macho_load_command<P>* cmd = cmds;
1299 for (uint32_t i = 0; i < cmd_count; ++i) {
1300 if ( cmd->cmd() == macho_segment_command<P>::CMD ) {
1301 const macho_segment_command<P>* segment = (macho_segment_command<P>*)cmd;
1302 const macho_section<P>* sectionsStart = (macho_section<P>*)((char*)segment + sizeof(macho_segment_command<P>));
1303 for (uint32_t si=0; si < segment->nsects(); ++si) {
1304 const macho_section<P>* sect = &sectionsStart[si];
1305 if ( (sect->size() > 0)
1306 && (strcmp(sect->sectname(), "__category") == 0)
1307 && (strcmp(sect->segname(), "__OBJC") == 0) ) {
1308 return true;
1309 }
1310 }
1311 }
1312 cmd = (const macho_load_command<P>*)(((char*)cmd)+cmd->cmdsize());
1313 if ( cmd > cmdsEnd )
1314 throwf("malformed mach-o file, load command #%d is outside size of load commands", i);
1315 }
1316 return false;
1317}
1318
a645023d
A
1319template <typename A>
1320int Parser<A>::pointerSorter(const void* l, const void* r)
1321{
1322 // sort references by address
1323 const pint_t* left = (pint_t*)l;
1324 const pint_t* right = (pint_t*)r;
1325 return (*left - *right);
1326}
1327
1328template <typename A>
1329typename A::P::uint_t Parser<A>::LabelAndCFIBreakIterator::peek(Parser<A>& parser, pint_t startAddr, pint_t endAddr)
1330{
1331 pint_t symbolAddr;
1332 if ( symIndex < sortedSymbolCount )
1333 symbolAddr = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]).n_value();
1334 else
1335 symbolAddr = endAddr;
1336 pint_t cfiAddr;
1337 if ( cfiIndex < cfiStartsCount )
1338 cfiAddr = cfiStartsArray[cfiIndex];
1339 else
1340 cfiAddr = endAddr;
1341 if ( (cfiAddr < symbolAddr) && (cfiAddr >= startAddr) ) {
1342 if ( cfiAddr < endAddr )
1343 return cfiAddr;
1344 else
1345 return endAddr;
1346 }
1347 else {
1348 if ( symbolAddr < endAddr )
1349 return symbolAddr;
1350 else
1351 return endAddr;
1352 }
1353}
1354
1355//
1356// Parses up a section into chunks based on labels and CFI information.
1357// Each call returns the next chunk address and size, and (if the break
1358// was becuase of a label, the symbol). Returns false when no more chunks.
1359//
1360template <typename A>
f80fe69f 1361bool Parser<A>::LabelAndCFIBreakIterator::next(Parser<A>& parser, const Section<A>& sect, uint32_t sectNum, pint_t startAddr, pint_t endAddr,
a645023d
A
1362 pint_t* addr, pint_t* size, const macho_nlist<P>** symbol)
1363{
1364 // may not be a label on start of section, but need atom demarcation there
1365 if ( newSection ) {
1366 newSection = false;
1367 // advance symIndex until we get to the first label at or past the start of this section
1368 while ( symIndex < sortedSymbolCount ) {
1369 const macho_nlist<P>& sym = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]);
f80fe69f
A
1370 if ( ! sect.ignoreLabel(parser.nameFromSymbol(sym)) ) {
1371 pint_t nextSymbolAddr = sym.n_value();
1372 //fprintf(stderr, "sectNum=%d, nextSymbolAddr=0x%08llX, name=%s\n", sectNum, (uint64_t)nextSymbolAddr, parser.nameFromSymbol(sym));
1373 if ( (nextSymbolAddr > startAddr) || ((nextSymbolAddr == startAddr) && (sym.n_sect() == sectNum)) )
1374 break;
1375 }
a645023d
A
1376 ++symIndex;
1377 }
1378 if ( symIndex < sortedSymbolCount ) {
1379 const macho_nlist<P>& sym = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]);
1380 pint_t nextSymbolAddr = sym.n_value();
1381 // if next symbol found is not in this section
1382 if ( sym.n_sect() != sectNum ) {
1383 // check for CFI break instead of symbol break
1384 if ( cfiIndex < cfiStartsCount ) {
1385 pint_t nextCfiAddr = cfiStartsArray[cfiIndex];
1386 if ( nextCfiAddr < endAddr ) {
1387 // use cfi
1388 ++cfiIndex;
1389 *addr = nextCfiAddr;
1390 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1391 *symbol = NULL;
1392 return true;
1393 }
1394 }
1395 *addr = startAddr;
1396 *size = endAddr - startAddr;
1397 *symbol = NULL;
1398 if ( startAddr == endAddr )
1399 return false; // zero size section
1400 else
1401 return true; // whole section is one atom with no label
1402 }
1403 // if also CFI break here, eat it
1404 if ( cfiIndex < cfiStartsCount ) {
1405 if ( cfiStartsArray[cfiIndex] == nextSymbolAddr )
1406 ++cfiIndex;
1407 }
1408 if ( nextSymbolAddr == startAddr ) {
1409 // label at start of section, return it as chunk
1410 ++symIndex;
1411 *addr = startAddr;
1412 *size = peek(parser, startAddr, endAddr) - startAddr;
1413 *symbol = &sym;
1414 return true;
1415 }
1416 // return chunk before first symbol
1417 *addr = startAddr;
1418 *size = nextSymbolAddr - startAddr;
1419 *symbol = NULL;
1420 return true;
1421 }
f80fe69f
A
1422 // no symbols in section, check CFI
1423 if ( cfiIndex < cfiStartsCount ) {
1424 pint_t nextCfiAddr = cfiStartsArray[cfiIndex];
1425 if ( nextCfiAddr < endAddr ) {
1426 // use cfi
1427 ++cfiIndex;
1428 *addr = nextCfiAddr;
1429 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1430 *symbol = NULL;
1431 return true;
1432 }
1433 }
1434 // no cfi, so whole section is one chunk
a645023d
A
1435 *addr = startAddr;
1436 *size = endAddr - startAddr;
1437 *symbol = NULL;
1438 if ( startAddr == endAddr )
1439 return false; // zero size section
1440 else
1441 return true; // whole section is one atom with no label
1442 }
1443
1444 while ( (symIndex < sortedSymbolCount) && (cfiIndex < cfiStartsCount) ) {
1445 const macho_nlist<P>& sym = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]);
1446 pint_t nextSymbolAddr = sym.n_value();
1447 pint_t nextCfiAddr = cfiStartsArray[cfiIndex];
1448 if ( nextSymbolAddr < nextCfiAddr ) {
1449 if ( nextSymbolAddr >= endAddr )
1450 return false;
1451 ++symIndex;
1452 if ( nextSymbolAddr < startAddr )
1453 continue;
1454 *addr = nextSymbolAddr;
1455 *size = peek(parser, startAddr, endAddr) - nextSymbolAddr;
1456 *symbol = &sym;
1457 return true;
1458 }
1459 else if ( nextCfiAddr < nextSymbolAddr ) {
1460 if ( nextCfiAddr >= endAddr )
1461 return false;
1462 ++cfiIndex;
1463 if ( nextCfiAddr < startAddr )
1464 continue;
1465 *addr = nextCfiAddr;
1466 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1467 *symbol = NULL;
1468 return true;
1469 }
1470 else {
1471 if ( nextCfiAddr >= endAddr )
1472 return false;
1473 ++symIndex;
1474 ++cfiIndex;
1475 if ( nextCfiAddr < startAddr )
1476 continue;
1477 *addr = nextCfiAddr;
1478 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1479 *symbol = &sym;
1480 return true;
1481 }
1482 }
1483 while ( symIndex < sortedSymbolCount ) {
1484 const macho_nlist<P>& sym = parser.symbolFromIndex(sortedSymbolIndexes[symIndex]);
1485 pint_t nextSymbolAddr = sym.n_value();
1486 // if next symbol found is not in this section, then done with iteration
1487 if ( sym.n_sect() != sectNum )
1488 return false;
1489 ++symIndex;
1490 if ( nextSymbolAddr < startAddr )
1491 continue;
1492 *addr = nextSymbolAddr;
1493 *size = peek(parser, startAddr, endAddr) - nextSymbolAddr;
1494 *symbol = &sym;
1495 return true;
1496 }
1497 while ( cfiIndex < cfiStartsCount ) {
1498 pint_t nextCfiAddr = cfiStartsArray[cfiIndex];
1499 if ( nextCfiAddr >= endAddr )
1500 return false;
1501 ++cfiIndex;
1502 if ( nextCfiAddr < startAddr )
1503 continue;
1504 *addr = nextCfiAddr;
1505 *size = peek(parser, startAddr, endAddr) - nextCfiAddr;
1506 *symbol = NULL;
1507 return true;
1508 }
1509 return false;
1510}
1511
f80fe69f
A
1512#define STACK_ALLOC_IF_SMALL(_type, _name, _actual_count, _maxCount) \
1513 _type* _name = NULL; \
1514 uint32_t _name##_count = 1; \
1515 if ( _actual_count > _maxCount ) \
1516 _name = (_type*)malloc(sizeof(_type) * _actual_count); \
1517 else \
1518 _name##_count = _actual_count; \
1519 _type _name##_buffer[_name##_count]; \
1520 if ( _name == NULL ) \
1521 _name = _name##_buffer;
a645023d
A
1522
1523
1524template <typename A>
1525ld::relocatable::File* Parser<A>::parse(const ParserOptions& opts)
1526{
1527 // create file object
1528 _file = new File<A>(_path, _modTime, _fileContent, _ordinal);
1529
1530 // respond to -t option
1531 if ( opts.logAllFiles )
1532 printf("%s\n", _path);
1533
1534 // parse start of mach-o file
1535 if ( ! parseLoadCommands() )
1536 return _file;
1537
f80fe69f 1538 // make array of
afe874b1
A
1539 uint32_t sortedSectionIndexes[_machOSectionsCount];
1540 this->makeSortedSectionsArray(sortedSectionIndexes);
1541
a645023d 1542 // make symbol table sorted by address
a645023d
A
1543 this->prescanSymbolTable();
1544 uint32_t sortedSymbolIndexes[_symbolsInSections];
afe874b1 1545 this->makeSortedSymbolsArray(sortedSymbolIndexes, sortedSectionIndexes);
a645023d
A
1546
1547 // allocate Section<A> object for each mach-o section
1548 makeSections();
1549
afe874b1
A
1550 // if it exists, do special early parsing of __compact_unwind section
1551 uint32_t countOfCUs = 0;
1552 if ( _compactUnwindSection != NULL )
1553 countOfCUs = _compactUnwindSection->count();
f80fe69f
A
1554 // stack allocate (if not too large) cuInfoBuffer
1555 STACK_ALLOC_IF_SMALL(typename CUSection<A>::Info, cuInfoArray, countOfCUs, 1024);
afe874b1
A
1556 if ( countOfCUs != 0 )
1557 _compactUnwindSection->parse(*this, countOfCUs, cuInfoArray);
f80fe69f
A
1558
1559 // create lists of address that already have compact unwind and thus don't need the dwarf parsed
1560 unsigned cuLsdaCount = 0;
1561 pint_t cuStarts[countOfCUs];
1562 for (uint32_t i=0; i < countOfCUs; ++i) {
1563 if ( CUSection<A>::encodingMeansUseDwarf(cuInfoArray[i].compactUnwindInfo) )
1564 cuStarts[i] = -1;
1565 else
1566 cuStarts[i] = cuInfoArray[i].functionStartAddress;
1567 if ( cuInfoArray[i].lsdaAddress != 0 )
1568 ++cuLsdaCount;
1569 }
1570
afe874b1
A
1571
1572 // if it exists, do special early parsing of __eh_frame section
f80fe69f 1573 // stack allocate (if not too large) array of CFI_Atom_Info
a645023d
A
1574 uint32_t countOfCFIs = 0;
1575 if ( _EHFrameSection != NULL )
1576 countOfCFIs = _EHFrameSection->cfiCount();
f80fe69f
A
1577 STACK_ALLOC_IF_SMALL(typename CFISection<A>::CFI_Atom_Info, cfiArray, countOfCFIs, 1024);
1578
a645023d 1579 // stack allocate (if not too large) a copy of __eh_frame to apply relocations to
f80fe69f
A
1580 uint32_t sectSize = 4;
1581 if ( (countOfCFIs != 0) && _EHFrameSection->needsRelocating() )
1582 sectSize = _EHFrameSection->machoSection()->size()+4;
1583 STACK_ALLOC_IF_SMALL(uint8_t, ehBuffer, sectSize, 50*1024);
a645023d
A
1584 uint32_t cfiStartsCount = 0;
1585 if ( countOfCFIs != 0 ) {
f80fe69f 1586 _EHFrameSection->cfiParse(*this, ehBuffer, cfiArray, countOfCFIs, cuStarts, countOfCUs);
a645023d
A
1587 // count functions and lsdas
1588 for(uint32_t i=0; i < countOfCFIs; ++i) {
1589 if ( cfiArray[i].isCIE )
1590 continue;
f80fe69f
A
1591 //fprintf(stderr, "cfiArray[i].func = 0x%08llX, cfiArray[i].lsda = 0x%08llX, encoding=0x%08X\n",
1592 // (uint64_t)cfiArray[i].u.fdeInfo.function.targetAddress,
1593 // (uint64_t)cfiArray[i].u.fdeInfo.lsda.targetAddress,
a645023d
A
1594 // cfiArray[i].u.fdeInfo.compactUnwindInfo);
1595 if ( cfiArray[i].u.fdeInfo.function.targetAddress != CFI_INVALID_ADDRESS )
1596 ++cfiStartsCount;
1597 if ( cfiArray[i].u.fdeInfo.lsda.targetAddress != CFI_INVALID_ADDRESS )
1598 ++cfiStartsCount;
1599 }
1600 }
afe874b1 1601 CFI_CU_InfoArrays cfis(cfiArray, countOfCFIs, cuInfoArray, countOfCUs);
a645023d
A
1602
1603 // create sorted array of function starts and lsda starts
f80fe69f 1604 pint_t cfiStartsArray[cfiStartsCount+cuLsdaCount];
a645023d 1605 uint32_t countOfFDEs = 0;
f80fe69f 1606 uint32_t cfiStartsArrayCount = 0;
a645023d 1607 if ( countOfCFIs != 0 ) {
a645023d
A
1608 for(uint32_t i=0; i < countOfCFIs; ++i) {
1609 if ( cfiArray[i].isCIE )
1610 continue;
1611 if ( cfiArray[i].u.fdeInfo.function.targetAddress != CFI_INVALID_ADDRESS )
f80fe69f 1612 cfiStartsArray[cfiStartsArrayCount++] = cfiArray[i].u.fdeInfo.function.targetAddress;
a645023d 1613 if ( cfiArray[i].u.fdeInfo.lsda.targetAddress != CFI_INVALID_ADDRESS )
f80fe69f 1614 cfiStartsArray[cfiStartsArrayCount++] = cfiArray[i].u.fdeInfo.lsda.targetAddress;
a645023d
A
1615 ++countOfFDEs;
1616 }
f80fe69f
A
1617 }
1618 if ( cuLsdaCount != 0 ) {
1619 // merge in an lsda info from compact unwind
1620 for (uint32_t i=0; i < countOfCUs; ++i) {
1621 if ( cuInfoArray[i].lsdaAddress == 0 )
1622 continue;
1623 // append to cfiStartsArray if not already in that list
1624 bool found = false;
1625 for(uint32_t j=0; j < cfiStartsArrayCount; ++j) {
1626 if ( cfiStartsArray[j] == cuInfoArray[i].lsdaAddress )
1627 found = true;
1628 }
1629 if ( ! found ) {
1630 cfiStartsArray[cfiStartsArrayCount++] = cuInfoArray[i].lsdaAddress;
1631 }
1632 }
1633 }
1634 if ( cfiStartsArrayCount != 0 ) {
1635 ::qsort(cfiStartsArray, cfiStartsArrayCount, sizeof(pint_t), pointerSorter);
a645023d
A
1636 #ifndef NDEBUG
1637 // scan for FDEs claming the same function
f80fe69f 1638 for(uint32_t i=1; i < cfiStartsArrayCount; ++i) {
a645023d
A
1639 assert( cfiStartsArray[i] != cfiStartsArray[i-1] );
1640 }
1641 #endif
1642 }
1643
1644 Section<A>** sections = _file->_sectionsArray;
1645 uint32_t sectionsCount = _file->_sectionsArrayCount;
1646
1647 // figure out how many atoms will be allocated and allocate
1648 LabelAndCFIBreakIterator breakIterator(sortedSymbolIndexes, _symbolsInSections, cfiStartsArray,
f80fe69f 1649 cfiStartsArrayCount, _overlappingSymbols);
a645023d
A
1650 uint32_t computedAtomCount = 0;
1651 for (uint32_t i=0; i < sectionsCount; ++i ) {
1652 breakIterator.beginSection();
1653 uint32_t count = sections[i]->computeAtomCount(*this, breakIterator, cfis);
1654 //const macho_section<P>* sect = sections[i]->machoSection();
1655 //fprintf(stderr, "computed count=%u for section %s size=%llu\n", count, sect->sectname(), (sect != NULL) ? sect->size() : 0);
1656 computedAtomCount += count;
1657 }
1658 //fprintf(stderr, "allocating %d atoms * sizeof(Atom<A>)=%ld, sizeof(ld::Atom)=%ld\n", computedAtomCount, sizeof(Atom<A>), sizeof(ld::Atom));
1659 _file->_atomsArray = new uint8_t[computedAtomCount*sizeof(Atom<A>)];
1660 _file->_atomsArrayCount = 0;
1661
1662 // have each section append atoms to _atomsArray
1663 LabelAndCFIBreakIterator breakIterator2(sortedSymbolIndexes, _symbolsInSections, cfiStartsArray,
f80fe69f 1664 cfiStartsArrayCount, _overlappingSymbols);
a645023d
A
1665 for (uint32_t i=0; i < sectionsCount; ++i ) {
1666 uint8_t* atoms = _file->_atomsArray + _file->_atomsArrayCount*sizeof(Atom<A>);
1667 breakIterator2.beginSection();
1668 uint32_t count = sections[i]->appendAtoms(*this, atoms, breakIterator2, cfis);
afe874b1 1669 //fprintf(stderr, "append count=%u for section %s/%s\n", count, sections[i]->machoSection()->segname(), sections[i]->machoSection()->sectname());
a645023d
A
1670 _file->_atomsArrayCount += count;
1671 }
1672 assert( _file->_atomsArrayCount == computedAtomCount && "more atoms allocated than expected");
1673
1674
1675 // have each section add all fix-ups for its atoms
1676 _allFixups.reserve(computedAtomCount*5);
1677 for (uint32_t i=0; i < sectionsCount; ++i )
1678 sections[i]->makeFixups(*this, cfis);
1679
1680 // assign fixups start offset for each atom
1681 uint8_t* p = _file->_atomsArray;
1682 uint32_t fixupOffset = 0;
1683 for(int i=_file->_atomsArrayCount; i > 0; --i) {
1684 Atom<A>* atom = (Atom<A>*)p;
1685 atom->_fixupsStartIndex = fixupOffset;
1686 fixupOffset += atom->_fixupsCount;
1687 atom->_fixupsCount = 0;
1688 p += sizeof(Atom<A>);
1689 }
1690 assert(fixupOffset == _allFixups.size());
1691 _file->_fixups.reserve(fixupOffset);
1692
1693 // copy each fixup for each atom
1694 for(typename std::vector<FixupInAtom>::iterator it=_allFixups.begin(); it != _allFixups.end(); ++it) {
1695 uint32_t slot = it->atom->_fixupsStartIndex + it->atom->_fixupsCount;
1696 _file->_fixups[slot] = it->fixup;
1697 it->atom->_fixupsCount++;
1698 }
1699
1700 // done with temp vector
1701 _allFixups.clear();
1702
1703 // add unwind info
afe874b1 1704 _file->_unwindInfos.reserve(countOfFDEs+countOfCUs);
a645023d
A
1705 for(uint32_t i=0; i < countOfCFIs; ++i) {
1706 if ( cfiArray[i].isCIE )
1707 continue;
1708 if ( cfiArray[i].u.fdeInfo.function.targetAddress != CFI_INVALID_ADDRESS ) {
1709 ld::Atom::UnwindInfo info;
1710 info.startOffset = 0;
1711 info.unwindInfo = cfiArray[i].u.fdeInfo.compactUnwindInfo;
1712 _file->_unwindInfos.push_back(info);
1713 Atom<A>* func = findAtomByAddress(cfiArray[i].u.fdeInfo.function.targetAddress);
1714 func->setUnwindInfoRange(_file->_unwindInfos.size()-1, 1);
f80fe69f 1715 //fprintf(stderr, "cu from dwarf =0x%08X, atom=%s\n", info.unwindInfo, func->name());
a645023d
A
1716 }
1717 }
afe874b1
A
1718 // apply compact infos in __LD,__compact_unwind section to each function
1719 // if function also has dwarf unwind, CU will override it
1720 Atom<A>* lastFunc = NULL;
1721 uint32_t lastEnd = 0;
1722 for(uint32_t i=0; i < countOfCUs; ++i) {
1723 typename CUSection<A>::Info* info = &cuInfoArray[i];
1724 assert(info->function != NULL);
1725 ld::Atom::UnwindInfo ui;
1726 ui.startOffset = info->functionStartAddress - info->function->objectAddress();
f80fe69f 1727 ui.unwindInfo = info->compactUnwindInfo;
afe874b1 1728 _file->_unwindInfos.push_back(ui);
f80fe69f
A
1729 // don't override with converted cu with "use dwarf" cu, if forcing dwarf conversion
1730 if ( !_forceDwarfConversion || !CUSection<A>::encodingMeansUseDwarf(info->compactUnwindInfo) ) {
1731 //fprintf(stderr, "cu=0x%08X, atom=%s\n", ui.unwindInfo, info->function->name());
1732 // if previous is for same function, extend range
1733 if ( info->function == lastFunc ) {
1734 if ( lastEnd != ui.startOffset ) {
1735 if ( lastEnd < ui.startOffset )
1736 warning("__LD,__compact_unwind entries for %s have a gap at offset 0x%0X", info->function->name(), lastEnd);
1737 else
1738 warning("__LD,__compact_unwind entries for %s overlap at offset 0x%0X", info->function->name(), lastEnd);
1739 }
1740 lastFunc->extendUnwindInfoRange();
afe874b1 1741 }
f80fe69f
A
1742 else
1743 info->function->setUnwindInfoRange(_file->_unwindInfos.size()-1, 1);
1744 lastFunc = info->function;
1745 lastEnd = ui.startOffset + info->rangeLength;
afe874b1 1746 }
afe874b1
A
1747 }
1748
a645023d
A
1749 // parse dwarf debug info to get line info
1750 this->parseDebugInfo();
1751
1752 return _file;
1753}
1754
1755
1756
a645023d
A
1757template <> uint8_t Parser<x86>::loadCommandSizeMask() { return 0x03; }
1758template <> uint8_t Parser<x86_64>::loadCommandSizeMask() { return 0x07; }
1759template <> uint8_t Parser<arm>::loadCommandSizeMask() { return 0x03; }
f80fe69f 1760template <> uint8_t Parser<arm64>::loadCommandSizeMask() { return 0x07; }
a645023d
A
1761
1762template <typename A>
1763bool Parser<A>::parseLoadCommands()
1764{
1765 const macho_header<P>* header = (const macho_header<P>*)_fileContent;
1766
1767 // set File attributes
1768 _file->_canScatterAtoms = (header->flags() & MH_SUBSECTIONS_VIA_SYMBOLS);
1769 _file->_cpuSubType = header->cpusubtype();
1770
1771 const macho_segment_command<P>* segment = NULL;
1772 const uint8_t* const endOfFile = _fileContent + _fileLength;
1773 const uint32_t cmd_count = header->ncmds();
1774 // <rdar://problem/5394172> an empty .o file with zero load commands will crash linker
1775 if ( cmd_count == 0 )
1776 return false;
1777 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>));
1778 const macho_load_command<P>* const cmdsEnd = (macho_load_command<P>*)((char*)header + sizeof(macho_header<P>) + header->sizeofcmds());
1779 const macho_load_command<P>* cmd = cmds;
1780 for (uint32_t i = 0; i < cmd_count; ++i) {
1781 uint32_t size = cmd->cmdsize();
1782 if ( (size & this->loadCommandSizeMask()) != 0 )
1783 throwf("load command #%d has a unaligned size", i);
1784 const uint8_t* endOfCmd = ((uint8_t*)cmd)+cmd->cmdsize();
1785 if ( endOfCmd > (uint8_t*)cmdsEnd )
1786 throwf("load command #%d extends beyond the end of the load commands", i);
1787 if ( endOfCmd > endOfFile )
1788 throwf("load command #%d extends beyond the end of the file", i);
1789 switch (cmd->cmd()) {
1790 case LC_SYMTAB:
1791 {
1792 const macho_symtab_command<P>* symtab = (macho_symtab_command<P>*)cmd;
1793 _symbolCount = symtab->nsyms();
1794 _symbols = (const macho_nlist<P>*)(_fileContent + symtab->symoff());
1795 _strings = (char*)_fileContent + symtab->stroff();
1796 _stringsSize = symtab->strsize();
1797 if ( (symtab->symoff() + _symbolCount*sizeof(macho_nlist<P>)) > _fileLength )
1798 throw "mach-o symbol table extends beyond end of file";
1799 if ( (_strings + _stringsSize) > (char*)endOfFile )
1800 throw "mach-o string pool extends beyond end of file";
1801 if ( _indirectTable == NULL ) {
1802 if ( _undefinedEndIndex == 0 ) {
1803 _undefinedStartIndex = 0;
1804 _undefinedEndIndex = symtab->nsyms();
1805 }
1806 }
1807 }
1808 break;
1809 case LC_DYSYMTAB:
1810 {
1811 const macho_dysymtab_command<P>* dsymtab = (macho_dysymtab_command<P>*)cmd;
1812 _indirectTable = (uint32_t*)(_fileContent + dsymtab->indirectsymoff());
1813 _indirectTableCount = dsymtab->nindirectsyms();
1814 if ( &_indirectTable[_indirectTableCount] > (uint32_t*)endOfFile )
1815 throw "indirect symbol table extends beyond end of file";
1816 _undefinedStartIndex = dsymtab->iundefsym();
1817 _undefinedEndIndex = _undefinedStartIndex + dsymtab->nundefsym();
1818 }
1819 break;
1820 case LC_UUID:
1821 _hasUUID = true;
1822 break;
b1f7435d
A
1823 case LC_DATA_IN_CODE:
1824 {
1825 const macho_linkedit_data_command<P>* dc = (macho_linkedit_data_command<P>*)cmd;
1826 _dataInCodeStart = (macho_data_in_code_entry<P>*)(_fileContent + dc->dataoff());
1827 _dataInCodeEnd = (macho_data_in_code_entry<P>*)(_fileContent + dc->dataoff() + dc->datasize());
1828 if ( _dataInCodeEnd > (macho_data_in_code_entry<P>*)endOfFile )
1829 throw "LC_DATA_IN_CODE table extends beyond end of file";
1830 }
f80fe69f
A
1831 break;
1832 case LC_LINKER_OPTION:
1833 {
1834 const macho_linker_option_command<P>* loc = (macho_linker_option_command<P>*)cmd;
1835 const char* buffer = loc->buffer();
1836 _file->_linkerOptions.resize(_file->_linkerOptions.size() + 1);
1837 std::vector<const char*>& vec = _file->_linkerOptions.back();
1838 for (uint32_t j=0; j < loc->count(); ++j) {
1839 vec.push_back(buffer);
1840 buffer += strlen(buffer) + 1;
1841 }
1842 if ( buffer > ((char*)cmd + loc->cmdsize()) )
1843 throw "malformed LC_LINKER_OPTION";
1844 }
1845 break;
a645023d
A
1846 default:
1847 if ( cmd->cmd() == macho_segment_command<P>::CMD ) {
1848 if ( segment != NULL )
1849 throw "more than one LC_SEGMENT found in object file";
1850 segment = (macho_segment_command<P>*)cmd;
1851 }
1852 break;
1853 }
1854 cmd = (const macho_load_command<P>*)(((char*)cmd)+cmd->cmdsize());
1855 if ( cmd > cmdsEnd )
1856 throwf("malformed mach-o file, load command #%d is outside size of load commands", i);
1857 }
1858
1859 // record range of sections
1860 if ( segment == NULL )
1861 throw "missing LC_SEGMENT";
1862 _sectionsStart = (macho_section<P>*)((char*)segment + sizeof(macho_segment_command<P>));
1863 _machOSectionsCount = segment->nsects();
1864
1865 return true;
1866}
1867
a645023d
A
1868
1869template <typename A>
1870void Parser<A>::prescanSymbolTable()
1871{
1872 _tentativeDefinitionCount = 0;
1873 _absoluteSymbolCount = 0;
1874 _symbolsInSections = 0;
ebf6f434 1875 _hasDataInCodeLabels = false;
a645023d
A
1876 for (uint32_t i=0; i < this->_symbolCount; ++i) {
1877 const macho_nlist<P>& sym = symbolFromIndex(i);
1878 // ignore stabs
1879 if ( (sym.n_type() & N_STAB) != 0 )
1880 continue;
1881
1882 // look at undefines
1883 const char* symbolName = this->nameFromSymbol(sym);
1884 if ( (sym.n_type() & N_TYPE) == N_UNDF ) {
1885 if ( sym.n_value() != 0 ) {
1886 // count tentative definitions
1887 ++_tentativeDefinitionCount;
1888 }
1889 else if ( strncmp(symbolName, "___dtrace_", 10) == 0 ) {
1890 // any undefined starting with __dtrace_*$ that is not ___dtrace_probe$* or ___dtrace_isenabled$*
1891 // is extra provider info
1892 if ( (strncmp(&symbolName[10], "probe$", 6) != 0) && (strncmp(&symbolName[10], "isenabled$", 10) != 0) ) {
1893 _dtraceProviderInfo.push_back(symbolName);
1894 }
1895 }
1896 continue;
1897 }
1898
1899 // count absolute symbols
1900 if ( (sym.n_type() & N_TYPE) == N_ABS ) {
1901 const char* absName = this->nameFromSymbol(sym);
1902 // ignore .objc_class_name_* symbols
1903 if ( strncmp(absName, ".objc_class_name_", 17) == 0 ) {
1904 _AppleObjc = true;
1905 continue;
1906 }
1907 // ignore .objc_class_name_* symbols
1908 if ( strncmp(absName, ".objc_category_name_", 20) == 0 )
1909 continue;
1910 // ignore empty *.eh symbols
1911 if ( strcmp(&absName[strlen(absName)-3], ".eh") == 0 )
1912 continue;
1913 ++_absoluteSymbolCount;
1914 }
1915
1916 // only look at definitions
1917 if ( (sym.n_type() & N_TYPE) != N_SECT )
1918 continue;
1919
1920 // 'L' labels do not denote atom breaks
ebf6f434
A
1921 if ( symbolName[0] == 'L' ) {
1922 // <rdar://problem/9218847> Formalize data in code with L$start$ labels
1923 if ( strncmp(symbolName, "L$start$", 8) == 0 )
1924 _hasDataInCodeLabels = true;
a645023d 1925 continue;
ebf6f434 1926 }
a645023d
A
1927 // how many def syms in each section
1928 if ( sym.n_sect() > _machOSectionsCount )
1929 throw "bad n_sect in symbol table";
1930
1931 _symbolsInSections++;
1932 }
1933}
1934
1935template <typename A>
afe874b1 1936int Parser<A>::sectionIndexSorter(void* extra, const void* l, const void* r)
a645023d
A
1937{
1938 Parser<A>* parser = (Parser<A>*)extra;
1939 const uint32_t* left = (uint32_t*)l;
1940 const uint32_t* right = (uint32_t*)r;
afe874b1
A
1941 const macho_section<P>* leftSect = parser->machOSectionFromSectionIndex(*left);
1942 const macho_section<P>* rightSect = parser->machOSectionFromSectionIndex(*right);
1943
1944 // can't just return difference because 64-bit diff does not fit in 32-bit return type
1945 int64_t result = leftSect->addr() - rightSect->addr();
1946 if ( result == 0 ) {
1947 // two sections with same start address
1948 // one with zero size goes first
1949 bool leftEmpty = ( leftSect->size() == 0 );
1950 bool rightEmpty = ( rightSect->size() == 0 );
1951 if ( leftEmpty != rightEmpty ) {
1952 return ( rightEmpty ? 1 : -1 );
1953 }
1954 if ( !leftEmpty && !rightEmpty )
1955 throwf("overlapping sections");
1956 // both empty, so chose file order
1957 return ( rightSect - leftSect );
1958 }
1959 else if ( result < 0 )
1960 return -1;
1961 else
1962 return 1;
1963}
1964
1965template <typename A>
1966void Parser<A>::makeSortedSectionsArray(uint32_t array[])
1967{
1968 const bool log = false;
1969
1970 if ( log ) {
1971 fprintf(stderr, "unsorted sections:\n");
1972 for(unsigned int i=0; i < _machOSectionsCount; ++i )
1973 fprintf(stderr, "0x%08llX %s %s\n", _sectionsStart[i].addr(), _sectionsStart[i].segname(), _sectionsStart[i].sectname());
1974 }
1975
1976 // sort by symbol table address
1977 for (uint32_t i=0; i < _machOSectionsCount; ++i)
1978 array[i] = i;
1979 ::qsort_r(array, _machOSectionsCount, sizeof(uint32_t), this, &sectionIndexSorter);
1980
1981 if ( log ) {
1982 fprintf(stderr, "sorted sections:\n");
1983 for(unsigned int i=0; i < _machOSectionsCount; ++i )
1984 fprintf(stderr, "0x%08llX %s %s\n", _sectionsStart[array[i]].addr(), _sectionsStart[array[i]].segname(), _sectionsStart[array[i]].sectname());
1985 }
1986}
1987
1988
1989
1990template <typename A>
1991int Parser<A>::symbolIndexSorter(void* extra, const void* l, const void* r)
1992{
1993 ParserAndSectionsArray* extraInfo = (ParserAndSectionsArray*)extra;
1994 Parser<A>* parser = extraInfo->parser;
1995 const uint32_t* sortedSectionsArray = extraInfo->sortedSectionsArray;
1996 const uint32_t* left = (uint32_t*)l;
1997 const uint32_t* right = (uint32_t*)r;
a645023d
A
1998 const macho_nlist<P>& leftSym = parser->symbolFromIndex(*left);
1999 const macho_nlist<P>& rightSym = parser->symbolFromIndex(*right);
2000 // can't just return difference because 64-bit diff does not fit in 32-bit return type
2001 int64_t result = leftSym.n_value() - rightSym.n_value();
2002 if ( result == 0 ) {
2003 // two symbols with same address
2004 // if in different sections, sort earlier section first
afe874b1
A
2005 if ( leftSym.n_sect() != rightSym.n_sect() ) {
2006 for (uint32_t i=0; i < parser->machOSectionCount(); ++i) {
2007 if ( sortedSectionsArray[i]+1 == leftSym.n_sect() )
2008 return -1;
2009 if ( sortedSectionsArray[i]+1 == rightSym.n_sect() )
2010 return 1;
2011 }
2012 }
2013 // two symbols in same section, means one is an alias
d425e388
A
2014 // if one is ltmp*, make it an alias (sort first)
2015 const char* leftName = parser->nameFromSymbol(leftSym);
2016 const char* rightName = parser->nameFromSymbol(rightSym);
2017 bool leftIsTmp = strncmp(leftName, "ltmp", 4);
2018 bool rightIsTmp = strncmp(rightName, "ltmp", 4);
2019 if ( leftIsTmp != rightIsTmp ) {
2020 return (rightIsTmp ? -1 : 1);
2021 }
2022
a645023d
A
2023 // if only one is global, make the other an alias (sort first)
2024 if ( (leftSym.n_type() & N_EXT) != (rightSym.n_type() & N_EXT) ) {
2025 if ( (rightSym.n_type() & N_EXT) != 0 )
2026 return -1;
2027 else
2028 return 1;
2029 }
d425e388
A
2030 // if both are global, sort alphabetically. earlier one will be the alias
2031 return ( strcmp(rightName, leftName) );
a645023d
A
2032 }
2033 else if ( result < 0 )
2034 return -1;
2035 else
2036 return 1;
2037}
2038
afe874b1 2039
a645023d 2040template <typename A>
afe874b1 2041void Parser<A>::makeSortedSymbolsArray(uint32_t array[], const uint32_t sectionArray[])
a645023d 2042{
afe874b1
A
2043 const bool log = false;
2044
a645023d
A
2045 uint32_t* p = array;
2046 for (uint32_t i=0; i < this->_symbolCount; ++i) {
2047 const macho_nlist<P>& sym = symbolFromIndex(i);
2048 // ignore stabs
2049 if ( (sym.n_type() & N_STAB) != 0 )
2050 continue;
2051
2052 // only look at definitions
2053 if ( (sym.n_type() & N_TYPE) != N_SECT )
2054 continue;
2055
2056 // 'L' labels do not denote atom breaks
2057 const char* symbolName = this->nameFromSymbol(sym);
2058 if ( symbolName[0] == 'L' )
2059 continue;
2060
a645023d
A
2061 // how many def syms in each section
2062 if ( sym.n_sect() > _machOSectionsCount )
2063 throw "bad n_sect in symbol table";
2064
2065 // append to array
2066 *p++ = i;
2067 }
2068 assert(p == &array[_symbolsInSections] && "second pass over symbol table yield a different number of symbols");
2069
2070 // sort by symbol table address
afe874b1
A
2071 ParserAndSectionsArray extra = { this, sectionArray };
2072 ::qsort_r(array, _symbolsInSections, sizeof(uint32_t), &extra, &symbolIndexSorter);
d425e388 2073
a645023d
A
2074
2075 // look for two symbols at same address
2076 _overlappingSymbols = false;
2077 for (unsigned int i=1; i < _symbolsInSections; ++i) {
2078 if ( symbolFromIndex(array[i-1]).n_value() == symbolFromIndex(array[i]).n_value() ) {
2079 //fprintf(stderr, "overlapping symbols at 0x%08llX\n", symbolFromIndex(array[i-1]).n_value());
2080 _overlappingSymbols = true;
d425e388 2081 break;
a645023d
A
2082 }
2083 }
2084
afe874b1
A
2085 if ( log ) {
2086 fprintf(stderr, "sorted symbols:\n");
2087 for(unsigned int i=0; i < _symbolsInSections; ++i )
2088 fprintf(stderr, "0x%09llX symIndex=%d sectNum=%2d, %s\n", symbolFromIndex(array[i]).n_value(), array[i], symbolFromIndex(array[i]).n_sect(), nameFromSymbol(symbolFromIndex(array[i])) );
2089 }
a645023d
A
2090}
2091
a645023d
A
2092template <typename A>
2093void Parser<A>::makeSections()
2094{
2095 // classify each section by type
2096 // compute how many Section objects will be needed and total size for all
2097 unsigned int totalSectionsSize = 0;
2098 uint8_t machOSectsStorage[sizeof(MachOSectionAndSectionClass<P>)*(_machOSectionsCount+2)]; // also room for tentative-defs and absolute symbols
2099 // allocate raw storage for all section objects on stack
2100 MachOSectionAndSectionClass<P>* machOSects = (MachOSectionAndSectionClass<P>*)machOSectsStorage;
2101 unsigned int count = 0;
2102 for (uint32_t i=0; i < _machOSectionsCount; ++i) {
2103 const macho_section<P>* sect = &_sectionsStart[i];
a645023d 2104 if ( (sect->flags() & S_ATTR_DEBUG) != 0 ) {
afe874b1
A
2105 if ( strcmp(sect->segname(), "__DWARF") == 0 ) {
2106 // note that .o file has dwarf
2107 _file->_debugInfoKind = ld::relocatable::File::kDebugInfoDwarf;
2108 // save off iteresting dwarf sections
2109 if ( strcmp(sect->sectname(), "__debug_info") == 0 )
2110 _file->_dwarfDebugInfoSect = sect;
2111 else if ( strcmp(sect->sectname(), "__debug_abbrev") == 0 )
2112 _file->_dwarfDebugAbbrevSect = sect;
2113 else if ( strcmp(sect->sectname(), "__debug_line") == 0 )
2114 _file->_dwarfDebugLineSect = sect;
2115 else if ( strcmp(sect->sectname(), "__debug_str") == 0 )
2116 _file->_dwarfDebugStringSect = sect;
2117 // linker does not propagate dwarf sections to output file
2118 continue;
2119 }
2120 else if ( strcmp(sect->segname(), "__LD") == 0 ) {
2121 if ( strncmp(sect->sectname(), "__compact_unwind", 16) == 0 ) {
2122 machOSects[count].sect = sect;
2123 totalSectionsSize += sizeof(CUSection<A>);
2124 machOSects[count++].type = sectionTypeCompactUnwind;
2125 continue;
2126 }
2127 }
a645023d
A
2128 }
2129 // ignore empty __OBJC sections
2130 if ( (sect->size() == 0) && (strcmp(sect->segname(), "__OBJC") == 0) )
2131 continue;
2132 // objc image info section is really attributes and not content
2133 if ( ((strcmp(sect->sectname(), "__image_info") == 0) && (strcmp(sect->segname(), "__OBJC") == 0))
2134 || ((strncmp(sect->sectname(), "__objc_imageinfo", 16) == 0) && (strcmp(sect->segname(), "__DATA") == 0)) ) {
2135 // struct objc_image_info {
2136 // uint32_t version; // initially 0
2137 // uint32_t flags;
2138 // };
2139 // #define OBJC_IMAGE_SUPPORTS_GC 2
2140 // #define OBJC_IMAGE_GC_ONLY 4
f80fe69f 2141 // #define OBJC_IMAGE_IS_SIMULATED 32
a645023d
A
2142 //
2143 const uint32_t* contents = (uint32_t*)(_file->fileContent()+sect->offset());
2144 if ( (sect->size() >= 8) && (contents[0] == 0) ) {
2145 uint32_t flags = E::get32(contents[1]);
2146 if ( (flags & 4) == 4 )
2147 _file->_objConstraint = ld::File::objcConstraintGC;
2148 else if ( (flags & 2) == 2 )
2149 _file->_objConstraint = ld::File::objcConstraintRetainReleaseOrGC;
f80fe69f
A
2150 else if ( (flags & 32) == 32 )
2151 _file->_objConstraint = ld::File::objcConstraintRetainReleaseForSimulator;
a645023d
A
2152 else
2153 _file->_objConstraint = ld::File::objcConstraintRetainRelease;
a645023d
A
2154 if ( sect->size() > 8 ) {
2155 warning("section %s/%s has unexpectedly large size %llu in %s",
afe874b1 2156 sect->segname(), Section<A>::makeSectionName(sect), sect->size(), _file->path());
a645023d
A
2157 }
2158 }
2159 else {
afe874b1 2160 warning("can't parse %s/%s section in %s", sect->segname(), Section<A>::makeSectionName(sect), _file->path());
a645023d
A
2161 }
2162 continue;
2163 }
2164 machOSects[count].sect = sect;
2165 switch ( sect->flags() & SECTION_TYPE ) {
2166 case S_SYMBOL_STUBS:
2167 if ( _stubsSectionNum == 0 ) {
2168 _stubsSectionNum = i+1;
2169 _stubsMachOSection = sect;
2170 }
2171 else
2172 assert(1 && "multiple S_SYMBOL_STUBS sections");
2173 case S_LAZY_SYMBOL_POINTERS:
2174 break;
2175 case S_4BYTE_LITERALS:
2176 totalSectionsSize += sizeof(Literal4Section<A>);
2177 machOSects[count++].type = sectionTypeLiteral4;
2178 break;
2179 case S_8BYTE_LITERALS:
2180 totalSectionsSize += sizeof(Literal8Section<A>);
2181 machOSects[count++].type = sectionTypeLiteral8;
2182 break;
2183 case S_16BYTE_LITERALS:
2184 totalSectionsSize += sizeof(Literal16Section<A>);
2185 machOSects[count++].type = sectionTypeLiteral16;
2186 break;
2187 case S_NON_LAZY_SYMBOL_POINTERS:
2188 totalSectionsSize += sizeof(NonLazyPointerSection<A>);
2189 machOSects[count++].type = sectionTypeNonLazy;
2190 break;
2191 case S_LITERAL_POINTERS:
2192 if ( (strcmp(sect->segname(), "__OBJC") == 0) && (strcmp(sect->sectname(), "__cls_refs") == 0) ) {
2193 totalSectionsSize += sizeof(Objc1ClassReferences<A>);
2194 machOSects[count++].type = sectionTypeObjC1ClassRefs;
2195 }
2196 else {
2197 totalSectionsSize += sizeof(PointerToCStringSection<A>);
2198 machOSects[count++].type = sectionTypeCStringPointer;
2199 }
2200 break;
2201 case S_CSTRING_LITERALS:
2202 totalSectionsSize += sizeof(CStringSection<A>);
2203 machOSects[count++].type = sectionTypeCString;
2204 break;
2205 case S_MOD_INIT_FUNC_POINTERS:
2206 case S_MOD_TERM_FUNC_POINTERS:
2207 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
2208 case S_INTERPOSING:
2209 case S_ZEROFILL:
2210 case S_REGULAR:
2211 case S_COALESCED:
2212 case S_THREAD_LOCAL_REGULAR:
2213 case S_THREAD_LOCAL_ZEROFILL:
2214 if ( (strcmp(sect->segname(), "__TEXT") == 0) && (strcmp(sect->sectname(), "__eh_frame") == 0) ) {
2215 totalSectionsSize += sizeof(CFISection<A>);
2216 machOSects[count++].type = sectionTypeCFI;
2217 }
2218 else if ( (strcmp(sect->segname(), "__DATA") == 0) && (strcmp(sect->sectname(), "__cfstring") == 0) ) {
2219 totalSectionsSize += sizeof(CFStringSection<A>);
2220 machOSects[count++].type = sectionTypeCFString;
2221 }
2222 else if ( (strcmp(sect->segname(), "__TEXT") == 0) && (strcmp(sect->sectname(), "__ustring") == 0) ) {
2223 totalSectionsSize += sizeof(UTF16StringSection<A>);
2224 machOSects[count++].type = sectionTypeUTF16Strings;
2225 }
2226 else if ( (strcmp(sect->segname(), "__DATA") == 0) && (strncmp(sect->sectname(), "__objc_classrefs", 16) == 0) ) {
2227 totalSectionsSize += sizeof(ObjC2ClassRefsSection<A>);
2228 machOSects[count++].type = sectionTypeObjC2ClassRefs;
2229 }
2230 else if ( (strcmp(sect->segname(), "__DATA") == 0) && (strcmp(sect->sectname(), "__objc_catlist") == 0) ) {
2231 totalSectionsSize += sizeof(ObjC2CategoryListSection<A>);
2232 machOSects[count++].type = typeObjC2CategoryList;
2233 }
2234 else if ( _AppleObjc && (strcmp(sect->segname(), "__OBJC") == 0) && (strcmp(sect->sectname(), "__class") == 0) ) {
2235 totalSectionsSize += sizeof(ObjC1ClassSection<A>);
2236 machOSects[count++].type = sectionTypeObjC1Classes;
2237 }
2238 else {
2239 totalSectionsSize += sizeof(SymboledSection<A>);
2240 machOSects[count++].type = sectionTypeSymboled;
2241 }
2242 break;
2243 case S_THREAD_LOCAL_VARIABLES:
2244 totalSectionsSize += sizeof(TLVDefsSection<A>);
2245 machOSects[count++].type = sectionTypeTLVDefs;
2246 break;
2247 case S_THREAD_LOCAL_VARIABLE_POINTERS:
2248 default:
2249 throwf("unknown section type %d", sect->flags() & SECTION_TYPE);
2250 }
2251 }
2252
2253 // sort by address (mach-o object files don't aways have sections sorted)
2254 ::qsort(machOSects, count, sizeof(MachOSectionAndSectionClass<P>), MachOSectionAndSectionClass<P>::sorter);
2255
2256 // we will synthesize a dummy Section<A> object for tentative definitions
2257 if ( _tentativeDefinitionCount > 0 ) {
2258 totalSectionsSize += sizeof(TentativeDefinitionSection<A>);
2259 machOSects[count++].type = sectionTypeTentativeDefinitions;
2260 }
2261
2262 // we will synthesize a dummy Section<A> object for Absolute symbols
2263 if ( _absoluteSymbolCount > 0 ) {
2264 totalSectionsSize += sizeof(AbsoluteSymbolSection<A>);
2265 machOSects[count++].type = sectionTypeAbsoluteSymbols;
2266 }
2267
2268 // allocate one block for all Section objects as well as pointers to each
2269 uint8_t* space = new uint8_t[totalSectionsSize+count*sizeof(Section<A>*)];
2270 _file->_sectionsArray = (Section<A>**)space;
2271 _file->_sectionsArrayCount = count;
2272 Section<A>** objects = _file->_sectionsArray;
2273 space += count*sizeof(Section<A>*);
2274 for (uint32_t i=0; i < count; ++i) {
2275 switch ( machOSects[i].type ) {
2276 case sectionTypeIgnore:
2277 break;
2278 case sectionTypeLiteral4:
2279 *objects++ = new (space) Literal4Section<A>(*this, *_file, machOSects[i].sect);
2280 space += sizeof(Literal4Section<A>);
2281 break;
2282 case sectionTypeLiteral8:
2283 *objects++ = new (space) Literal8Section<A>(*this, *_file, machOSects[i].sect);
2284 space += sizeof(Literal8Section<A>);
2285 break;
2286 case sectionTypeLiteral16:
2287 *objects++ = new (space) Literal16Section<A>(*this, *_file, machOSects[i].sect);
2288 space += sizeof(Literal16Section<A>);
2289 break;
2290 case sectionTypeNonLazy:
2291 *objects++ = new (space) NonLazyPointerSection<A>(*this, *_file, machOSects[i].sect);
2292 space += sizeof(NonLazyPointerSection<A>);
2293 break;
2294 case sectionTypeCFI:
2295 _EHFrameSection = new (space) CFISection<A>(*this, *_file, machOSects[i].sect);
2296 *objects++ = _EHFrameSection;
2297 space += sizeof(CFISection<A>);
2298 break;
2299 case sectionTypeCString:
2300 *objects++ = new (space) CStringSection<A>(*this, *_file, machOSects[i].sect);
2301 space += sizeof(CStringSection<A>);
2302 break;
2303 case sectionTypeCStringPointer:
2304 *objects++ = new (space) PointerToCStringSection<A>(*this, *_file, machOSects[i].sect);
2305 space += sizeof(PointerToCStringSection<A>);
2306 break;
2307 case sectionTypeObjC1ClassRefs:
2308 *objects++ = new (space) Objc1ClassReferences<A>(*this, *_file, machOSects[i].sect);
2309 space += sizeof(Objc1ClassReferences<A>);
2310 break;
2311 case sectionTypeUTF16Strings:
2312 *objects++ = new (space) UTF16StringSection<A>(*this, *_file, machOSects[i].sect);
2313 space += sizeof(UTF16StringSection<A>);
2314 break;
2315 case sectionTypeCFString:
2316 *objects++ = new (space) CFStringSection<A>(*this, *_file, machOSects[i].sect);
2317 space += sizeof(CFStringSection<A>);
2318 break;
2319 case sectionTypeObjC2ClassRefs:
2320 *objects++ = new (space) ObjC2ClassRefsSection<A>(*this, *_file, machOSects[i].sect);
2321 space += sizeof(ObjC2ClassRefsSection<A>);
2322 break;
2323 case typeObjC2CategoryList:
2324 *objects++ = new (space) ObjC2CategoryListSection<A>(*this, *_file, machOSects[i].sect);
2325 space += sizeof(ObjC2CategoryListSection<A>);
2326 break;
2327 case sectionTypeObjC1Classes:
2328 *objects++ = new (space) ObjC1ClassSection<A>(*this, *_file, machOSects[i].sect);
2329 space += sizeof(ObjC1ClassSection<A>);
2330 break;
2331 case sectionTypeSymboled:
2332 *objects++ = new (space) SymboledSection<A>(*this, *_file, machOSects[i].sect);
2333 space += sizeof(SymboledSection<A>);
2334 break;
2335 case sectionTypeTLVDefs:
2336 *objects++ = new (space) TLVDefsSection<A>(*this, *_file, machOSects[i].sect);
2337 space += sizeof(TLVDefsSection<A>);
2338 break;
afe874b1
A
2339 case sectionTypeCompactUnwind:
2340 _compactUnwindSection = new (space) CUSection<A>(*this, *_file, machOSects[i].sect);
2341 *objects++ = _compactUnwindSection;
2342 space += sizeof(CUSection<A>);
2343 break;
a645023d
A
2344 case sectionTypeTentativeDefinitions:
2345 *objects++ = new (space) TentativeDefinitionSection<A>(*this, *_file);
2346 space += sizeof(TentativeDefinitionSection<A>);
2347 break;
2348 case sectionTypeAbsoluteSymbols:
2349 _absoluteSection = new (space) AbsoluteSymbolSection<A>(*this, *_file);
2350 *objects++ = _absoluteSection;
2351 space += sizeof(AbsoluteSymbolSection<A>);
2352 break;
2353 default:
2354 throw "internal error uknown SectionType";
2355 }
2356 }
2357}
2358
2359
2360template <typename A>
2361Section<A>* Parser<A>::sectionForAddress(typename A::P::uint_t addr)
2362{
2363 for (uint32_t i=0; i < _file->_sectionsArrayCount; ++i ) {
2364 const macho_section<typename A::P>* sect = _file->_sectionsArray[i]->machoSection();
2365 // TentativeDefinitionSection and AbsoluteSymbolSection have no mach-o section
2366 if ( sect != NULL ) {
2367 if ( (sect->addr() <= addr) && (addr < (sect->addr()+sect->size())) ) {
2368 return _file->_sectionsArray[i];
2369 }
2370 }
2371 }
2372 // not strictly in any section
2373 // may be in a zero length section
2374 for (uint32_t i=0; i < _file->_sectionsArrayCount; ++i ) {
2375 const macho_section<typename A::P>* sect = _file->_sectionsArray[i]->machoSection();
2376 // TentativeDefinitionSection and AbsoluteSymbolSection have no mach-o section
2377 if ( sect != NULL ) {
2378 if ( (sect->addr() == addr) && (sect->size() == 0) ) {
2379 return _file->_sectionsArray[i];
2380 }
2381 }
2382 }
2383
2384 throwf("sectionForAddress(0x%llX) address not in any section", (uint64_t)addr);
2385}
2386
2387template <typename A>
2388Section<A>* Parser<A>::sectionForNum(unsigned int num)
2389{
2390 for (uint32_t i=0; i < _file->_sectionsArrayCount; ++i ) {
2391 const macho_section<typename A::P>* sect = _file->_sectionsArray[i]->machoSection();
2392 // TentativeDefinitionSection and AbsoluteSymbolSection have no mach-o section
2393 if ( sect != NULL ) {
2394 if ( num == (unsigned int)((sect - _sectionsStart)+1) )
2395 return _file->_sectionsArray[i];
2396 }
2397 }
2398 throwf("sectionForNum(%u) section number not for any section", num);
2399}
2400
2401template <typename A>
2402Atom<A>* Parser<A>::findAtomByAddress(pint_t addr)
2403{
2404 Section<A>* section = this->sectionForAddress(addr);
2405 return section->findAtomByAddress(addr);
2406}
2407
2408template <typename A>
2409Atom<A>* Parser<A>::findAtomByAddressOrNullIfStub(pint_t addr)
2410{
2411 if ( hasStubsSection() && (_stubsMachOSection->addr() <= addr) && (addr < (_stubsMachOSection->addr()+_stubsMachOSection->size())) )
2412 return NULL;
2413 return findAtomByAddress(addr);
2414}
2415
2416template <typename A>
2417Atom<A>* Parser<A>::findAtomByAddressOrLocalTargetOfStub(pint_t addr, uint32_t* offsetInAtom)
2418{
2419 if ( hasStubsSection() && (_stubsMachOSection->addr() <= addr) && (addr < (_stubsMachOSection->addr()+_stubsMachOSection->size())) ) {
2420 // target is a stub, remove indirection
2421 uint32_t symbolIndex = this->symbolIndexFromIndirectSectionAddress(addr, _stubsMachOSection);
2422 assert(symbolIndex != INDIRECT_SYMBOL_LOCAL);
2423 const macho_nlist<P>& sym = this->symbolFromIndex(symbolIndex);
2424 // can't be to external weak symbol
2425 assert( (this->combineFromSymbol(sym) != ld::Atom::combineByName) || (this->scopeFromSymbol(sym) != ld::Atom::scopeGlobal) );
2426 *offsetInAtom = 0;
2427 return this->findAtomByName(this->nameFromSymbol(sym));
2428 }
2429 Atom<A>* target = this->findAtomByAddress(addr);
2430 *offsetInAtom = addr - target->_objAddress;
2431 return target;
2432}
2433
2434template <typename A>
2435Atom<A>* Parser<A>::findAtomByName(const char* name)
2436{
2437 uint8_t* p = _file->_atomsArray;
2438 for(int i=_file->_atomsArrayCount; i > 0; --i) {
2439 Atom<A>* atom = (Atom<A>*)p;
2440 if ( strcmp(name, atom->name()) == 0 )
2441 return atom;
2442 p += sizeof(Atom<A>);
2443 }
2444 return NULL;
2445}
2446
2447template <typename A>
2448void Parser<A>::findTargetFromAddress(pint_t addr, TargetDesc& target)
2449{
2450 if ( hasStubsSection() && (_stubsMachOSection->addr() <= addr) && (addr < (_stubsMachOSection->addr()+_stubsMachOSection->size())) ) {
2451 // target is a stub, remove indirection
2452 uint32_t symbolIndex = this->symbolIndexFromIndirectSectionAddress(addr, _stubsMachOSection);
2453 assert(symbolIndex != INDIRECT_SYMBOL_LOCAL);
2454 const macho_nlist<P>& sym = this->symbolFromIndex(symbolIndex);
2455 target.atom = NULL;
2456 target.name = this->nameFromSymbol(sym);
2457 target.weakImport = this->weakImportFromSymbol(sym);
2458 target.addend = 0;
2459 return;
2460 }
2461 Section<A>* section = this->sectionForAddress(addr);
2462 target.atom = section->findAtomByAddress(addr);
2463 target.addend = addr - target.atom->_objAddress;
2464 target.weakImport = false;
2465 target.name = NULL;
2466}
2467
2468template <typename A>
2469void Parser<A>::findTargetFromAddress(pint_t baseAddr, pint_t addr, TargetDesc& target)
2470{
2471 findTargetFromAddress(baseAddr, target);
2472 target.addend = addr - target.atom->_objAddress;
2473}
2474
2475template <typename A>
2476void Parser<A>::findTargetFromAddressAndSectionNum(pint_t addr, unsigned int sectNum, TargetDesc& target)
2477{
2478 if ( sectNum == R_ABS ) {
2479 // target is absolute symbol that corresponds to addr
2480 if ( _absoluteSection != NULL ) {
2481 target.atom = _absoluteSection->findAbsAtomForValue(addr);
2482 if ( target.atom != NULL ) {
2483 target.name = NULL;
2484 target.weakImport = false;
2485 target.addend = 0;
2486 return;
2487 }
2488 }
2489 throwf("R_ABS reloc but no absolute symbol at target address");
2490 }
2491
2492 if ( hasStubsSection() && (stubsSectionNum() == sectNum) ) {
2493 // target is a stub, remove indirection
2494 uint32_t symbolIndex = this->symbolIndexFromIndirectSectionAddress(addr, _stubsMachOSection);
2495 assert(symbolIndex != INDIRECT_SYMBOL_LOCAL);
2496 const macho_nlist<P>& sym = this->symbolFromIndex(symbolIndex);
2497 // use direct reference when stub is to a static function
2498 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (this->nameFromSymbol(sym)[0] == 'L')) ) {
2499 this->findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
2500 }
2501 else {
2502 target.atom = NULL;
2503 target.name = this->nameFromSymbol(sym);
2504 target.weakImport = this->weakImportFromSymbol(sym);
2505 target.addend = 0;
2506 }
2507 return;
2508 }
2509 Section<A>* section = this->sectionForNum(sectNum);
2510 target.atom = section->findAtomByAddress(addr);
2511 if ( target.atom == NULL ) {
2512 typedef typename A::P::sint_t sint_t;
2513 sint_t a = (sint_t)addr;
2514 sint_t sectStart = (sint_t)(section->machoSection()->addr());
2515 sint_t sectEnd = sectStart + section->machoSection()->size();
2516 if ( a < sectStart ) {
2517 // target address is before start of section, so must be negative addend
2518 target.atom = section->findAtomByAddress(sectStart);
2519 target.addend = a - sectStart;
2520 target.weakImport = false;
2521 target.name = NULL;
2522 return;
2523 }
2524 else if ( a >= sectEnd ) {
2525 target.atom = section->findAtomByAddress(sectEnd-1);
2526 target.addend = a - sectEnd;
2527 target.weakImport = false;
2528 target.name = NULL;
2529 return;
2530 }
2531 }
2532 assert(target.atom != NULL);
2533 target.addend = addr - target.atom->_objAddress;
2534 target.weakImport = false;
2535 target.name = NULL;
2536}
2537
2538template <typename A>
2539void Parser<A>::addDtraceExtraInfos(const SourceLocation& src, const char* providerName)
2540{
2541 // for every ___dtrace_stability$* and ___dtrace_typedefs$* undefine with
2542 // a matching provider name, add a by-name kDtraceTypeReference at probe site
2543 const char* dollar = strchr(providerName, '$');
2544 if ( dollar != NULL ) {
2545 int providerNameLen = dollar-providerName+1;
2546 for ( std::vector<const char*>::iterator it = _dtraceProviderInfo.begin(); it != _dtraceProviderInfo.end(); ++it) {
2547 const char* typeDollar = strchr(*it, '$');
2548 if ( typeDollar != NULL ) {
2549 if ( strncmp(typeDollar+1, providerName, providerNameLen) == 0 ) {
2550 addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindDtraceExtra,false, *it);
2551 }
2552 }
2553 }
2554 }
2555}
2556
2557template <typename A>
2558const char* Parser<A>::scanSymbolTableForAddress(uint64_t addr)
2559{
2560 uint64_t closestSymAddr = 0;
2561 const char* closestSymName = NULL;
2562 for (uint32_t i=0; i < this->_symbolCount; ++i) {
2563 const macho_nlist<P>& sym = symbolFromIndex(i);
2564 // ignore stabs
2565 if ( (sym.n_type() & N_STAB) != 0 )
2566 continue;
2567
2568 // only look at definitions
2569 if ( (sym.n_type() & N_TYPE) != N_SECT )
2570 continue;
2571
2572 // return with exact match
f80fe69f
A
2573 if ( sym.n_value() == addr ) {
2574 const char* name = nameFromSymbol(sym);
2575 if ( strncmp(name, "ltmp", 4) != 0 )
2576 return name;
2577 // treat 'ltmp*' labels as close match
2578 closestSymAddr = sym.n_value();
2579 closestSymName = name;
2580 }
a645023d
A
2581
2582 // record closest seen so far
2583 if ( (sym.n_value() < addr) && ((sym.n_value() > closestSymAddr) || (closestSymName == NULL)) )
2584 closestSymName = nameFromSymbol(sym);
2585 }
2586
2587 return (closestSymName != NULL) ? closestSymName : "unknown";
2588}
2589
2590
2591template <typename A>
2592void Parser<A>::addFixups(const SourceLocation& src, ld::Fixup::Kind setKind, const TargetDesc& target)
2593{
2594 // some fixup pairs can be combined
2595 ld::Fixup::Cluster cl = ld::Fixup::k1of3;
2596 ld::Fixup::Kind firstKind = ld::Fixup::kindSetTargetAddress;
2597 bool combined = false;
2598 if ( target.addend == 0 ) {
2599 cl = ld::Fixup::k1of1;
2600 combined = true;
2601 switch ( setKind ) {
2602 case ld::Fixup::kindStoreLittleEndian32:
2603 firstKind = ld::Fixup::kindStoreTargetAddressLittleEndian32;
2604 break;
2605 case ld::Fixup::kindStoreLittleEndian64:
2606 firstKind = ld::Fixup::kindStoreTargetAddressLittleEndian64;
2607 break;
2608 case ld::Fixup::kindStoreBigEndian32:
2609 firstKind = ld::Fixup::kindStoreTargetAddressBigEndian32;
2610 break;
2611 case ld::Fixup::kindStoreBigEndian64:
2612 firstKind = ld::Fixup::kindStoreTargetAddressBigEndian64;
2613 break;
2614 case ld::Fixup::kindStoreX86BranchPCRel32:
2615 firstKind = ld::Fixup::kindStoreTargetAddressX86BranchPCRel32;
2616 break;
2617 case ld::Fixup::kindStoreX86PCRel32:
2618 firstKind = ld::Fixup::kindStoreTargetAddressX86PCRel32;
2619 break;
2620 case ld::Fixup::kindStoreX86PCRel32GOTLoad:
2621 firstKind = ld::Fixup::kindStoreTargetAddressX86PCRel32GOTLoad;
2622 break;
2623 case ld::Fixup::kindStoreX86PCRel32TLVLoad:
2624 firstKind = ld::Fixup::kindStoreTargetAddressX86PCRel32TLVLoad;
2625 break;
2626 case ld::Fixup::kindStoreX86Abs32TLVLoad:
2627 firstKind = ld::Fixup::kindStoreTargetAddressX86Abs32TLVLoad;
2628 break;
2629 case ld::Fixup::kindStoreARMBranch24:
2630 firstKind = ld::Fixup::kindStoreTargetAddressARMBranch24;
2631 break;
2632 case ld::Fixup::kindStoreThumbBranch22:
2633 firstKind = ld::Fixup::kindStoreTargetAddressThumbBranch22;
2634 break;
f80fe69f
A
2635#if SUPPORT_ARCH_arm64
2636 case ld::Fixup::kindStoreARM64Branch26:
2637 firstKind = ld::Fixup::kindStoreTargetAddressARM64Branch26;
2638 break;
2639 case ld::Fixup::kindStoreARM64Page21:
2640 firstKind = ld::Fixup::kindStoreTargetAddressARM64Page21;
2641 break;
2642 case ld::Fixup::kindStoreARM64PageOff12:
2643 firstKind = ld::Fixup::kindStoreTargetAddressARM64PageOff12;
2644 break;
2645 case ld::Fixup::kindStoreARM64GOTLoadPage21:
2646 firstKind = ld::Fixup::kindStoreTargetAddressARM64GOTLoadPage21;
2647 break;
2648 case ld::Fixup::kindStoreARM64GOTLoadPageOff12:
2649 firstKind = ld::Fixup::kindStoreTargetAddressARM64GOTLoadPageOff12;
2650 break;
2651#endif
a645023d
A
2652 default:
2653 combined = false;
2654 cl = ld::Fixup::k1of2;
2655 break;
2656 }
2657 }
2658
2659 if ( target.atom != NULL ) {
2660 if ( target.atom->scope() == ld::Atom::scopeTranslationUnit ) {
2661 addFixup(src, cl, firstKind, target.atom);
2662 }
2663 else if ( (target.atom->combine() == ld::Atom::combineByNameAndContent) || (target.atom->combine() == ld::Atom::combineByNameAndReferences) ) {
2664 addFixup(src, cl, firstKind, ld::Fixup::bindingByContentBound, target.atom);
2665 }
2666 else if ( (src.atom->section().type() == ld::Section::typeCFString) && (src.offsetInAtom != 0) ) {
2667 // backing string in CFStrings should always be direct
2668 addFixup(src, cl, firstKind, target.atom);
2669 }
f80fe69f
A
2670 else if ( (src.atom == target.atom) && (target.atom->combine() == ld::Atom::combineByName) ) {
2671 // reference to self should always be direct
2672 addFixup(src, cl, firstKind, target.atom);
2673 }
a645023d
A
2674 else {
2675 // change direct fixup to by-name fixup
2676 addFixup(src, cl, firstKind, false, target.atom->name());
2677 }
2678 }
2679 else {
2680 addFixup(src, cl, firstKind, target.weakImport, target.name);
2681 }
2682 if ( target.addend == 0 ) {
2683 if ( ! combined )
2684 addFixup(src, ld::Fixup::k2of2, setKind);
2685 }
2686 else {
2687 addFixup(src, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, target.addend);
2688 addFixup(src, ld::Fixup::k3of3, setKind);
2689 }
2690}
2691
2692template <typename A>
2693void Parser<A>::addFixups(const SourceLocation& src, ld::Fixup::Kind kind, const TargetDesc& target, const TargetDesc& picBase)
2694{
2695 ld::Fixup::Cluster cl = (target.addend == 0) ? ld::Fixup::k1of4 : ld::Fixup::k1of5;
2696 if ( target.atom != NULL ) {
2697 if ( target.atom->scope() == ld::Atom::scopeTranslationUnit ) {
2698 addFixup(src, cl, ld::Fixup::kindSetTargetAddress, target.atom);
2699 }
2700 else if ( (target.atom->combine() == ld::Atom::combineByNameAndContent) || (target.atom->combine() == ld::Atom::combineByNameAndReferences) ) {
2701 addFixup(src, cl, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, target.atom);
2702 }
2703 else {
2704 addFixup(src, cl, ld::Fixup::kindSetTargetAddress, false, target.atom->name());
2705 }
2706 }
2707 else {
2708 addFixup(src, cl, ld::Fixup::kindSetTargetAddress, target.weakImport, target.name);
2709 }
2710 if ( target.addend == 0 ) {
2711 assert(picBase.atom != NULL);
2712 addFixup(src, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, picBase.atom);
2713 addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, picBase.addend);
2714 addFixup(src, ld::Fixup::k4of4, kind);
2715 }
2716 else {
2717 addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, target.addend);
2718 addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, picBase.atom);
2719 addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, picBase.addend);
2720 addFixup(src, ld::Fixup::k5of5, kind);
2721 }
2722}
2723
2724
2725
2726template <typename A>
2727uint32_t TentativeDefinitionSection<A>::computeAtomCount(class Parser<A>& parser,
2728 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 2729 const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
2730{
2731 return parser.tentativeDefinitionCount();
2732}
2733
2734template <typename A>
2735uint32_t TentativeDefinitionSection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
2736 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 2737 const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
2738{
2739 this->_beginAtoms = (Atom<A>*)p;
2740 uint32_t count = 0;
2741 for (uint32_t i=parser.undefinedStartIndex(); i < parser.undefinedEndIndex(); ++i) {
2742 const macho_nlist<P>& sym = parser.symbolFromIndex(i);
2743 if ( ((sym.n_type() & N_TYPE) == N_UNDF) && (sym.n_value() != 0) ) {
2744 uint64_t size = sym.n_value();
2745 uint8_t alignP2 = GET_COMM_ALIGN(sym.n_desc());
2746 if ( alignP2 == 0 ) {
2747 // common symbols align to their size
2748 // that is, a 4-byte common aligns to 4-bytes
2749 // if this size is not a power of two,
2750 // then round up to the next power of two
2751 alignP2 = 63 - (uint8_t)__builtin_clzll(size);
2752 if ( size != (1ULL << alignP2) )
2753 ++alignP2;
2754 }
2755 // limit alignment of extremely large commons to 2^15 bytes (8-page)
afe874b1
A
2756 if ( alignP2 > 15 )
2757 alignP2 = 15;
a645023d
A
2758 Atom<A>* allocatedSpace = (Atom<A>*)p;
2759 new (allocatedSpace) Atom<A>(*this, parser.nameFromSymbol(sym), (pint_t)ULLONG_MAX, size,
2760 ld::Atom::definitionTentative, ld::Atom::combineByName,
2761 parser.scopeFromSymbol(sym), ld::Atom::typeZeroFill, ld::Atom::symbolTableIn,
2762 parser.dontDeadStripFromSymbol(sym), false, false, ld::Atom::Alignment(alignP2) );
2763 p += sizeof(Atom<A>);
2764 ++count;
2765 }
2766 }
2767 this->_endAtoms = (Atom<A>*)p;
2768 return count;
2769}
2770
2771
2772template <typename A>
2773uint32_t AbsoluteSymbolSection<A>::computeAtomCount(class Parser<A>& parser,
2774 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 2775 const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
2776{
2777 return parser.absoluteSymbolCount();
2778}
2779
2780template <typename A>
2781uint32_t AbsoluteSymbolSection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
2782 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 2783 const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
2784{
2785 this->_beginAtoms = (Atom<A>*)p;
2786 uint32_t count = 0;
2787 for (uint32_t i=0; i < parser.symbolCount(); ++i) {
2788 const macho_nlist<P>& sym = parser.symbolFromIndex(i);
2789 if ( (sym.n_type() & N_TYPE) != N_ABS )
2790 continue;
2791 const char* absName = parser.nameFromSymbol(sym);
2792 // ignore .objc_class_name_* symbols
2793 if ( strncmp(absName, ".objc_class_name_", 17) == 0 )
2794 continue;
2795 // ignore .objc_class_name_* symbols
2796 if ( strncmp(absName, ".objc_category_name_", 20) == 0 )
2797 continue;
2798 // ignore empty *.eh symbols
2799 if ( strcmp(&absName[strlen(absName)-3], ".eh") == 0 )
2800 continue;
2801
2802 Atom<A>* allocatedSpace = (Atom<A>*)p;
2803 new (allocatedSpace) Atom<A>(*this, parser, sym, 0);
2804 p += sizeof(Atom<A>);
2805 ++count;
2806 }
2807 this->_endAtoms = (Atom<A>*)p;
2808 return count;
2809}
2810
2811template <typename A>
2812Atom<A>* AbsoluteSymbolSection<A>::findAbsAtomForValue(typename A::P::uint_t value)
2813{
2814 Atom<A>* end = this->_endAtoms;
2815 for(Atom<A>* p = this->_beginAtoms; p < end; ++p) {
2816 if ( p->_objAddress == value )
2817 return p;
2818 }
2819 return NULL;
2820}
2821
2822
2823template <typename A>
2824uint32_t Parser<A>::indirectSymbol(uint32_t indirectIndex)
2825{
2826 if ( indirectIndex >= _indirectTableCount )
2827 throw "indirect symbol index out of range";
2828 return E::get32(_indirectTable[indirectIndex]);
2829}
2830
2831template <typename A>
2832const macho_nlist<typename A::P>& Parser<A>::symbolFromIndex(uint32_t index)
2833{
2834 if ( index > _symbolCount )
2835 throw "symbol index out of range";
2836 return _symbols[index];
2837}
2838
2839template <typename A>
2840const macho_section<typename A::P>* Parser<A>::machOSectionFromSectionIndex(uint32_t index)
2841{
2842 if ( index >= _machOSectionsCount )
2843 throw "section index out of range";
2844 return &_sectionsStart[index];
2845}
2846
2847template <typename A>
2848uint32_t Parser<A>::symbolIndexFromIndirectSectionAddress(pint_t addr, const macho_section<P>* sect)
2849{
2850 uint32_t elementSize = 0;
2851 switch ( sect->flags() & SECTION_TYPE ) {
2852 case S_SYMBOL_STUBS:
2853 elementSize = sect->reserved2();
2854 break;
2855 case S_LAZY_SYMBOL_POINTERS:
2856 case S_NON_LAZY_SYMBOL_POINTERS:
2857 elementSize = sizeof(pint_t);
2858 break;
2859 default:
2860 throw "section does not use inirect symbol table";
2861 }
2862 uint32_t indexInSection = (addr - sect->addr()) / elementSize;
2863 uint32_t indexIntoIndirectTable = sect->reserved1() + indexInSection;
2864 return this->indirectSymbol(indexIntoIndirectTable);
2865}
2866
2867
2868
2869template <typename A>
2870const char* Parser<A>::nameFromSymbol(const macho_nlist<P>& sym)
2871{
2872 return &_strings[sym.n_strx()];
2873}
2874
2875template <typename A>
2876ld::Atom::Scope Parser<A>::scopeFromSymbol(const macho_nlist<P>& sym)
2877{
2878 if ( (sym.n_type() & N_EXT) == 0 )
2879 return ld::Atom::scopeTranslationUnit;
2880 else if ( (sym.n_type() & N_PEXT) != 0 )
2881 return ld::Atom::scopeLinkageUnit;
2882 else if ( this->nameFromSymbol(sym)[0] == 'l' ) // since all 'l' symbols will be remove, don't make them global
2883 return ld::Atom::scopeLinkageUnit;
2884 else
2885 return ld::Atom::scopeGlobal;
2886}
2887
2888template <typename A>
2889ld::Atom::Definition Parser<A>::definitionFromSymbol(const macho_nlist<P>& sym)
2890{
2891 switch ( sym.n_type() & N_TYPE ) {
2892 case N_ABS:
2893 return ld::Atom::definitionAbsolute;
2894 case N_SECT:
2895 return ld::Atom::definitionRegular;
2896 case N_UNDF:
2897 if ( sym.n_value() != 0 )
2898 return ld::Atom::definitionTentative;
2899 }
2900 throw "definitionFromSymbol() bad symbol";
2901}
2902
2903template <typename A>
2904ld::Atom::Combine Parser<A>::combineFromSymbol(const macho_nlist<P>& sym)
2905{
2906 if ( sym.n_desc() & N_WEAK_DEF )
2907 return ld::Atom::combineByName;
2908 else
2909 return ld::Atom::combineNever;
2910}
2911
2912
2913template <typename A>
2914ld::Atom::SymbolTableInclusion Parser<A>::inclusionFromSymbol(const macho_nlist<P>& sym)
2915{
2916 const char* symbolName = nameFromSymbol(sym);
2917 // labels beginning with 'l' (lowercase ell) are automatically removed in final linked images <rdar://problem/4571042>
2918 // labels beginning with 'L' should have been stripped by the assembler, so are stripped now
2919 if ( sym.n_desc() & REFERENCED_DYNAMICALLY )
2920 return ld::Atom::symbolTableInAndNeverStrip;
2921 else if ( symbolName[0] == 'l' )
2922 return ld::Atom::symbolTableNotInFinalLinkedImages;
2923 else if ( symbolName[0] == 'L' )
2924 return ld::Atom::symbolTableNotIn;
2925 else
2926 return ld::Atom::symbolTableIn;
2927}
2928
2929template <typename A>
2930bool Parser<A>::dontDeadStripFromSymbol(const macho_nlist<P>& sym)
2931{
2932 return ( (sym.n_desc() & (N_NO_DEAD_STRIP|REFERENCED_DYNAMICALLY)) != 0 );
2933}
2934
2935template <typename A>
2936bool Parser<A>::isThumbFromSymbol(const macho_nlist<P>& sym)
2937{
2938 return ( sym.n_desc() & N_ARM_THUMB_DEF );
2939}
2940
2941template <typename A>
2942bool Parser<A>::weakImportFromSymbol(const macho_nlist<P>& sym)
2943{
2944 return ( ((sym.n_type() & N_TYPE) == N_UNDF) && ((sym.n_desc() & N_WEAK_REF) != 0) );
2945}
2946
2947template <typename A>
2948bool Parser<A>::resolverFromSymbol(const macho_nlist<P>& sym)
2949{
2950 return ( sym.n_desc() & N_SYMBOL_RESOLVER );
2951}
2952
2953
2954/* Skip over a LEB128 value (signed or unsigned). */
2955static void
2956skip_leb128 (const uint8_t ** offset, const uint8_t * end)
2957{
2958 while (*offset != end && **offset >= 0x80)
2959 (*offset)++;
2960 if (*offset != end)
2961 (*offset)++;
2962}
2963
2964/* Read a ULEB128 into a 64-bit word. Return (uint64_t)-1 on overflow
2965 or error. On overflow, skip past the rest of the uleb128. */
2966static uint64_t
2967read_uleb128 (const uint8_t ** offset, const uint8_t * end)
2968{
2969 uint64_t result = 0;
2970 int bit = 0;
2971
2972 do {
2973 uint64_t b;
2974
2975 if (*offset == end)
2976 return (uint64_t) -1;
2977
2978 b = **offset & 0x7f;
2979
2980 if (bit >= 64 || b << bit >> bit != b)
2981 result = (uint64_t) -1;
2982 else
2983 result |= b << bit, bit += 7;
2984 } while (*(*offset)++ >= 0x80);
2985 return result;
2986}
2987
2988
2989/* Skip over a DWARF attribute of form FORM. */
2990template <typename A>
2991bool Parser<A>::skip_form(const uint8_t ** offset, const uint8_t * end, uint64_t form,
2992 uint8_t addr_size, bool dwarf64)
2993{
2994 int64_t sz=0;
2995
2996 switch (form)
2997 {
2998 case DW_FORM_addr:
2999 sz = addr_size;
3000 break;
3001
3002 case DW_FORM_block2:
3003 if (end - *offset < 2)
3004 return false;
3005 sz = 2 + A::P::E::get16(*(uint16_t*)offset);
3006 break;
3007
3008 case DW_FORM_block4:
3009 if (end - *offset < 4)
3010 return false;
3011 sz = 2 + A::P::E::get32(*(uint32_t*)offset);
3012 break;
3013
3014 case DW_FORM_data2:
3015 case DW_FORM_ref2:
3016 sz = 2;
3017 break;
3018
3019 case DW_FORM_data4:
3020 case DW_FORM_ref4:
3021 sz = 4;
3022 break;
3023
3024 case DW_FORM_data8:
3025 case DW_FORM_ref8:
3026 sz = 8;
3027 break;
3028
3029 case DW_FORM_string:
3030 while (*offset != end && **offset)
3031 ++*offset;
3032 case DW_FORM_data1:
3033 case DW_FORM_flag:
3034 case DW_FORM_ref1:
3035 sz = 1;
3036 break;
3037
3038 case DW_FORM_block:
3039 sz = read_uleb128 (offset, end);
3040 break;
3041
3042 case DW_FORM_block1:
3043 if (*offset == end)
3044 return false;
3045 sz = 1 + **offset;
3046 break;
3047
3048 case DW_FORM_sdata:
3049 case DW_FORM_udata:
3050 case DW_FORM_ref_udata:
3051 skip_leb128 (offset, end);
3052 return true;
3053
3054 case DW_FORM_strp:
3055 case DW_FORM_ref_addr:
3056 sz = 4;
3057 break;
3058
f80fe69f
A
3059 case DW_FORM_sec_offset:
3060 sz = sizeof(typename A::P::uint_t);
3061 break;
3062
3063 case DW_FORM_exprloc:
3064 sz = read_uleb128 (offset, end);
3065 break;
3066
3067 case DW_FORM_flag_present:
3068 sz = 0;
3069 break;
3070
3071 case DW_FORM_ref_sig8:
3072 sz = 8;
3073 break;
3074
a645023d
A
3075 default:
3076 return false;
3077 }
3078 if (end - *offset < sz)
3079 return false;
3080 *offset += sz;
3081 return true;
3082}
3083
3084
3085template <typename A>
3086const char* Parser<A>::getDwarfString(uint64_t form, const uint8_t* p)
3087{
3088 if ( form == DW_FORM_string )
3089 return (const char*)p;
3090 else if ( form == DW_FORM_strp ) {
3091 uint32_t offset = E::get32(*((uint32_t*)p));
3092 const char* dwarfStrings = (char*)_file->fileContent() + _file->_dwarfDebugStringSect->offset();
3093 if ( offset > _file->_dwarfDebugStringSect->size() ) {
3094 warning("unknown dwarf DW_FORM_strp (offset=0x%08X) is too big in %s\n", offset, this->_path);
3095 return NULL;
3096 }
3097 return &dwarfStrings[offset];
3098 }
3099 warning("unknown dwarf string encoding (form=%lld) in %s\n", form, this->_path);
3100 return NULL;
3101}
3102
3103
3104template <typename A>
3105struct AtomAndLineInfo {
3106 Atom<A>* atom;
3107 ld::Atom::LineInfo info;
3108};
3109
3110
3111// <rdar://problem/5591394> Add support to ld64 for N_FUN stabs when used for symbolic constants
3112// Returns whether a stabStr belonging to an N_FUN stab represents a
3113// symbolic constant rather than a function
3114template <typename A>
3115bool Parser<A>::isConstFunStabs(const char *stabStr)
3116{
3117 const char* colon;
3118 // N_FUN can be used for both constants and for functions. In case it's a constant,
3119 // the format of the stabs string is "symname:c=<value>;"
3120 // ':' cannot appear in the symbol name, except if it's an Objective-C method
3121 // (in which case the symbol name starts with + or -, and then it's definitely
3122 // not a constant)
3123 return (stabStr != NULL) && (stabStr[0] != '+') && (stabStr[0] != '-')
3124 && ((colon = strchr(stabStr, ':')) != NULL)
3125 && (colon[1] == 'c') && (colon[2] == '=');
3126}
3127
3128
3129template <typename A>
3130void Parser<A>::parseDebugInfo()
3131{
3132 // check for dwarf __debug_info section
3133 if ( _file->_dwarfDebugInfoSect == NULL ) {
3134 // if no DWARF debug info, look for stabs
3135 this->parseStabs();
3136 return;
3137 }
3138 if ( _file->_dwarfDebugInfoSect->size() == 0 )
3139 return;
3140
3141 uint64_t stmtList;
b1f7435d
A
3142 const char* tuDir;
3143 const char* tuName;
3144 if ( !read_comp_unit(&tuName, &tuDir, &stmtList) ) {
a645023d 3145 // if can't parse dwarf, warn and give up
b1f7435d 3146 _file->_dwarfTranslationUnitPath = NULL;
a645023d
A
3147 warning("can't parse dwarf compilation unit info in %s", _path);
3148 _file->_debugInfoKind = ld::relocatable::File::kDebugInfoNone;
3149 return;
3150 }
d425e388 3151 if ( (tuName != NULL) && (tuName[0] == '/') ) {
b1f7435d
A
3152 _file->_dwarfTranslationUnitPath = tuName;
3153 }
3154 else if ( (tuDir != NULL) && (tuName != NULL) ) {
3155 asprintf((char**)&(_file->_dwarfTranslationUnitPath), "%s/%s", tuDir, tuName);
3156 }
3157 else if ( tuDir == NULL ) {
3158 _file->_dwarfTranslationUnitPath = tuName;
3159 }
3160 else {
3161 _file->_dwarfTranslationUnitPath = NULL;
3162 }
a645023d
A
3163
3164 // add line number info to atoms from dwarf
3165 std::vector<AtomAndLineInfo<A> > entries;
3166 entries.reserve(64);
3167 if ( _file->_debugInfoKind == ld::relocatable::File::kDebugInfoDwarf ) {
3168 // file with just data will have no __debug_line info
3169 if ( (_file->_dwarfDebugLineSect != NULL) && (_file->_dwarfDebugLineSect->size() != 0) ) {
3170 // validate stmt_list
3171 if ( (stmtList != (uint64_t)-1) && (stmtList < _file->_dwarfDebugLineSect->size()) ) {
3172 const uint8_t* debug_line = (uint8_t*)_file->fileContent() + _file->_dwarfDebugLineSect->offset();
3173 struct line_reader_data* lines = line_open(&debug_line[stmtList],
3174 _file->_dwarfDebugLineSect->size() - stmtList, E::little_endian);
3175 struct line_info result;
3176 Atom<A>* curAtom = NULL;
3177 uint32_t curAtomOffset = 0;
3178 uint32_t curAtomAddress = 0;
3179 uint32_t curAtomSize = 0;
3180 std::map<uint32_t,const char*> dwarfIndexToFile;
3181 if ( lines != NULL ) {
3182 while ( line_next(lines, &result, line_stop_pc) ) {
3183 //fprintf(stderr, "curAtom=%p, result.pc=0x%llX, result.line=%llu, result.end_of_sequence=%d,"
3184 // " curAtomAddress=0x%X, curAtomSize=0x%X\n",
3185 // curAtom, result.pc, result.line, result.end_of_sequence, curAtomAddress, curAtomSize);
3186 // work around weird debug line table compiler generates if no functions in __text section
3187 if ( (curAtom == NULL) && (result.pc == 0) && result.end_of_sequence && (result.file == 1))
3188 continue;
3189 // for performance, see if in next pc is in current atom
3190 if ( (curAtom != NULL) && (curAtomAddress <= result.pc) && (result.pc < (curAtomAddress+curAtomSize)) ) {
3191 curAtomOffset = result.pc - curAtomAddress;
3192 }
3193 // or pc at end of current atom
3194 else if ( result.end_of_sequence && (curAtom != NULL) && (result.pc == (curAtomAddress+curAtomSize)) ) {
3195 curAtomOffset = result.pc - curAtomAddress;
3196 }
3197 // or only one function that is a one line function
3198 else if ( result.end_of_sequence && (curAtom == NULL) && (this->findAtomByAddress(0) != NULL) && (result.pc == this->findAtomByAddress(0)->size()) ) {
3199 curAtom = this->findAtomByAddress(0);
3200 curAtomOffset = result.pc - curAtom->objectAddress();
3201 curAtomAddress = curAtom->objectAddress();
3202 curAtomSize = curAtom->size();
3203 }
3204 else {
3205 // do slow look up of atom by address
3206 try {
3207 curAtom = this->findAtomByAddress(result.pc);
3208 }
3209 catch (...) {
3210 // in case of bug in debug info, don't abort link, just limp on
3211 curAtom = NULL;
3212 }
3213 if ( curAtom == NULL )
3214 break; // file has line info but no functions
3215 if ( result.end_of_sequence && (curAtomAddress+curAtomSize < result.pc) ) {
3216 // a one line function can be returned by line_next() as one entry with pc at end of blob
3217 // look for alt atom starting at end of previous atom
3218 uint32_t previousEnd = curAtomAddress+curAtomSize;
3219 Atom<A>* alt = this->findAtomByAddressOrNullIfStub(previousEnd);
3220 if ( alt == NULL )
3221 continue; // ignore spurious debug info for stubs
3222 if ( result.pc <= alt->objectAddress() + alt->size() ) {
3223 curAtom = alt;
3224 curAtomOffset = result.pc - alt->objectAddress();
3225 curAtomAddress = alt->objectAddress();
3226 curAtomSize = alt->size();
3227 }
3228 else {
3229 curAtomOffset = result.pc - curAtom->objectAddress();
3230 curAtomAddress = curAtom->objectAddress();
3231 curAtomSize = curAtom->size();
3232 }
3233 }
3234 else {
3235 curAtomOffset = result.pc - curAtom->objectAddress();
3236 curAtomAddress = curAtom->objectAddress();
3237 curAtomSize = curAtom->size();
3238 }
3239 }
3240 const char* filename;
3241 std::map<uint32_t,const char*>::iterator pos = dwarfIndexToFile.find(result.file);
3242 if ( pos == dwarfIndexToFile.end() ) {
3243 filename = line_file(lines, result.file);
3244 dwarfIndexToFile[result.file] = filename;
3245 }
3246 else {
3247 filename = pos->second;
3248 }
3249 // only record for ~8000 line info records per function
3250 if ( curAtom->roomForMoreLineInfoCount() ) {
3251 AtomAndLineInfo<A> entry;
3252 entry.atom = curAtom;
3253 entry.info.atomOffset = curAtomOffset;
3254 entry.info.fileName = filename;
3255 entry.info.lineNumber = result.line;
3256 //fprintf(stderr, "addr=0x%08llX, line=%lld, file=%s, atom=%s, atom.size=0x%X, end=%d\n",
3257 // result.pc, result.line, filename, curAtom->name(), curAtomSize, result.end_of_sequence);
3258 entries.push_back(entry);
3259 curAtom->incrementLineInfoCount();
3260 }
3261 if ( result.end_of_sequence ) {
3262 curAtom = NULL;
3263 }
3264 }
3265 line_free(lines);
3266 }
3267 }
3268 }
3269 }
3270
3271 // assign line info start offset for each atom
3272 uint8_t* p = _file->_atomsArray;
3273 uint32_t liOffset = 0;
3274 for(int i=_file->_atomsArrayCount; i > 0; --i) {
3275 Atom<A>* atom = (Atom<A>*)p;
3276 atom->_lineInfoStartIndex = liOffset;
3277 liOffset += atom->_lineInfoCount;
3278 atom->_lineInfoCount = 0;
3279 p += sizeof(Atom<A>);
3280 }
3281 assert(liOffset == entries.size());
3282 _file->_lineInfos.reserve(liOffset);
3283
3284 // copy each line info for each atom
3285 for (typename std::vector<AtomAndLineInfo<A> >::iterator it = entries.begin(); it != entries.end(); ++it) {
3286 uint32_t slot = it->atom->_lineInfoStartIndex + it->atom->_lineInfoCount;
3287 _file->_lineInfos[slot] = it->info;
3288 it->atom->_lineInfoCount++;
3289 }
3290
3291 // done with temp vector
3292 entries.clear();
3293}
3294
3295template <typename A>
3296void Parser<A>::parseStabs()
3297{
3298 // scan symbol table for stabs entries
3299 Atom<A>* currentAtom = NULL;
3300 pint_t currentAtomAddress = 0;
3301 enum { start, inBeginEnd, inFun } state = start;
3302 for (uint32_t symbolIndex = 0; symbolIndex < _symbolCount; ++symbolIndex ) {
3303 const macho_nlist<P>& sym = this->symbolFromIndex(symbolIndex);
3304 bool useStab = true;
3305 uint8_t type = sym.n_type();
3306 const char* symString = (sym.n_strx() != 0) ? this->nameFromSymbol(sym) : NULL;
3307 if ( (type & N_STAB) != 0 ) {
3308 _file->_debugInfoKind = (_hasUUID ? ld::relocatable::File::kDebugInfoStabsUUID : ld::relocatable::File::kDebugInfoStabs);
3309 ld::relocatable::File::Stab stab;
3310 stab.atom = NULL;
3311 stab.type = type;
3312 stab.other = sym.n_sect();
3313 stab.desc = sym.n_desc();
3314 stab.value = sym.n_value();
3315 stab.string = NULL;
3316 switch (state) {
3317 case start:
3318 switch (type) {
3319 case N_BNSYM:
3320 // beginning of function block
3321 state = inBeginEnd;
3322 // fall into case to lookup atom by addresss
3323 case N_LCSYM:
3324 case N_STSYM:
3325 currentAtomAddress = sym.n_value();
3326 currentAtom = this->findAtomByAddress(currentAtomAddress);
3327 if ( currentAtom != NULL ) {
3328 stab.atom = currentAtom;
3329 stab.string = symString;
3330 }
3331 else {
3332 fprintf(stderr, "can't find atom for stabs BNSYM at %08llX in %s",
3333 (uint64_t)sym.n_value(), _path);
3334 }
3335 break;
3336 case N_SO:
3337 case N_OSO:
3338 case N_OPT:
3339 case N_LSYM:
3340 case N_RSYM:
3341 case N_PSYM:
3342 // not associated with an atom, just copy
3343 stab.string = symString;
3344 break;
3345 case N_GSYM:
3346 {
3347 // n_value field is NOT atom address ;-(
3348 // need to find atom by name match
3349 const char* colon = strchr(symString, ':');
3350 if ( colon != NULL ) {
3351 // build underscore leading name
3352 int nameLen = colon - symString;
3353 char symName[nameLen+2];
3354 strlcpy(&symName[1], symString, nameLen+1);
3355 symName[0] = '_';
3356 symName[nameLen+1] = '\0';
3357 currentAtom = this->findAtomByName(symName);
3358 if ( currentAtom != NULL ) {
3359 stab.atom = currentAtom;
3360 stab.string = symString;
3361 }
3362 }
3363 else {
3364 // might be a debug-note without trailing :G()
3365 currentAtom = this->findAtomByName(symString);
3366 if ( currentAtom != NULL ) {
3367 stab.atom = currentAtom;
3368 stab.string = symString;
3369 }
3370 }
3371 if ( stab.atom == NULL ) {
3372 // ld_classic added bogus GSYM stabs for old style dtrace probes
3373 if ( (strncmp(symString, "__dtrace_probe$", 15) != 0) )
3374 warning("can't find atom for N_GSYM stabs %s in %s", symString, _path);
3375 useStab = false;
3376 }
3377 break;
3378 }
3379 case N_FUN:
3380 if ( isConstFunStabs(symString) ) {
3381 // constant not associated with a function
3382 stab.string = symString;
3383 }
3384 else {
3385 // old style stabs without BNSYM
3386 state = inFun;
3387 currentAtomAddress = sym.n_value();
3388 currentAtom = this->findAtomByAddress(currentAtomAddress);
3389 if ( currentAtom != NULL ) {
3390 stab.atom = currentAtom;
3391 stab.string = symString;
3392 }
3393 else {
3394 warning("can't find atom for stabs FUN at %08llX in %s",
3395 (uint64_t)currentAtomAddress, _path);
3396 }
3397 }
3398 break;
3399 case N_SOL:
3400 case N_SLINE:
3401 stab.string = symString;
3402 // old stabs
3403 break;
3404 case N_BINCL:
3405 case N_EINCL:
3406 case N_EXCL:
3407 stab.string = symString;
3408 // -gfull built .o file
3409 break;
3410 default:
3411 warning("unknown stabs type 0x%X in %s", type, _path);
3412 }
3413 break;
3414 case inBeginEnd:
3415 stab.atom = currentAtom;
3416 switch (type) {
3417 case N_ENSYM:
3418 state = start;
3419 currentAtom = NULL;
3420 break;
3421 case N_LCSYM:
3422 case N_STSYM:
3423 {
3424 Atom<A>* nestedAtom = this->findAtomByAddress(sym.n_value());
3425 if ( nestedAtom != NULL ) {
3426 stab.atom = nestedAtom;
3427 stab.string = symString;
3428 }
3429 else {
3430 warning("can't find atom for stabs 0x%X at %08llX in %s",
3431 type, (uint64_t)sym.n_value(), _path);
3432 }
3433 break;
3434 }
3435 case N_LBRAC:
3436 case N_RBRAC:
3437 case N_SLINE:
3438 // adjust value to be offset in atom
3439 stab.value -= currentAtomAddress;
3440 default:
3441 stab.string = symString;
3442 break;
3443 }
3444 break;
3445 case inFun:
3446 switch (type) {
3447 case N_FUN:
3448 if ( isConstFunStabs(symString) ) {
3449 stab.atom = currentAtom;
3450 stab.string = symString;
3451 }
3452 else {
3453 if ( sym.n_sect() != 0 ) {
3454 // found another start stab, must be really old stabs...
3455 currentAtomAddress = sym.n_value();
3456 currentAtom = this->findAtomByAddress(currentAtomAddress);
3457 if ( currentAtom != NULL ) {
3458 stab.atom = currentAtom;
3459 stab.string = symString;
3460 }
3461 else {
3462 warning("can't find atom for stabs FUN at %08llX in %s",
3463 (uint64_t)currentAtomAddress, _path);
3464 }
3465 }
3466 else {
3467 // found ending stab, switch back to start state
3468 stab.string = symString;
3469 stab.atom = currentAtom;
3470 state = start;
3471 currentAtom = NULL;
3472 }
3473 }
3474 break;
3475 case N_LBRAC:
3476 case N_RBRAC:
3477 case N_SLINE:
3478 // adjust value to be offset in atom
3479 stab.value -= currentAtomAddress;
3480 stab.atom = currentAtom;
3481 break;
3482 case N_SO:
3483 stab.string = symString;
3484 state = start;
3485 break;
3486 default:
3487 stab.atom = currentAtom;
3488 stab.string = symString;
3489 break;
3490 }
3491 break;
3492 }
3493 // add to list of stabs for this .o file
3494 if ( useStab )
3495 _file->_stabs.push_back(stab);
3496 }
3497 }
3498}
3499
3500
3501
3502// Look at the compilation unit DIE and determine
3503// its NAME, compilation directory (in COMP_DIR) and its
3504// line number information offset (in STMT_LIST). NAME and COMP_DIR
3505// may be NULL (especially COMP_DIR) if they are not in the .o file;
3506// STMT_LIST will be (uint64_t) -1.
3507//
3508// At present this assumes that there's only one compilation unit DIE.
3509//
3510template <typename A>
3511bool Parser<A>::read_comp_unit(const char ** name, const char ** comp_dir,
3512 uint64_t *stmt_list)
3513{
3514 const uint8_t * debug_info;
3515 const uint8_t * debug_abbrev;
3516 const uint8_t * di;
3517 const uint8_t * da;
3518 const uint8_t * end;
3519 const uint8_t * enda;
3520 uint64_t sz;
3521 uint16_t vers;
3522 uint64_t abbrev_base;
3523 uint64_t abbrev;
3524 uint8_t address_size;
3525 bool dwarf64;
3526
3527 *name = NULL;
3528 *comp_dir = NULL;
3529 *stmt_list = (uint64_t) -1;
3530
3531 if ( (_file->_dwarfDebugInfoSect == NULL) || (_file->_dwarfDebugAbbrevSect == NULL) )
3532 return false;
3533
3534 debug_info = (uint8_t*)_file->fileContent() + _file->_dwarfDebugInfoSect->offset();
3535 debug_abbrev = (uint8_t*)_file->fileContent() + _file->_dwarfDebugAbbrevSect->offset();
3536 di = debug_info;
3537
3538 if (_file->_dwarfDebugInfoSect->size() < 12)
3539 /* Too small to be a real debug_info section. */
3540 return false;
3541 sz = A::P::E::get32(*(uint32_t*)di);
3542 di += 4;
3543 dwarf64 = sz == 0xffffffff;
3544 if (dwarf64)
3545 sz = A::P::E::get64(*(uint64_t*)di), di += 8;
3546 else if (sz > 0xffffff00)
3547 /* Unknown dwarf format. */
3548 return false;
3549
3550 /* Verify claimed size. */
3551 if (sz + (di - debug_info) > _file->_dwarfDebugInfoSect->size() || sz <= (dwarf64 ? 23 : 11))
3552 return false;
3553
3554 vers = A::P::E::get16(*(uint16_t*)di);
3555 if (vers < 2 || vers > 3)
3556 /* DWARF version wrong for this code.
3557 Chances are we could continue anyway, but we don't know for sure. */
3558 return false;
3559 di += 2;
3560
3561 /* Find the debug_abbrev section. */
3562 abbrev_base = dwarf64 ? A::P::E::get64(*(uint64_t*)di) : A::P::E::get32(*(uint32_t*)di);
3563 di += dwarf64 ? 8 : 4;
3564
3565 if (abbrev_base > _file->_dwarfDebugAbbrevSect->size())
3566 return false;
3567 da = debug_abbrev + abbrev_base;
3568 enda = debug_abbrev + _file->_dwarfDebugAbbrevSect->size();
3569
3570 address_size = *di++;
3571
3572 /* Find the abbrev number we're looking for. */
3573 end = di + sz;
3574 abbrev = read_uleb128 (&di, end);
3575 if (abbrev == (uint64_t) -1)
3576 return false;
3577
3578 /* Skip through the debug_abbrev section looking for that abbrev. */
3579 for (;;)
3580 {
3581 uint64_t this_abbrev = read_uleb128 (&da, enda);
3582 uint64_t attr;
3583
3584 if (this_abbrev == abbrev)
3585 /* This is almost always taken. */
3586 break;
3587 skip_leb128 (&da, enda); /* Skip the tag. */
3588 if (da == enda)
3589 return false;
3590 da++; /* Skip the DW_CHILDREN_* value. */
3591
3592 do {
3593 attr = read_uleb128 (&da, enda);
3594 skip_leb128 (&da, enda);
3595 } while (attr != 0 && attr != (uint64_t) -1);
3596 if (attr != 0)
3597 return false;
3598 }
3599
3600 /* Check that the abbrev is one for a DW_TAG_compile_unit. */
3601 if (read_uleb128 (&da, enda) != DW_TAG_compile_unit)
3602 return false;
3603 if (da == enda)
3604 return false;
3605 da++; /* Skip the DW_CHILDREN_* value. */
3606
3607 /* Now, go through the DIE looking for DW_AT_name,
3608 DW_AT_comp_dir, and DW_AT_stmt_list. */
3609 for (;;)
3610 {
3611 uint64_t attr = read_uleb128 (&da, enda);
3612 uint64_t form = read_uleb128 (&da, enda);
3613
3614 if (attr == (uint64_t) -1)
3615 return false;
3616 else if (attr == 0)
3617 return true;
3618
3619 if (form == DW_FORM_indirect)
3620 form = read_uleb128 (&di, end);
3621
3622 if (attr == DW_AT_name)
3623 *name = getDwarfString(form, di);
3624 else if (attr == DW_AT_comp_dir)
3625 *comp_dir = getDwarfString(form, di);
3626 else if (attr == DW_AT_stmt_list && form == DW_FORM_data4)
3627 *stmt_list = A::P::E::get32(*(uint32_t*)di);
3628 else if (attr == DW_AT_stmt_list && form == DW_FORM_data8)
3629 *stmt_list = A::P::E::get64(*(uint64_t*)di);
3630 if (! skip_form (&di, end, form, address_size, dwarf64))
3631 return false;
3632 }
3633}
3634
3635
3636
3637template <typename A>
3638File<A>::~File()
3639{
3640 free(_sectionsArray);
3641 free(_atomsArray);
3642}
3643
3644template <typename A>
b1f7435d 3645const char* File<A>::translationUnitSource() const
a645023d 3646{
b1f7435d 3647 return _dwarfTranslationUnitPath;
a645023d
A
3648}
3649
3650
3651
3652template <typename A>
3653bool File<A>::forEachAtom(ld::File::AtomHandler& handler) const
3654{
3655 handler.doFile(*this);
3656 uint8_t* p = _atomsArray;
3657 for(int i=_atomsArrayCount; i > 0; --i) {
3658 handler.doAtom(*((Atom<A>*)p));
3659 p += sizeof(Atom<A>);
3660 }
3661 return (_atomsArrayCount != 0);
3662}
3663
3664template <typename A>
3665const char* Section<A>::makeSegmentName(const macho_section<typename A::P>* sect)
3666{
3667 // mach-o section record only has room for 16-byte seg/sect names
3668 // so a 16-byte name has no trailing zero
3669 const char* name = sect->segname();
3670 if ( strlen(name) < 16 )
3671 return name;
3672 char* tmp = new char[17];
3673 strlcpy(tmp, name, 17);
3674 return tmp;
3675}
3676
3677template <typename A>
3678const char* Section<A>::makeSectionName(const macho_section<typename A::P>* sect)
3679{
3680 const char* name = sect->sectname();
3681 if ( strlen(name) < 16 )
3682 return name;
3683
3684 // special case common long section names so we don't have to malloc
3685 if ( strncmp(sect->sectname(), "__objc_classrefs", 16) == 0 )
3686 return "__objc_classrefs";
3687 if ( strncmp(sect->sectname(), "__objc_classlist", 16) == 0 )
3688 return "__objc_classlist";
3689 if ( strncmp(sect->sectname(), "__objc_nlclslist", 16) == 0 )
3690 return "__objc_nlclslist";
3691 if ( strncmp(sect->sectname(), "__objc_nlcatlist", 16) == 0 )
3692 return "__objc_nlcatlist";
3693 if ( strncmp(sect->sectname(), "__objc_protolist", 16) == 0 )
3694 return "__objc_protolist";
3695 if ( strncmp(sect->sectname(), "__objc_protorefs", 16) == 0 )
3696 return "__objc_protorefs";
3697 if ( strncmp(sect->sectname(), "__objc_superrefs", 16) == 0 )
3698 return "__objc_superrefs";
3699 if ( strncmp(sect->sectname(), "__objc_imageinfo", 16) == 0 )
3700 return "__objc_imageinfo";
3701 if ( strncmp(sect->sectname(), "__objc_stringobj", 16) == 0 )
3702 return "__objc_stringobj";
3703 if ( strncmp(sect->sectname(), "__gcc_except_tab", 16) == 0 )
3704 return "__gcc_except_tab";
3705
3706 char* tmp = new char[17];
3707 strlcpy(tmp, name, 17);
3708 return tmp;
3709}
3710
3711template <typename A>
3712bool Section<A>::readable(const macho_section<typename A::P>* sect)
3713{
3714 return true;
3715}
3716
3717template <typename A>
3718bool Section<A>::writable(const macho_section<typename A::P>* sect)
3719{
3720 // mach-o .o files do not contain segment permissions
3721 // we just know TEXT is special
3722 return ( strcmp(sect->segname(), "__TEXT") != 0 );
3723}
3724
3725template <typename A>
3726bool Section<A>::exectuable(const macho_section<typename A::P>* sect)
3727{
3728 // mach-o .o files do not contain segment permissions
3729 // we just know TEXT is special
3730 return ( strcmp(sect->segname(), "__TEXT") == 0 );
3731}
3732
3733
3734template <typename A>
3735ld::Section::Type Section<A>::sectionType(const macho_section<typename A::P>* sect)
3736{
3737 switch ( sect->flags() & SECTION_TYPE ) {
3738 case S_ZEROFILL:
3739 return ld::Section::typeZeroFill;
3740 case S_CSTRING_LITERALS:
3741 if ( (strcmp(sect->sectname(), "__cstring") == 0) && (strcmp(sect->segname(), "__TEXT") == 0) )
3742 return ld::Section::typeCString;
3743 else
3744 return ld::Section::typeNonStdCString;
3745 case S_4BYTE_LITERALS:
3746 return ld::Section::typeLiteral4;
3747 case S_8BYTE_LITERALS:
3748 return ld::Section::typeLiteral8;
3749 case S_LITERAL_POINTERS:
3750 return ld::Section::typeCStringPointer;
3751 case S_NON_LAZY_SYMBOL_POINTERS:
3752 return ld::Section::typeNonLazyPointer;
3753 case S_LAZY_SYMBOL_POINTERS:
3754 return ld::Section::typeLazyPointer;
3755 case S_SYMBOL_STUBS:
3756 return ld::Section::typeStub;
3757 case S_MOD_INIT_FUNC_POINTERS:
3758 return ld::Section::typeInitializerPointers;
3759 case S_MOD_TERM_FUNC_POINTERS:
3760 return ld::Section::typeTerminatorPointers;
3761 case S_INTERPOSING:
3762 return ld::Section::typeUnclassified;
3763 case S_16BYTE_LITERALS:
3764 return ld::Section::typeLiteral16;
3765 case S_REGULAR:
3766 case S_COALESCED:
3767 if ( sect->flags() & S_ATTR_PURE_INSTRUCTIONS ) {
3768 return ld::Section::typeCode;
3769 }
3770 else if ( strcmp(sect->segname(), "__TEXT") == 0 ) {
3771 if ( strcmp(sect->sectname(), "__eh_frame") == 0 )
3772 return ld::Section::typeCFI;
3773 else if ( strcmp(sect->sectname(), "__ustring") == 0 )
3774 return ld::Section::typeUTF16Strings;
3775 else if ( strcmp(sect->sectname(), "__textcoal_nt") == 0 )
3776 return ld::Section::typeCode;
3777 else if ( strcmp(sect->sectname(), "__StaticInit") == 0 )
3778 return ld::Section::typeCode;
b2fa67a8
A
3779 else if ( strcmp(sect->sectname(), "__constructor") == 0 )
3780 return ld::Section::typeInitializerPointers;
a645023d
A
3781 }
3782 else if ( strcmp(sect->segname(), "__DATA") == 0 ) {
3783 if ( strcmp(sect->sectname(), "__cfstring") == 0 )
3784 return ld::Section::typeCFString;
3785 else if ( strcmp(sect->sectname(), "__dyld") == 0 )
3786 return ld::Section::typeDyldInfo;
3787 else if ( strcmp(sect->sectname(), "__program_vars") == 0 )
3788 return ld::Section::typeDyldInfo;
3789 else if ( strncmp(sect->sectname(), "__objc_classrefs", 16) == 0 )
3790 return ld::Section::typeObjCClassRefs;
3791 else if ( strcmp(sect->sectname(), "__objc_catlist") == 0 )
3792 return ld::Section::typeObjC2CategoryList;
3793 }
3794 else if ( strcmp(sect->segname(), "__OBJC") == 0 ) {
3795 if ( strcmp(sect->sectname(), "__class") == 0 )
3796 return ld::Section::typeObjC1Classes;
3797 }
3798 break;
3799 case S_THREAD_LOCAL_REGULAR:
3800 return ld::Section::typeTLVInitialValues;
3801 case S_THREAD_LOCAL_ZEROFILL:
3802 return ld::Section::typeTLVZeroFill;
3803 case S_THREAD_LOCAL_VARIABLES:
3804 return ld::Section::typeTLVDefs;
3805 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
3806 return ld::Section::typeTLVInitializerPointers;
3807 }
3808 return ld::Section::typeUnclassified;
3809}
3810
3811
3812template <typename A>
3813Atom<A>* Section<A>::findContentAtomByAddress(pint_t addr, class Atom<A>* start, class Atom<A>* end)
3814{
3815 // do a binary search of atom array
3816 uint32_t atomCount = end - start;
3817 Atom<A>* base = start;
3818 for (uint32_t n = atomCount; n > 0; n /= 2) {
3819 Atom<A>* pivot = &base[n/2];
3820 pint_t atomStartAddr = pivot->_objAddress;
3821 pint_t atomEndAddr = atomStartAddr + pivot->_size;
3822 if ( atomStartAddr <= addr ) {
3823 // address in normal atom
3824 if (addr < atomEndAddr)
3825 return pivot;
3826 // address in "end" label (but not in alias)
3827 if ( (pivot->_size == 0) && (addr == atomEndAddr) && !pivot->isAlias() )
3828 return pivot;
3829 }
3830 if ( addr >= atomEndAddr ) {
3831 // key > pivot
3832 // move base to atom after pivot
3833 base = &pivot[1];
3834 --n;
3835 }
3836 else {
3837 // key < pivot
3838 // keep same base
3839 }
3840 }
3841 return NULL;
3842}
3843
3844template <typename A>
3845ld::Atom::Alignment Section<A>::alignmentForAddress(pint_t addr)
3846{
3847 const uint32_t sectionAlignment = this->_machOSection->align();
3848 return ld::Atom::Alignment(sectionAlignment, (addr % (1 << sectionAlignment)));
3849}
3850
3851template <typename A>
3852uint32_t Section<A>::sectionNum(class Parser<A>& parser) const
3853{
3854 if ( _machOSection == NULL )
3855 return 0;
3856 else
3857 return 1 + (this->_machOSection - parser.firstMachOSection());
3858}
3859
a645023d
A
3860// arm does not have zero cost exceptions
3861template <> uint32_t CFISection<arm>::cfiCount() { return 0; }
3862
3863template <typename A>
3864uint32_t CFISection<A>::cfiCount()
3865{
3866 // create ObjectAddressSpace object for use by libunwind
3867 OAS oas(*this, (uint8_t*)this->file().fileContent()+this->_machOSection->offset());
3868 return libunwind::CFI_Parser<OAS>::getCFICount(oas,
3869 this->_machOSection->addr(), this->_machOSection->size());
3870}
3871
3872template <typename A>
3873void CFISection<A>::warnFunc(void* ref, uint64_t funcAddr, const char* msg)
3874{
3875 Parser<A>* parser = (Parser<A>*)ref;
f80fe69f 3876 if ( ! parser->warnUnwindConversionProblems() )
a645023d
A
3877 return;
3878 if ( funcAddr != CFI_INVALID_ADDRESS ) {
3879 // atoms are not constructed yet, so scan symbol table for labels
3880 const char* name = parser->scanSymbolTableForAddress(funcAddr);
3881 warning("could not create compact unwind for %s: %s", name, msg);
3882 }
3883 else {
3884 warning("could not create compact unwind: %s", msg);
3885 }
3886}
3887
3888template <>
3889bool CFISection<x86_64>::needsRelocating()
3890{
3891 return true;
3892}
3893
f80fe69f
A
3894template <>
3895bool CFISection<arm64>::needsRelocating()
3896{
3897 return true;
3898}
3899
a645023d
A
3900template <typename A>
3901bool CFISection<A>::needsRelocating()
3902{
3903 return false;
3904}
3905
3906template <>
f80fe69f 3907void CFISection<x86_64>::cfiParse(class Parser<x86_64>& parser, uint8_t* buffer,
a645023d 3908 libunwind::CFI_Atom_Info<CFISection<x86_64>::OAS>::CFI_Atom_Info cfiArray[],
f80fe69f 3909 uint32_t& count, const pint_t cuStarts[], uint32_t cuCount)
a645023d
A
3910{
3911 // copy __eh_frame data to buffer
3912 memcpy(buffer, file().fileContent() + this->_machOSection->offset(), this->_machOSection->size());
3913
3914 // and apply relocations
3915 const macho_relocation_info<P>* relocs = (macho_relocation_info<P>*)(file().fileContent() + this->_machOSection->reloff());
3916 const macho_relocation_info<P>* relocsEnd = &relocs[this->_machOSection->nreloc()];
3917 for (const macho_relocation_info<P>* reloc = relocs; reloc < relocsEnd; ++reloc) {
3918 uint64_t value = 0;
3919 switch ( reloc->r_type() ) {
3920 case X86_64_RELOC_SUBTRACTOR:
3921 value = 0 - parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
3922 ++reloc;
3923 if ( reloc->r_extern() )
3924 value += parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
3925 break;
3926 case X86_64_RELOC_UNSIGNED:
3927 value = parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
3928 break;
3929 case X86_64_RELOC_GOT:
3930 // this is used for the reference to the personality function in CIEs
3931 // store the symbol number of the personality function for later use as a Fixup
3932 value = reloc->r_symbolnum();
3933 break;
3934 default:
3935 fprintf(stderr, "CFISection::cfiParse() unexpected relocation type at r_address=0x%08X\n", reloc->r_address());
3936 break;
3937 }
3938 uint64_t* p64;
3939 uint32_t* p32;
3940 switch ( reloc->r_length() ) {
3941 case 3:
3942 p64 = (uint64_t*)&buffer[reloc->r_address()];
3943 E::set64(*p64, value + E::get64(*p64));
3944 break;
3945 case 2:
3946 p32 = (uint32_t*)&buffer[reloc->r_address()];
3947 E::set32(*p32, value + E::get32(*p32));
3948 break;
3949 default:
3950 fprintf(stderr, "CFISection::cfiParse() unexpected relocation size at r_address=0x%08X\n", reloc->r_address());
3951 break;
3952 }
3953 }
3954
a645023d
A
3955 // create ObjectAddressSpace object for use by libunwind
3956 OAS oas(*this, buffer);
3957
3958 // use libuwind to parse __eh_frame data into array of CFI_Atom_Info
3959 const char* msg;
3960 msg = libunwind::DwarfInstructions<OAS, libunwind::Registers_x86_64>::parseCFIs(
3961 oas, this->_machOSection->addr(), this->_machOSection->size(),
f80fe69f 3962 cuStarts, cuCount, parser.keepDwarfUnwind(), parser.forceDwarfConversion(), cfiArray, count, (void*)&parser, warnFunc);
a645023d
A
3963 if ( msg != NULL )
3964 throwf("malformed __eh_frame section: %s", msg);
3965}
3966
3967template <>
3968void CFISection<x86>::cfiParse(class Parser<x86>& parser, uint8_t* buffer,
3969 libunwind::CFI_Atom_Info<CFISection<x86>::OAS>::CFI_Atom_Info cfiArray[],
f80fe69f 3970 uint32_t& count, const pint_t cuStarts[], uint32_t cuCount)
a645023d
A
3971{
3972 // create ObjectAddressSpace object for use by libunwind
3973 OAS oas(*this, (uint8_t*)this->file().fileContent()+this->_machOSection->offset());
3974
3975 // use libuwind to parse __eh_frame data into array of CFI_Atom_Info
3976 const char* msg;
3977 msg = libunwind::DwarfInstructions<OAS, libunwind::Registers_x86>::parseCFIs(
3978 oas, this->_machOSection->addr(), this->_machOSection->size(),
f80fe69f 3979 cuStarts, cuCount, parser.keepDwarfUnwind(), parser.forceDwarfConversion(), cfiArray, count, (void*)&parser, warnFunc);
a645023d
A
3980 if ( msg != NULL )
3981 throwf("malformed __eh_frame section: %s", msg);
3982}
3983
3984
a645023d 3985
a645023d
A
3986
3987template <>
3988void CFISection<arm>::cfiParse(class Parser<arm>& parser, uint8_t* buffer,
3989 libunwind::CFI_Atom_Info<CFISection<arm>::OAS>::CFI_Atom_Info cfiArray[],
f80fe69f 3990 uint32_t& count, const pint_t cuStarts[], uint32_t cuCount)
a645023d
A
3991{
3992 // arm does not use zero cost exceptions
3993 assert(count == 0);
3994}
3995
f80fe69f
A
3996template <>
3997void CFISection<arm64>::cfiParse(class Parser<arm64>& parser, uint8_t* buffer,
3998 libunwind::CFI_Atom_Info<CFISection<arm64>::OAS>::CFI_Atom_Info cfiArray[],
3999 uint32_t& count, const pint_t cuStarts[], uint32_t cuCount)
4000{
4001 // copy __eh_frame data to buffer
4002 memcpy(buffer, file().fileContent() + this->_machOSection->offset(), this->_machOSection->size());
4003
4004 // and apply relocations
4005 const macho_relocation_info<P>* relocs = (macho_relocation_info<P>*)(file().fileContent() + this->_machOSection->reloff());
4006 const macho_relocation_info<P>* relocsEnd = &relocs[this->_machOSection->nreloc()];
4007 for (const macho_relocation_info<P>* reloc = relocs; reloc < relocsEnd; ++reloc) {
4008 uint64_t* p64 = (uint64_t*)&buffer[reloc->r_address()];
4009 uint32_t* p32 = (uint32_t*)&buffer[reloc->r_address()];
4010 uint32_t addend32 = E::get32(*p32);
4011 uint64_t addend64 = E::get64(*p64);
4012 uint64_t value = 0;
4013 switch ( reloc->r_type() ) {
4014 case ARM64_RELOC_SUBTRACTOR:
4015 value = 0 - parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
4016 ++reloc;
4017 if ( reloc->r_extern() )
4018 value += parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
4019 break;
4020 case ARM64_RELOC_UNSIGNED:
4021 value = parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
4022 break;
4023 case ARM64_RELOC_POINTER_TO_GOT:
4024 // this is used for the reference to the personality function in CIEs
4025 // store the symbol number of the personality function for later use as a Fixup
4026 value = reloc->r_symbolnum();
4027 addend32 = 0;
4028 addend64 = 0;
4029 break;
4030 default:
4031 fprintf(stderr, "CFISection::cfiParse() unexpected relocation type at r_address=0x%08X\n", reloc->r_address());
4032 break;
4033 }
4034 switch ( reloc->r_length() ) {
4035 case 3:
4036 E::set64(*p64, value + addend64);
4037 break;
4038 case 2:
4039 E::set32(*p32, value + addend32);
4040 break;
4041 default:
4042 fprintf(stderr, "CFISection::cfiParse() unexpected relocation size at r_address=0x%08X\n", reloc->r_address());
4043 break;
4044 }
4045 }
4046
4047
4048 // create ObjectAddressSpace object for use by libunwind
4049 OAS oas(*this, buffer);
4050
4051 // use libuwind to parse __eh_frame data into array of CFI_Atom_Info
4052 const char* msg;
4053 msg = libunwind::DwarfInstructions<OAS, libunwind::Registers_arm64>::parseCFIs(
4054 oas, this->_machOSection->addr(), this->_machOSection->size(),
4055 cuStarts, cuCount, parser.keepDwarfUnwind(), parser.forceDwarfConversion(),
4056 cfiArray, count, (void*)&parser, warnFunc);
4057 if ( msg != NULL )
4058 throwf("malformed __eh_frame section: %s", msg);
4059}
a645023d
A
4060
4061
4062template <typename A>
4063uint32_t CFISection<A>::computeAtomCount(class Parser<A>& parser,
4064 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 4065 const struct Parser<A>::CFI_CU_InfoArrays& cfis)
a645023d 4066{
afe874b1 4067 return cfis.cfiCount;
a645023d
A
4068}
4069
4070
4071
4072template <typename A>
4073uint32_t CFISection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
4074 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 4075 const struct Parser<A>::CFI_CU_InfoArrays& cfis)
a645023d
A
4076{
4077 this->_beginAtoms = (Atom<A>*)p;
4078 // walk CFI_Atom_Info array and create atom for each entry
afe874b1
A
4079 const CFI_Atom_Info* start = &cfis.cfiArray[0];
4080 const CFI_Atom_Info* end = &cfis.cfiArray[cfis.cfiCount];
a645023d
A
4081 for(const CFI_Atom_Info* a=start; a < end; ++a) {
4082 Atom<A>* space = (Atom<A>*)p;
4083 new (space) Atom<A>(*this, (a->isCIE ? "CIE" : "FDE"), a->address, a->size,
4084 ld::Atom::definitionRegular, ld::Atom::combineNever, ld::Atom::scopeTranslationUnit,
4085 ld::Atom::typeCFI, ld::Atom::symbolTableNotInFinalLinkedImages,
4086 false, false, false, ld::Atom::Alignment(0));
4087 p += sizeof(Atom<A>);
4088 }
4089 this->_endAtoms = (Atom<A>*)p;
afe874b1 4090 return cfis.cfiCount;
a645023d
A
4091}
4092
4093
4094template <> bool CFISection<x86_64>::bigEndian() { return false; }
4095template <> bool CFISection<x86>::bigEndian() { return false; }
4096template <> bool CFISection<arm>::bigEndian() { return false; }
f80fe69f 4097template <> bool CFISection<arm64>::bigEndian() { return false; }
a645023d
A
4098
4099
4100template <>
4101void CFISection<x86_64>::addCiePersonalityFixups(class Parser<x86_64>& parser, const CFI_Atom_Info* cieInfo)
4102{
4103 uint8_t personalityEncoding = cieInfo->u.cieInfo.personality.encodingOfTargetAddress;
4104 if ( personalityEncoding == 0x9B ) {
4105 // compiler always produces X86_64_RELOC_GOT with addend of 4 to personality function
4106 // CFISection<x86_64>::cfiParse() set targetAddress to be symbolIndex + 4 + addressInCIE
4107 uint32_t symbolIndex = cieInfo->u.cieInfo.personality.targetAddress - 4
4108 - cieInfo->address - cieInfo->u.cieInfo.personality.offsetInCFI;
4109 const macho_nlist<P>& sym = parser.symbolFromIndex(symbolIndex);
4110 const char* personalityName = parser.nameFromSymbol(sym);
4111
4112 Atom<x86_64>* cieAtom = this->findAtomByAddress(cieInfo->address);
4113 Parser<x86_64>::SourceLocation src(cieAtom, cieInfo->u.cieInfo.personality.offsetInCFI);
4114 parser.addFixup(src, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, false, personalityName);
4115 parser.addFixup(src, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, 4);
4116 parser.addFixup(src, ld::Fixup::k3of3, ld::Fixup::kindStoreX86PCRel32GOT);
4117 }
4118 else if ( personalityEncoding != 0 ) {
4119 throwf("unsupported address encoding (%02X) of personality function in CIE",
4120 personalityEncoding);
4121 }
4122}
4123
4124template <>
4125void CFISection<x86>::addCiePersonalityFixups(class Parser<x86>& parser, const CFI_Atom_Info* cieInfo)
4126{
4127 uint8_t personalityEncoding = cieInfo->u.cieInfo.personality.encodingOfTargetAddress;
4128 if ( (personalityEncoding == 0x9B) || (personalityEncoding == 0x90) ) {
4129 uint32_t offsetInCFI = cieInfo->u.cieInfo.personality.offsetInCFI;
4130 uint32_t nlpAddr = cieInfo->u.cieInfo.personality.targetAddress;
4131 Atom<x86>* cieAtom = this->findAtomByAddress(cieInfo->address);
4132 Atom<x86>* nlpAtom = parser.findAtomByAddress(nlpAddr);
4133 assert(nlpAtom->contentType() == ld::Atom::typeNonLazyPointer);
4134 Parser<x86>::SourceLocation src(cieAtom, cieInfo->u.cieInfo.personality.offsetInCFI);
4135
4136 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, nlpAtom);
4137 parser.addFixup(src, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, cieAtom);
4138 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, offsetInCFI);
4139 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian32);
4140 }
4141 else if ( personalityEncoding != 0 ) {
4142 throwf("unsupported address encoding (%02X) of personality function in CIE", personalityEncoding);
4143 }
4144}
4145
4146
f80fe69f
A
4147
4148#if SUPPORT_ARCH_arm64
4149template <>
4150void CFISection<arm64>::addCiePersonalityFixups(class Parser<arm64>& parser, const CFI_Atom_Info* cieInfo)
4151{
4152 uint8_t personalityEncoding = cieInfo->u.cieInfo.personality.encodingOfTargetAddress;
4153 if ( personalityEncoding == 0x9B ) {
4154 // compiler always produces ARM64_RELOC_GOT r_pcrel=1 to personality function
4155 // CFISection<arm64>::cfiParse() set targetAddress to be symbolIndex + addressInCIE
4156 uint32_t symbolIndex = cieInfo->u.cieInfo.personality.targetAddress
4157 - cieInfo->address - cieInfo->u.cieInfo.personality.offsetInCFI;
4158 const macho_nlist<P>& sym = parser.symbolFromIndex(symbolIndex);
4159 const char* personalityName = parser.nameFromSymbol(sym);
4160
4161 Atom<arm64>* cieAtom = this->findAtomByAddress(cieInfo->address);
4162 Parser<arm64>::SourceLocation src(cieAtom, cieInfo->u.cieInfo.personality.offsetInCFI);
4163 parser.addFixup(src, ld::Fixup::k1of2, ld::Fixup::kindSetTargetAddress, false, personalityName);
4164 parser.addFixup(src, ld::Fixup::k2of2, ld::Fixup::kindStoreARM64PCRelToGOT);
4165 }
4166 else if ( personalityEncoding != 0 ) {
4167 throwf("unsupported address encoding (%02X) of personality function in CIE",
4168 personalityEncoding);
4169 }
4170}
4171#endif
4172
a645023d
A
4173template <typename A>
4174void CFISection<A>::addCiePersonalityFixups(class Parser<A>& parser, const CFI_Atom_Info* cieInfo)
4175{
f80fe69f 4176 assert(0 && "addCiePersonalityFixups() not implemented for arch");
a645023d
A
4177}
4178
4179template <typename A>
afe874b1 4180void CFISection<A>::makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays& cfis)
a645023d
A
4181{
4182 ld::Fixup::Kind store32 = bigEndian() ? ld::Fixup::kindStoreBigEndian32 : ld::Fixup::kindStoreLittleEndian32;
4183 ld::Fixup::Kind store64 = bigEndian() ? ld::Fixup::kindStoreBigEndian64 : ld::Fixup::kindStoreLittleEndian64;
4184
4185 // add all references for FDEs, including implicit group references
afe874b1
A
4186 const CFI_Atom_Info* end = &cfis.cfiArray[cfis.cfiCount];
4187 for(const CFI_Atom_Info* p = &cfis.cfiArray[0]; p < end; ++p) {
a645023d
A
4188 if ( p->isCIE ) {
4189 // add reference to personality function if used
4190 if ( p->u.cieInfo.personality.targetAddress != CFI_INVALID_ADDRESS ) {
4191 this->addCiePersonalityFixups(parser, p);
4192 }
4193 }
4194 else {
4195 // find FDE Atom
4196 Atom<A>* fdeAtom = this->findAtomByAddress(p->address);
4197 // find function Atom
4198 Atom<A>* functionAtom = parser.findAtomByAddress(p->u.fdeInfo.function.targetAddress);
4199 // find CIE Atom
4200 Atom<A>* cieAtom = this->findAtomByAddress(p->u.fdeInfo.cie.targetAddress);
4201 // find LSDA Atom
4202 Atom<A>* lsdaAtom = NULL;
4203 if ( p->u.fdeInfo.lsda.targetAddress != CFI_INVALID_ADDRESS ) {
4204 lsdaAtom = parser.findAtomByAddress(p->u.fdeInfo.lsda.targetAddress);
4205 }
4206 // add reference from FDE to CIE (always 32-bit pc-rel)
4207 typename Parser<A>::SourceLocation fdeToCieSrc(fdeAtom, p->u.fdeInfo.cie.offsetInCFI);
4208 parser.addFixup(fdeToCieSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, fdeAtom);
4209 parser.addFixup(fdeToCieSrc, ld::Fixup::k2of4, ld::Fixup::kindAddAddend, p->u.fdeInfo.cie.offsetInCFI);
4210 parser.addFixup(fdeToCieSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, cieAtom);
4211 parser.addFixup(fdeToCieSrc, ld::Fixup::k4of4, store32, cieAtom);
4212
4213 // add reference from FDE to function
4214 typename Parser<A>::SourceLocation fdeToFuncSrc(fdeAtom, p->u.fdeInfo.function.offsetInCFI);
4215 switch (p->u.fdeInfo.function.encodingOfTargetAddress) {
4216 case DW_EH_PE_pcrel|DW_EH_PE_ptr:
4217 if ( sizeof(typename A::P::uint_t) == 8 ) {
4218 parser.addFixup(fdeToFuncSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, functionAtom);
4219 parser.addFixup(fdeToFuncSrc, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, fdeAtom);
4220 parser.addFixup(fdeToFuncSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, p->u.fdeInfo.function.offsetInCFI);
4221 parser.addFixup(fdeToFuncSrc, ld::Fixup::k4of4, store64);
4222 break;
4223 }
4224 // else fall into 32-bit case
4225 case DW_EH_PE_pcrel|DW_EH_PE_sdata4:
4226 parser.addFixup(fdeToFuncSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, functionAtom);
4227 parser.addFixup(fdeToFuncSrc, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, fdeAtom);
4228 parser.addFixup(fdeToFuncSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, p->u.fdeInfo.function.offsetInCFI);
4229 parser.addFixup(fdeToFuncSrc, ld::Fixup::k4of4, store32);
4230 break;
4231 default:
4232 throw "unsupported encoding in FDE of pointer to function";
4233 }
4234
4235 // add reference from FDE to LSDA
4236 typename Parser<A>::SourceLocation fdeToLsdaSrc(fdeAtom, p->u.fdeInfo.lsda.offsetInCFI);
4237 if ( lsdaAtom != NULL ) {
4238 switch (p->u.fdeInfo.lsda.encodingOfTargetAddress) {
4239 case DW_EH_PE_pcrel|DW_EH_PE_ptr:
4240 if ( sizeof(typename A::P::uint_t) == 8 ) {
4241 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, lsdaAtom);
4242 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, fdeAtom);
4243 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, p->u.fdeInfo.lsda.offsetInCFI);
4244 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k4of4, store64);
4245 break;
4246 }
4247 // else fall into 32-bit case
4248 case DW_EH_PE_pcrel|DW_EH_PE_sdata4:
4249 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, lsdaAtom);
4250 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k2of4, ld::Fixup::kindSubtractTargetAddress, fdeAtom);
4251 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k3of4, ld::Fixup::kindSubtractAddend, p->u.fdeInfo.lsda.offsetInCFI);
4252 parser.addFixup(fdeToLsdaSrc, ld::Fixup::k4of4, store32);
4253 break;
4254 default:
4255 throw "unsupported encoding in FDE of pointer to LSDA";
4256 }
4257 }
4258
4259 // FDE is in group lead by function atom
4260 typename Parser<A>::SourceLocation fdeSrc(functionAtom,0);
4261 parser.addFixup(fdeSrc, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateFDE, fdeAtom);
4262
4263 // LSDA is in group lead by function atom
4264 if ( lsdaAtom != NULL ) {
4265 parser.addFixup(fdeSrc, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateLSDA, lsdaAtom);
4266 }
4267 }
4268 }
4269}
4270
4271
4272
4273
4274template <typename A>
4275const void* CFISection<A>::OAS::mappedAddress(pint_t addr)
4276{
4277 if ( (_ehFrameStartAddr <= addr) && (addr < _ehFrameEndAddr) )
4278 return &_ehFrameContent[addr-_ehFrameStartAddr];
4279 else {
4280 // requested bytes are not in __eh_frame section
4281 // this can occur when examining the instruction bytes in the __text
4282 File<A>& file = _ehFrameSection.file();
4283 for (uint32_t i=0; i < file._sectionsArrayCount; ++i ) {
4284 const macho_section<typename A::P>* sect = file._sectionsArray[i]->machoSection();
4285 // TentativeDefinitionSection and AbsoluteSymbolSection have no mach-o section
4286 if ( sect != NULL ) {
4287 if ( (sect->addr() <= addr) && (addr < (sect->addr()+sect->size())) ) {
4288 return file.fileContent() + sect->offset() + addr - sect->addr();
4289 }
4290 }
4291 }
4292 throwf("__eh_frame parsing problem. Can't find target of reference to address 0x%08llX", (uint64_t)addr);
4293 }
4294}
4295
4296
4297template <typename A>
4298uint64_t CFISection<A>::OAS::getULEB128(pint_t& logicalAddr, pint_t end)
4299{
4300 uintptr_t size = (end - logicalAddr);
4301 libunwind::LocalAddressSpace::pint_t laddr = (libunwind::LocalAddressSpace::pint_t)mappedAddress(logicalAddr);
4302 libunwind::LocalAddressSpace::pint_t sladdr = laddr;
4303 uint64_t result = libunwind::LocalAddressSpace::getULEB128(laddr, laddr+size);
4304 logicalAddr += (laddr-sladdr);
4305 return result;
4306}
4307
4308template <typename A>
4309int64_t CFISection<A>::OAS::getSLEB128(pint_t& logicalAddr, pint_t end)
4310{
4311 uintptr_t size = (end - logicalAddr);
4312 libunwind::LocalAddressSpace::pint_t laddr = (libunwind::LocalAddressSpace::pint_t)mappedAddress(logicalAddr);
4313 libunwind::LocalAddressSpace::pint_t sladdr = laddr;
4314 int64_t result = libunwind::LocalAddressSpace::getSLEB128(laddr, laddr+size);
4315 logicalAddr += (laddr-sladdr);
4316 return result;
4317}
4318
4319template <typename A>
4320typename A::P::uint_t CFISection<A>::OAS::getEncodedP(pint_t& addr, pint_t end, uint8_t encoding)
4321{
4322 pint_t startAddr = addr;
4323 pint_t p = addr;
4324 pint_t result;
4325
4326 // first get value
4327 switch (encoding & 0x0F) {
4328 case DW_EH_PE_ptr:
4329 result = getP(addr);
4330 p += sizeof(pint_t);
4331 addr = (pint_t)p;
4332 break;
4333 case DW_EH_PE_uleb128:
4334 result = getULEB128(addr, end);
4335 break;
4336 case DW_EH_PE_udata2:
4337 result = get16(addr);
4338 p += 2;
4339 addr = (pint_t)p;
4340 break;
4341 case DW_EH_PE_udata4:
4342 result = get32(addr);
4343 p += 4;
4344 addr = (pint_t)p;
4345 break;
4346 case DW_EH_PE_udata8:
4347 result = get64(addr);
4348 p += 8;
4349 addr = (pint_t)p;
4350 break;
4351 case DW_EH_PE_sleb128:
4352 result = getSLEB128(addr, end);
4353 break;
4354 case DW_EH_PE_sdata2:
4355 result = (int16_t)get16(addr);
4356 p += 2;
4357 addr = (pint_t)p;
4358 break;
4359 case DW_EH_PE_sdata4:
4360 result = (int32_t)get32(addr);
4361 p += 4;
4362 addr = (pint_t)p;
4363 break;
4364 case DW_EH_PE_sdata8:
4365 result = get64(addr);
4366 p += 8;
4367 addr = (pint_t)p;
4368 break;
4369 default:
4370 throwf("ObjectFileAddressSpace<A>::getEncodedP() encoding 0x%08X not supported", encoding);
4371 }
4372
4373 // then add relative offset
4374 switch ( encoding & 0x70 ) {
4375 case DW_EH_PE_absptr:
4376 // do nothing
4377 break;
4378 case DW_EH_PE_pcrel:
4379 result += startAddr;
4380 break;
4381 case DW_EH_PE_textrel:
4382 throw "DW_EH_PE_textrel pointer encoding not supported";
4383 break;
4384 case DW_EH_PE_datarel:
4385 throw "DW_EH_PE_datarel pointer encoding not supported";
4386 break;
4387 case DW_EH_PE_funcrel:
4388 throw "DW_EH_PE_funcrel pointer encoding not supported";
4389 break;
4390 case DW_EH_PE_aligned:
4391 throw "DW_EH_PE_aligned pointer encoding not supported";
4392 break;
4393 default:
4394 throwf("ObjectFileAddressSpace<A>::getEncodedP() encoding 0x%08X not supported", encoding);
4395 break;
4396 }
4397
4398// Note: DW_EH_PE_indirect is only used in CIEs to refernce the personality pointer
4399// When parsing .o files that pointer contains zero, so we don't to return that.
4400// Instead we skip the dereference and return the address of the pointer.
4401// if ( encoding & DW_EH_PE_indirect )
4402// result = getP(result);
4403
4404 return result;
4405}
4406
afe874b1
A
4407template <>
4408const char* CUSection<x86_64>::personalityName(class Parser<x86_64>& parser, const macho_relocation_info<x86_64::P>* reloc)
4409{
f80fe69f
A
4410 if ( reloc->r_extern() ) {
4411 assert((reloc->r_type() == X86_64_RELOC_UNSIGNED) && "wrong reloc type on personality column in __compact_unwind section");
4412 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
4413 return parser.nameFromSymbol(sym);
4414 }
4415 else {
4416 const pint_t* content = (pint_t*)(this->file().fileContent() + this->_machOSection->offset() + reloc->r_address());
4417 pint_t personalityAddr = *content;
4418 Section<x86_64>* personalitySection = parser.sectionForAddress(personalityAddr);
4419 assert((personalitySection->type() == ld::Section::typeCode) && "personality column in __compact_unwind section is not pointer to function");
4420 // atoms may not be constructed yet, so scan symbol table for labels
4421 const char* name = parser.scanSymbolTableForAddress(personalityAddr);
4422 return name;
4423 }
afe874b1
A
4424}
4425
4426template <>
4427const char* CUSection<x86>::personalityName(class Parser<x86>& parser, const macho_relocation_info<x86::P>* reloc)
4428{
f80fe69f
A
4429 if ( reloc->r_extern() ) {
4430 assert((reloc->r_type() == GENERIC_RELOC_VANILLA) && "wrong reloc type on personality column in __compact_unwind section");
4431 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
4432 return parser.nameFromSymbol(sym);
4433 }
4434 else {
4435 // support __LD, __compact_unwind personality entries which are pointer to personality non-lazy pointer
4436 const pint_t* content = (pint_t*)(this->file().fileContent() + this->_machOSection->offset() + reloc->r_address());
4437 pint_t nlPointerAddr = *content;
4438 Section<x86>* nlSection = parser.sectionForAddress(nlPointerAddr);
4439 if ( nlSection->type() == ld::Section::typeCode ) {
4440 // personality function is defined in this .o file, so this is a direct reference to it
4441 // atoms may not be constructed yet, so scan symbol table for labels
4442 const char* name = parser.scanSymbolTableForAddress(nlPointerAddr);
4443 return name;
4444 }
4445 else {
4446 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(nlPointerAddr, nlSection->machoSection());
4447 const macho_nlist<P>& nlSymbol = parser.symbolFromIndex(symIndex);
4448 return parser.nameFromSymbol(nlSymbol);
4449 }
4450 }
afe874b1
A
4451}
4452
f80fe69f
A
4453#if SUPPORT_ARCH_arm64
4454template <>
4455const char* CUSection<arm64>::personalityName(class Parser<arm64>& parser, const macho_relocation_info<arm64::P>* reloc)
4456{
4457 if ( reloc->r_extern() ) {
4458 assert((reloc->r_type() == ARM64_RELOC_UNSIGNED) && "wrong reloc type on personality column in __compact_unwind section");
4459 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
4460 return parser.nameFromSymbol(sym);
4461 }
4462 else {
4463 const pint_t* content = (pint_t*)(this->file().fileContent() + this->_machOSection->offset() + reloc->r_address());
4464 pint_t personalityAddr = *content;
4465 Section<arm64>* personalitySection = parser.sectionForAddress(personalityAddr);
4466 assert((personalitySection->type() == ld::Section::typeCode) && "personality column in __compact_unwind section is not pointer to function");
4467 // atoms may not be constructed yet, so scan symbol table for labels
4468 const char* name = parser.scanSymbolTableForAddress(personalityAddr);
4469 return name;
4470 }
4471}
4472#endif
4473
afe874b1
A
4474template <typename A>
4475const char* CUSection<A>::personalityName(class Parser<A>& parser, const macho_relocation_info<P>* reloc)
4476{
4477 return NULL;
4478}
4479
f80fe69f
A
4480template <>
4481bool CUSection<x86>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
4482{
4483 return ((enc & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF);
4484}
4485
4486template <>
4487bool CUSection<x86_64>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
4488{
4489 return ((enc & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF);
4490}
4491
4492#if SUPPORT_ARCH_arm_any
4493template <>
4494bool CUSection<arm>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
4495{
4496 return false;
4497}
4498#endif
4499
4500#if SUPPORT_ARCH_arm64
4501template <>
4502bool CUSection<arm64>::encodingMeansUseDwarf(compact_unwind_encoding_t enc)
4503{
4504 return ((enc & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF);
4505}
4506#endif
afe874b1
A
4507
4508template <typename A>
4509int CUSection<A>::infoSorter(const void* l, const void* r)
4510{
4511 // sort references by symbol index, then address
4512 const Info* left = (Info*)l;
4513 const Info* right = (Info*)r;
4514 if ( left->functionSymbolIndex == right->functionSymbolIndex )
4515 return (left->functionStartAddress - right->functionStartAddress);
4516 else
4517 return (left->functionSymbolIndex - right->functionSymbolIndex);
4518}
4519
4520template <typename A>
4521void CUSection<A>::parse(class Parser<A>& parser, uint32_t cnt, Info array[])
4522{
4523 // walk section content and copy to Info array
4524 const macho_compact_unwind_entry<P>* const entries = (macho_compact_unwind_entry<P>*)(this->file().fileContent() + this->_machOSection->offset());
4525 for (uint32_t i=0; i < cnt; ++i) {
4526 Info* info = &array[i];
4527 const macho_compact_unwind_entry<P>* entry = &entries[i];
4528 info->functionStartAddress = entry->codeStart();
4529 info->functionSymbolIndex = 0xFFFFFFFF;
4530 info->rangeLength = entry->codeLen();
4531 info->compactUnwindInfo = entry->compactUnwindInfo();
4532 info->personality = NULL;
4533 info->lsdaAddress = entry->lsda();
4534 info->function = NULL;
4535 info->lsda = NULL;
4536 if ( (info->compactUnwindInfo & UNWIND_PERSONALITY_MASK) != 0 )
4537 warning("no bits should be set in UNWIND_PERSONALITY_MASK of compact unwind encoding in __LD,__compact_unwind section");
4538 if ( info->lsdaAddress != 0 ) {
4539 info->compactUnwindInfo |= UNWIND_HAS_LSDA;
4540 }
4541 }
4542
f80fe69f 4543 // scan relocs, extern relocs are needed for personality references (possibly for function/lsda refs??)
afe874b1
A
4544 const macho_relocation_info<P>* relocs = (macho_relocation_info<P>*)(this->file().fileContent() + this->_machOSection->reloff());
4545 const macho_relocation_info<P>* relocsEnd = &relocs[this->_machOSection->nreloc()];
4546 for (const macho_relocation_info<P>* reloc = relocs; reloc < relocsEnd; ++reloc) {
4547 if ( reloc->r_extern() ) {
4548 // only expect external relocs on some colummns
4549 if ( (reloc->r_address() % sizeof(macho_compact_unwind_entry<P>)) == macho_compact_unwind_entry<P>::personalityFieldOffset() ) {
4550 uint32_t entryIndex = reloc->r_address() / sizeof(macho_compact_unwind_entry<P>);
4551 array[entryIndex].personality = this->personalityName(parser, reloc);
4552 }
4553 else if ( (reloc->r_address() % sizeof(macho_compact_unwind_entry<P>)) == macho_compact_unwind_entry<P>::lsdaFieldOffset() ) {
4554 uint32_t entryIndex = reloc->r_address() / sizeof(macho_compact_unwind_entry<P>);
4555 const macho_nlist<P>& lsdaSym = parser.symbolFromIndex(reloc->r_symbolnum());
4556 if ( (lsdaSym.n_type() & N_TYPE) == N_SECT )
4557 array[entryIndex].lsdaAddress = lsdaSym.n_value();
4558 else
4559 warning("unexpected extern relocation to lsda in __compact_unwind section");
4560 }
4561 else if ( (reloc->r_address() % sizeof(macho_compact_unwind_entry<P>)) == macho_compact_unwind_entry<P>::codeStartFieldOffset() ) {
4562 uint32_t entryIndex = reloc->r_address() / sizeof(macho_compact_unwind_entry<P>);
4563 array[entryIndex].functionSymbolIndex = reloc->r_symbolnum();
f80fe69f 4564 array[entryIndex].functionStartAddress += parser.symbolFromIndex(reloc->r_symbolnum()).n_value();
afe874b1
A
4565 }
4566 else {
4567 warning("unexpected extern relocation in __compact_unwind section");
4568 }
4569 }
f80fe69f
A
4570 else {
4571 if ( (reloc->r_address() % sizeof(macho_compact_unwind_entry<P>)) == macho_compact_unwind_entry<P>::personalityFieldOffset() ) {
4572 uint32_t entryIndex = reloc->r_address() / sizeof(macho_compact_unwind_entry<P>);
4573 array[entryIndex].personality = this->personalityName(parser, reloc);
4574 }
4575 }
afe874b1
A
4576 }
4577
4578 // sort array by function start address so unwind infos will be contiguous for a given function
4579 ::qsort(array, cnt, sizeof(Info), infoSorter);
4580}
4581
4582template <typename A>
4583uint32_t CUSection<A>::count()
4584{
4585 const macho_section<P>* machoSect = this->machoSection();
4586 if ( (machoSect->size() % sizeof(macho_compact_unwind_entry<P>)) != 0 )
4587 throw "malformed __LD,__compact_unwind section, bad length";
4588
4589 return machoSect->size() / sizeof(macho_compact_unwind_entry<P>);
4590}
4591
4592template <typename A>
4593void CUSection<A>::makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays& cus)
4594{
4595 Info* const arrayStart = cus.cuArray;
4596 Info* const arrayEnd = &cus.cuArray[cus.cuCount];
4597 for (Info* info=arrayStart; info < arrayEnd; ++info) {
afe874b1
A
4598 // find function atom from address
4599 info->function = parser.findAtomByAddress(info->functionStartAddress);
4600 // find lsda atom from address
4601 if ( info->lsdaAddress != 0 ) {
4602 info->lsda = parser.findAtomByAddress(info->lsdaAddress);
4603 // add lsda subordinate
4604 typename Parser<A>::SourceLocation src(info->function, info->functionStartAddress - info->function->objectAddress());
4605 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateLSDA, info->lsda);
4606 }
4607 if ( info->personality != NULL ) {
4608 // add personality subordinate
4609 typename Parser<A>::SourceLocation src(info->function, info->functionStartAddress - info->function->objectAddress());
4610 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinatePersonality, false, info->personality);
4611 }
4612 }
4613
4614}
4615
a645023d
A
4616template <typename A>
4617SymboledSection<A>::SymboledSection(Parser<A>& parser, File<A>& f, const macho_section<typename A::P>* s)
4618 : Section<A>(f, s), _type(ld::Atom::typeUnclassified)
4619{
4620 switch ( s->flags() & SECTION_TYPE ) {
4621 case S_ZEROFILL:
4622 _type = ld::Atom::typeZeroFill;
4623 break;
4624 case S_MOD_INIT_FUNC_POINTERS:
4625 _type = ld::Atom::typeInitializerPointers;
4626 break;
4627 case S_MOD_TERM_FUNC_POINTERS:
4628 _type = ld::Atom::typeTerminatorPointers;
4629 break;
4630 case S_THREAD_LOCAL_VARIABLES:
4631 _type = ld::Atom::typeTLV;
4632 break;
4633 case S_THREAD_LOCAL_ZEROFILL:
4634 _type = ld::Atom::typeTLVZeroFill;
4635 break;
4636 case S_THREAD_LOCAL_REGULAR:
4637 _type = ld::Atom::typeTLVInitialValue;
4638 break;
4639 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
4640 _type = ld::Atom::typeTLVInitializerPointers;
4641 break;
4642 case S_REGULAR:
4643 if ( strncmp(s->sectname(), "__gcc_except_tab", 16) == 0 )
4644 _type = ld::Atom::typeLSDA;
b2fa67a8
A
4645 else if ( this->type() == ld::Section::typeInitializerPointers )
4646 _type = ld::Atom::typeInitializerPointers;
a645023d
A
4647 break;
4648 }
4649}
4650
4651
4652template <typename A>
4653bool SymboledSection<A>::dontDeadStrip()
4654{
4655 switch ( _type ) {
4656 case ld::Atom::typeInitializerPointers:
4657 case ld::Atom::typeTerminatorPointers:
4658 return true;
4659 default:
4660 // model an object file without MH_SUBSECTIONS_VIA_SYMBOLS as one in which nothing can be dead stripped
4661 if ( ! this->_file.canScatterAtoms() )
4662 return true;
4663 // call inherited
4664 return Section<A>::dontDeadStrip();
4665 }
4666 return false;
4667}
4668
4669
4670template <typename A>
4671uint32_t SymboledSection<A>::computeAtomCount(class Parser<A>& parser,
4672 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 4673 const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
4674{
4675 const pint_t startAddr = this->_machOSection->addr();
4676 const pint_t endAddr = startAddr + this->_machOSection->size();
4677 const uint32_t sectNum = this->sectionNum(parser);
4678
4679 uint32_t count = 0;
4680 pint_t addr;
4681 pint_t size;
4682 const macho_nlist<P>* sym;
f80fe69f 4683 while ( it.next(parser, *this, sectNum, startAddr, endAddr, &addr, &size, &sym) ) {
a645023d
A
4684 ++count;
4685 }
4686 //fprintf(stderr, "computeAtomCount(%s,%s) => %d\n", this->segmentName(), this->sectionName(), count);
4687 return count;
4688}
4689
4690template <typename A>
4691uint32_t SymboledSection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
f80fe69f 4692 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 4693 const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
4694{
4695 this->_beginAtoms = (Atom<A>*)p;
4696
4697 //fprintf(stderr, "SymboledSection::appendAtoms() in section %s\n", this->_machOSection->sectname());
4698 const pint_t startAddr = this->_machOSection->addr();
4699 const pint_t endAddr = startAddr + this->_machOSection->size();
4700 const uint32_t sectNum = this->sectionNum(parser);
4701
4702 uint32_t count = 0;
4703 pint_t addr;
4704 pint_t size;
4705 const macho_nlist<P>* label;
f80fe69f 4706 while ( it.next(parser, *this, sectNum, startAddr, endAddr, &addr, &size, &label) ) {
a645023d
A
4707 Atom<A>* allocatedSpace = (Atom<A>*)p;
4708 // is break because of label or CFI?
4709 if ( label != NULL ) {
4710 // The size is computed based on the address of the next label (or the end of the section for the last label)
4711 // If there are two labels at the same address, we want them one to be an alias of the other.
4712 // If the label is at the end of a section, it is has zero size, but is not an alias
4713 const bool isAlias = ( (size == 0) && (addr < endAddr) );
4714 new (allocatedSpace) Atom<A>(*this, parser, *label, size, isAlias);
4715 if ( isAlias )
4716 this->_hasAliases = true;
4717 }
4718 else {
afe874b1
A
4719 ld::Atom::SymbolTableInclusion inclusion = ld::Atom::symbolTableNotIn;
4720 ld::Atom::ContentType ctype = this->contentType();
4721 if ( ctype == ld::Atom::typeLSDA )
4722 inclusion = ld::Atom::symbolTableInWithRandomAutoStripLabel;
f80fe69f 4723 new (allocatedSpace) Atom<A>(*this, "anon", addr, size, ld::Atom::definitionRegular, ld::Atom::combineNever,
afe874b1 4724 ld::Atom::scopeTranslationUnit, ctype, inclusion,
a645023d
A
4725 this->dontDeadStrip(), false, false, this->alignmentForAddress(addr));
4726 }
4727 p += sizeof(Atom<A>);
4728 ++count;
4729 }
4730
4731 this->_endAtoms = (Atom<A>*)p;
4732 return count;
4733}
4734
4735
f80fe69f
A
4736template <>
4737ld::Atom::SymbolTableInclusion ImplicitSizeSection<arm64>::symbolTableInclusion()
4738{
4739 return ld::Atom::symbolTableInWithRandomAutoStripLabel;
4740}
4741
4742template <typename A>
4743ld::Atom::SymbolTableInclusion ImplicitSizeSection<A>::symbolTableInclusion()
4744{
4745 return ld::Atom::symbolTableNotIn;
4746}
4747
4748
a645023d
A
4749template <typename A>
4750uint32_t ImplicitSizeSection<A>::computeAtomCount(class Parser<A>& parser,
4751 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 4752 const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
4753{
4754 uint32_t count = 0;
4755 const macho_section<P>* sect = this->machoSection();
4756 const pint_t startAddr = sect->addr();
4757 const pint_t endAddr = startAddr + sect->size();
4758 for (pint_t addr = startAddr; addr < endAddr; addr += elementSizeAtAddress(addr) ) {
4759 if ( useElementAt(parser, it, addr) )
4760 ++count;
4761 }
4762 if ( it.fileHasOverlappingSymbols && (sect->size() != 0) && (this->combine(parser, startAddr) == ld::Atom::combineByNameAndContent) ) {
4763 // if there are multiple labels in this section for the same address, then clone them into multi atoms
4764 pint_t prevSymbolAddr = (pint_t)(-1);
4765 uint8_t prevSymbolSectNum = 0;
f80fe69f 4766 bool prevIgnore = false;
a645023d
A
4767 for(uint32_t i=0; i < it.sortedSymbolCount; ++i) {
4768 const macho_nlist<P>& sym = parser.symbolFromIndex(it.sortedSymbolIndexes[i]);
4769 const pint_t symbolAddr = sym.n_value();
f80fe69f
A
4770 const uint8_t symbolSectNum = sym.n_sect();
4771 const bool ignore = this->ignoreLabel(parser.nameFromSymbol(sym));
4772 if ( !ignore && !prevIgnore && (symbolAddr == prevSymbolAddr) && (prevSymbolSectNum == symbolSectNum) && (symbolSectNum == this->sectionNum(parser)) ) {
a645023d
A
4773 ++count;
4774 }
4775 prevSymbolAddr = symbolAddr;
4776 prevSymbolSectNum = symbolSectNum;
f80fe69f 4777 prevIgnore = ignore;
a645023d
A
4778 }
4779 }
4780 return count;
4781}
4782
4783template <typename A>
4784uint32_t ImplicitSizeSection<A>::appendAtoms(class Parser<A>& parser, uint8_t* p,
4785 struct Parser<A>::LabelAndCFIBreakIterator& it,
afe874b1 4786 const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
4787{
4788 this->_beginAtoms = (Atom<A>*)p;
4789
4790 const macho_section<P>* sect = this->machoSection();
4791 const pint_t startAddr = sect->addr();
4792 const pint_t endAddr = startAddr + sect->size();
4793 const uint32_t sectNum = this->sectionNum(parser);
4794 //fprintf(stderr, "ImplicitSizeSection::appendAtoms() in section %s\n", sect->sectname());
4795 uint32_t count = 0;
4796 pint_t foundAddr;
4797 pint_t size;
4798 const macho_nlist<P>* foundLabel;
4799 Atom<A>* allocatedSpace;
f80fe69f 4800 while ( it.next(parser, *this, sectNum, startAddr, endAddr, &foundAddr, &size, &foundLabel) ) {
a645023d 4801 if ( foundLabel != NULL ) {
f80fe69f 4802 bool skip = false;
a645023d
A
4803 pint_t labeledAtomSize = this->elementSizeAtAddress(foundAddr);
4804 allocatedSpace = (Atom<A>*)p;
4805 if ( this->ignoreLabel(parser.nameFromSymbol(*foundLabel)) ) {
f80fe69f
A
4806 if ( size == 0 ) {
4807 // <rdar://problem/10018737>
4808 // a size of zero means there is another label at same location
4809 // and we are supposed to ignore this label
4810 skip = true;
4811 }
4812 else {
4813 //fprintf(stderr, " 0x%08llX make annon, size=%lld\n", (uint64_t)foundAddr, (uint64_t)size);
4814 new (allocatedSpace) Atom<A>(*this, this->unlabeledAtomName(parser, foundAddr), foundAddr,
a645023d
A
4815 this->elementSizeAtAddress(foundAddr), this->definition(),
4816 this->combine(parser, foundAddr), this->scopeAtAddress(parser, foundAddr),
4817 this->contentType(), this->symbolTableInclusion(),
4818 this->dontDeadStrip(), false, false, this->alignmentForAddress(foundAddr));
f80fe69f 4819 }
a645023d
A
4820 }
4821 else {
4822 // make named atom for label
4823 //fprintf(stderr, " 0x%08llX make labeled\n", (uint64_t)foundAddr);
4824 new (allocatedSpace) Atom<A>(*this, parser, *foundLabel, labeledAtomSize);
4825 }
f80fe69f
A
4826 if ( !skip ) {
4827 ++count;
4828 p += sizeof(Atom<A>);
4829 foundAddr += labeledAtomSize;
4830 size -= labeledAtomSize;
4831 }
a645023d
A
4832 }
4833 // some number of anonymous atoms
4834 for (pint_t addr = foundAddr; addr < (foundAddr+size); addr += elementSizeAtAddress(addr) ) {
4835 // make anon atoms for area before label
4836 if ( this->useElementAt(parser, it, addr) ) {
f80fe69f 4837 //fprintf(stderr, " 0x%08llX make annon, size=%lld\n", (uint64_t)addr, (uint64_t)elementSizeAtAddress(addr));
a645023d
A
4838 allocatedSpace = (Atom<A>*)p;
4839 new (allocatedSpace) Atom<A>(*this, this->unlabeledAtomName(parser, addr), addr, this->elementSizeAtAddress(addr),
4840 this->definition(), this->combine(parser, addr), this->scopeAtAddress(parser, addr),
4841 this->contentType(), this->symbolTableInclusion(),
4842 this->dontDeadStrip(), false, false, this->alignmentForAddress(addr));
4843 ++count;
4844 p += sizeof(Atom<A>);
4845 }
4846 }
4847 }
4848
4849 this->_endAtoms = (Atom<A>*)p;
4850
4851 return count;
4852}
4853
4854
4855template <typename A>
4856unsigned long Literal4Section<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
4857{
4858 const uint32_t* literalContent = (uint32_t*)atom->contentPointer();
4859 return *literalContent;
4860}
4861
4862template <typename A>
4863bool Literal4Section<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
4864 const ld::IndirectBindingTable& ind) const
4865{
4866 assert(this->type() == rhs.section().type());
4867 const uint32_t* literalContent = (uint32_t*)atom->contentPointer();
4868
4869 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
4870 assert(rhsAtom != NULL);
4871 if ( rhsAtom != NULL ) {
4872 const uint32_t* rhsLiteralContent = (uint32_t*)rhsAtom->contentPointer();
4873 return (*literalContent == *rhsLiteralContent);
4874 }
4875 return false;
4876}
4877
4878
4879template <typename A>
4880unsigned long Literal8Section<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
4881{
4882#if __LP64__
4883 const uint64_t* literalContent = (uint64_t*)atom->contentPointer();
4884 return *literalContent;
4885#else
4886 unsigned long hash = 5381;
4887 const uint8_t* byteContent = atom->contentPointer();
4888 for (int i=0; i < 8; ++i) {
4889 hash = hash * 33 + byteContent[i];
4890 }
4891 return hash;
4892#endif
4893}
4894
4895template <typename A>
4896bool Literal8Section<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
4897 const ld::IndirectBindingTable& ind) const
4898{
4899 if ( rhs.section().type() != ld::Section::typeLiteral8 )
4900 return false;
4901 assert(this->type() == rhs.section().type());
4902 const uint64_t* literalContent = (uint64_t*)atom->contentPointer();
4903
4904 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
4905 assert(rhsAtom != NULL);
4906 if ( rhsAtom != NULL ) {
4907 const uint64_t* rhsLiteralContent = (uint64_t*)rhsAtom->contentPointer();
4908 return (*literalContent == *rhsLiteralContent);
4909 }
4910 return false;
4911}
4912
4913
4914template <typename A>
4915unsigned long Literal16Section<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
4916{
4917 unsigned long hash = 5381;
4918 const uint8_t* byteContent = atom->contentPointer();
4919 for (int i=0; i < 16; ++i) {
4920 hash = hash * 33 + byteContent[i];
4921 }
4922 return hash;
4923}
4924
4925template <typename A>
4926bool Literal16Section<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
4927 const ld::IndirectBindingTable& ind) const
4928{
4929 if ( rhs.section().type() != ld::Section::typeLiteral16 )
4930 return false;
4931 assert(this->type() == rhs.section().type());
4932 const uint64_t* literalContent = (uint64_t*)atom->contentPointer();
4933
4934 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
4935 assert(rhsAtom != NULL);
4936 if ( rhsAtom != NULL ) {
4937 const uint64_t* rhsLiteralContent = (uint64_t*)rhsAtom->contentPointer();
4938 return ((literalContent[0] == rhsLiteralContent[0]) && (literalContent[1] == rhsLiteralContent[1]));
4939 }
4940 return false;
4941}
4942
4943
4944
4945template <typename A>
4946typename A::P::uint_t CStringSection<A>::elementSizeAtAddress(pint_t addr)
4947{
4948 const macho_section<P>* sect = this->machoSection();
4949 const char* stringContent = (char*)(this->file().fileContent() + sect->offset() + addr - sect->addr());
4950 return strlen(stringContent) + 1;
4951}
4952
4953template <typename A>
4954bool CStringSection<A>::useElementAt(Parser<A>& parser, struct Parser<A>::LabelAndCFIBreakIterator& it, pint_t addr)
4955{
4956 return true;
4957}
4958
afe874b1 4959template <typename A>
f80fe69f 4960bool CStringSection<A>::ignoreLabel(const char* label) const
afe874b1
A
4961{
4962 return (label[0] == 'L') || (label[0] == 'l');
4963}
4964
f80fe69f 4965
a645023d
A
4966template <typename A>
4967Atom<A>* CStringSection<A>::findAtomByAddress(pint_t addr)
4968{
4969 Atom<A>* result = this->findContentAtomByAddress(addr, this->_beginAtoms, this->_endAtoms);
4970 return result;
4971}
4972
4973template <typename A>
4974unsigned long CStringSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
4975{
4976 unsigned long hash = 5381;
4977 const char* stringContent = (char*)atom->contentPointer();
4978 for (const char* s = stringContent; *s != '\0'; ++s) {
4979 hash = hash * 33 + *s;
4980 }
4981 return hash;
4982}
4983
4984
4985template <typename A>
4986bool CStringSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
4987 const ld::IndirectBindingTable& ind) const
4988{
4989 if ( rhs.section().type() != ld::Section::typeCString )
4990 return false;
4991 assert(this->type() == rhs.section().type());
4992 assert(strcmp(this->sectionName(), rhs.section().sectionName())== 0);
4993 assert(strcmp(this->segmentName(), rhs.section().segmentName())== 0);
4994 const char* stringContent = (char*)atom->contentPointer();
4995
4996 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
4997 assert(rhsAtom != NULL);
4998 if ( rhsAtom != NULL ) {
4999 if ( atom->_size != rhsAtom->_size )
5000 return false;
5001 const char* rhsStringContent = (char*)rhsAtom->contentPointer();
5002 return (strcmp(stringContent, rhsStringContent) == 0);
5003 }
5004 return false;
5005}
5006
5007
5008template <>
5009ld::Fixup::Kind NonLazyPointerSection<x86>::fixupKind()
5010{
5011 return ld::Fixup::kindStoreLittleEndian32;
5012}
5013
5014template <>
5015ld::Fixup::Kind NonLazyPointerSection<arm>::fixupKind()
5016{
5017 return ld::Fixup::kindStoreLittleEndian32;
5018}
5019
f80fe69f
A
5020template <>
5021ld::Fixup::Kind NonLazyPointerSection<arm64>::fixupKind()
5022{
5023 return ld::Fixup::kindStoreLittleEndian64;
5024}
5025
a645023d
A
5026
5027template <>
afe874b1 5028void NonLazyPointerSection<x86_64>::makeFixups(class Parser<x86_64>& parser, const struct Parser<x86_64>::CFI_CU_InfoArrays&)
a645023d
A
5029{
5030 assert(0 && "x86_64 should not have non-lazy-pointer sections in .o files");
5031}
5032
5033template <typename A>
afe874b1 5034void NonLazyPointerSection<A>::makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
5035{
5036 // add references for each NLP atom based on indirect symbol table
5037 const macho_section<P>* sect = this->machoSection();
5038 const pint_t endAddr = sect->addr() + sect->size();
5039 for( pint_t addr = sect->addr(); addr < endAddr; addr += sizeof(pint_t)) {
5040 typename Parser<A>::SourceLocation src;
5041 typename Parser<A>::TargetDesc target;
5042 src.atom = this->findAtomByAddress(addr);
5043 src.offsetInAtom = 0;
5044 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(addr, sect);
5045 target.atom = NULL;
5046 target.name = NULL;
5047 target.weakImport = false;
5048 target.addend = 0;
5049 if ( symIndex == INDIRECT_SYMBOL_LOCAL ) {
5050 // use direct reference for local symbols
5051 const pint_t* nlpContent = (pint_t*)(this->file().fileContent() + sect->offset() + addr - sect->addr());
5052 pint_t targetAddr = P::getP(*nlpContent);
5053 target.atom = parser.findAtomByAddress(targetAddr);
5054 target.weakImport = false;
5055 target.addend = (targetAddr - target.atom->objectAddress());
5056 // <rdar://problem/8385011> if pointer to thumb function, mask of thumb bit (not an addend of +1)
5057 if ( target.atom->isThumb() )
5058 target.addend &= (-2);
5059 assert(src.atom->combine() == ld::Atom::combineNever);
5060 }
5061 else {
5062 const macho_nlist<P>& sym = parser.symbolFromIndex(symIndex);
5063 // use direct reference for local symbols
5064 if ( ((sym.n_type() & N_TYPE) == N_SECT) && ((sym.n_type() & N_EXT) == 0) ) {
5065 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
5066 assert(src.atom->combine() == ld::Atom::combineNever);
5067 }
5068 else {
5069 target.name = parser.nameFromSymbol(sym);
5070 target.weakImport = parser.weakImportFromSymbol(sym);
5071 assert(src.atom->combine() == ld::Atom::combineByNameAndReferences);
5072 }
5073 }
5074 parser.addFixups(src, this->fixupKind(), target);
5075 }
5076}
5077
5078template <typename A>
5079ld::Atom::Combine NonLazyPointerSection<A>::combine(Parser<A>& parser, pint_t addr)
5080{
5081 const macho_section<P>* sect = this->machoSection();
5082 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(addr, sect);
5083 if ( symIndex == INDIRECT_SYMBOL_LOCAL)
5084 return ld::Atom::combineNever;
5085
5086 // don't coalesce non-lazy-pointers to local symbols
5087 const macho_nlist<P>& sym = parser.symbolFromIndex(symIndex);
5088 if ( ((sym.n_type() & N_TYPE) == N_SECT) && ((sym.n_type() & N_EXT) == 0) )
5089 return ld::Atom::combineNever;
5090
5091 return ld::Atom::combineByNameAndReferences;
5092}
5093
5094template <typename A>
5095const char* NonLazyPointerSection<A>::targetName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind)
5096{
5097 assert(atom->combine() == ld::Atom::combineByNameAndReferences);
5098 assert(atom->fixupCount() == 1);
5099 ld::Fixup::iterator fit = atom->fixupsBegin();
5100 const char* name = NULL;
5101 switch ( fit->binding ) {
5102 case ld::Fixup::bindingByNameUnbound:
5103 name = fit->u.name;
5104 break;
5105 case ld::Fixup::bindingByContentBound:
5106 name = fit->u.target->name();
5107 break;
5108 case ld::Fixup::bindingsIndirectlyBound:
5109 name = ind.indirectName(fit->u.bindingIndex);
5110 break;
5111 default:
5112 assert(0);
5113 }
5114 assert(name != NULL);
5115 return name;
5116}
5117
5118template <typename A>
5119unsigned long NonLazyPointerSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5120{
5121 assert(atom->combine() == ld::Atom::combineByNameAndReferences);
5122 unsigned long hash = 9508;
5123 for (const char* s = this->targetName(atom, ind); *s != '\0'; ++s) {
5124 hash = hash * 33 + *s;
5125 }
5126 return hash;
5127}
5128
5129template <typename A>
5130bool NonLazyPointerSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5131 const ld::IndirectBindingTable& indirectBindingTable) const
5132{
5133 if ( rhs.section().type() != ld::Section::typeNonLazyPointer )
5134 return false;
5135 assert(this->type() == rhs.section().type());
5136 // there can be many non-lazy pointer in different section names
5137 // we only want to coalesce in same section name
5138 if ( *this != rhs.section() )
5139 return false;
5140 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5141 assert(rhsAtom != NULL);
5142 const char* thisName = this->targetName(atom, indirectBindingTable);
5143 const char* rhsName = this->targetName(rhsAtom, indirectBindingTable);
5144 return (strcmp(thisName, rhsName) == 0);
5145}
5146
5147template <typename A>
5148ld::Atom::Scope NonLazyPointerSection<A>::scopeAtAddress(Parser<A>& parser, pint_t addr)
5149{
5150 const macho_section<P>* sect = this->machoSection();
5151 uint32_t symIndex = parser.symbolIndexFromIndirectSectionAddress(addr, sect);
5152 if ( symIndex == INDIRECT_SYMBOL_LOCAL)
5153 return ld::Atom::scopeTranslationUnit;
5154 else
5155 return ld::Atom::scopeLinkageUnit;
5156}
5157
5158
5159template <typename A>
5160const uint8_t* CFStringSection<A>::targetContent(const class Atom<A>* atom, const ld::IndirectBindingTable& ind,
5161 ContentType* ct, unsigned int* count)
5162{
5163 *ct = contentUnknown;
5164 for (ld::Fixup::iterator fit=atom->fixupsBegin(), end=atom->fixupsEnd(); fit != end; ++fit) {
5165 const ld::Atom* targetAtom = NULL;
5166 switch ( fit->binding ) {
5167 case ld::Fixup::bindingByNameUnbound:
5168 // ignore reference to ___CFConstantStringClassReference
5169 // we are just looking for reference to backing string data
5170 assert(fit->offsetInAtom == 0);
5171 assert(strcmp(fit->u.name, "___CFConstantStringClassReference") == 0);
5172 break;
5173 case ld::Fixup::bindingDirectlyBound:
5174 case ld::Fixup::bindingByContentBound:
5175 targetAtom = fit->u.target;
5176 break;
5177 case ld::Fixup::bindingsIndirectlyBound:
5178 targetAtom = ind.indirectAtom(fit->u.bindingIndex);
5179 break;
5180 default:
5181 assert(0 && "bad binding type");
5182 }
5183 assert(targetAtom != NULL);
5184 const Atom<A>* target = dynamic_cast<const Atom<A>*>(targetAtom);
5185 if ( targetAtom->section().type() == ld::Section::typeCString ) {
5186 *ct = contentUTF8;
5187 *count = targetAtom->size();
5188 }
5189 else if ( targetAtom->section().type() == ld::Section::typeUTF16Strings ) {
5190 *ct = contentUTF16;
5191 *count = (targetAtom->size()+1)/2; // round up incase of buggy compiler that has only one trailing zero byte
5192 }
5193 assert(target != NULL);
5194 return target->contentPointer();
5195 }
5196 assert(0);
5197 return NULL;
5198}
5199
5200template <typename A>
5201unsigned long CFStringSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5202{
5203 // base hash of CFString on hash of cstring it wraps
5204 ContentType cType;
5205 unsigned long hash;
5206 unsigned int charCount;
5207 const uint8_t* content = this->targetContent(atom, ind, &cType, &charCount);
5208 switch ( cType ) {
5209 case contentUTF8:
5210 hash = 9408;
5211 for (const char* s = (char*)content; *s != '\0'; ++s) {
5212 hash = hash * 33 + *s;
5213 }
5214 return hash;
5215 case contentUTF16:
5216 hash = 407955;
5217 --charCount; // don't add last 0x0000 to hash because some buggy compilers only have trailing single byte
5218 for (const uint16_t* s = (uint16_t*)content; charCount > 0; ++s, --charCount) {
5219 hash = hash * 1025 + *s;
5220 }
5221 return hash;
5222 case contentUnknown:
5223 return 0;
5224 }
5225 return 0;
5226}
5227
5228
5229template <typename A>
5230bool CFStringSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5231 const ld::IndirectBindingTable& indirectBindingTable) const
5232{
5233 if ( atom == &rhs )
5234 return true;
5235 if ( rhs.section().type() != ld::Section::typeCFString)
5236 return false;
5237 assert(this->type() == rhs.section().type());
5238 assert(strcmp(this->sectionName(), "__cfstring") == 0);
5239
5240 ContentType thisType;
5241 unsigned int charCount;
5242 const uint8_t* cstringContent = this->targetContent(atom, indirectBindingTable, &thisType, &charCount);
5243 ContentType rhsType;
5244 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5245 assert(rhsAtom != NULL);
5246 unsigned int rhsCharCount;
5247 const uint8_t* rhsStringContent = this->targetContent(rhsAtom, indirectBindingTable, &rhsType, &rhsCharCount);
5248
5249 if ( thisType != rhsType )
5250 return false;
5251
5252 // no need to compare content of pointers are already the same
5253 if ( cstringContent == rhsStringContent )
5254 return true;
5255
5256 // no need to compare content if size is different
5257 if ( charCount != rhsCharCount )
5258 return false;
5259
5260 switch ( thisType ) {
5261 case contentUTF8:
5262 return (strcmp((char*)cstringContent, (char*)rhsStringContent) == 0);
5263 case contentUTF16:
5264 {
5265 const uint16_t* cstringContent16 = (uint16_t*)cstringContent;
5266 const uint16_t* rhsStringContent16 = (uint16_t*)rhsStringContent;
5267 for (unsigned int i = 0; i < charCount; ++i) {
5268 if ( cstringContent16[i] != rhsStringContent16[i] )
5269 return false;
5270 }
5271 return true;
5272 }
5273 case contentUnknown:
5274 return false;
5275 }
5276 return false;
5277}
5278
5279
5280template <typename A>
5281typename A::P::uint_t ObjC1ClassSection<A>::elementSizeAtAddress(pint_t addr)
5282{
5283 // nominal size for each class is 48 bytes, but sometimes the compiler
5284 // over aligns and there is padding after class data
5285 const macho_section<P>* sct = this->machoSection();
5286 uint32_t align = 1 << sct->align();
5287 uint32_t size = ((12 * sizeof(pint_t)) + align-1) & (-align);
5288 return size;
5289}
5290
5291template <typename A>
5292const char* ObjC1ClassSection<A>::unlabeledAtomName(Parser<A>& parser, pint_t addr)
5293{
5294 // 8-bytes into class object is pointer to class name
5295 const macho_section<P>* sct = this->machoSection();
5296 uint32_t classObjcFileOffset = sct->offset() - sct->addr() + addr;
5297 const uint8_t* mappedFileContent = this->file().fileContent();
5298 pint_t nameAddr = P::getP(*((pint_t*)(mappedFileContent+classObjcFileOffset+2*sizeof(pint_t))));
5299
5300 // find section containing string address to get string bytes
5301 const macho_section<P>* const sections = parser.firstMachOSection();
5302 const uint32_t sectionCount = parser.machOSectionCount();
5303 for (uint32_t i=0; i < sectionCount; ++i) {
5304 const macho_section<P>* aSect = &sections[i];
5305 if ( (aSect->addr() <= nameAddr) && (nameAddr < (aSect->addr()+aSect->size())) ) {
5306 assert((aSect->flags() & SECTION_TYPE) == S_CSTRING_LITERALS);
5307 uint32_t nameFileOffset = aSect->offset() - aSect->addr() + nameAddr;
5308 const char* name = (char*)mappedFileContent + nameFileOffset;
5309 // spin through symbol table to find absolute symbol corresponding to this class
5310 for (uint32_t s=0; s < parser.symbolCount(); ++s) {
5311 const macho_nlist<P>& sym = parser.symbolFromIndex(s);
5312 if ( (sym.n_type() & N_TYPE) != N_ABS )
5313 continue;
5314 const char* absName = parser.nameFromSymbol(sym);
5315 if ( strncmp(absName, ".objc_class_name_", 17) == 0 ) {
5316 if ( strcmp(&absName[17], name) == 0 )
5317 return absName;
5318 }
5319 }
5320 assert(0 && "obj class name not found in symbol table");
5321 }
5322 }
5323 assert(0 && "obj class name not found");
5324 return "unknown objc class";
5325}
5326
5327
5328template <typename A>
5329const char* ObjC2ClassRefsSection<A>::targetClassName(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5330{
5331 assert(atom->fixupCount() == 1);
5332 ld::Fixup::iterator fit = atom->fixupsBegin();
5333 const char* className = NULL;
5334 switch ( fit->binding ) {
5335 case ld::Fixup::bindingByNameUnbound:
5336 className = fit->u.name;
5337 break;
5338 case ld::Fixup::bindingDirectlyBound:
5339 case ld::Fixup::bindingByContentBound:
5340 className = fit->u.target->name();
5341 break;
5342 case ld::Fixup::bindingsIndirectlyBound:
5343 className = ind.indirectName(fit->u.bindingIndex);
5344 break;
5345 default:
5346 assert(0 && "unsupported binding in objc2 class ref section");
5347 }
5348 assert(className != NULL);
5349 return className;
5350}
5351
5352
5353template <typename A>
5354unsigned long ObjC2ClassRefsSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5355{
5356 unsigned long hash = 978;
5357 for (const char* s = targetClassName(atom, ind); *s != '\0'; ++s) {
5358 hash = hash * 33 + *s;
5359 }
5360 return hash;
5361}
5362
5363template <typename A>
5364bool ObjC2ClassRefsSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5365 const ld::IndirectBindingTable& indirectBindingTable) const
5366{
5367 assert(this->type() == rhs.section().type());
5368 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5369 assert(rhsAtom != NULL);
5370 const char* thisClassName = targetClassName(atom, indirectBindingTable);
5371 const char* rhsClassName = targetClassName(rhsAtom, indirectBindingTable);
5372 return (strcmp(thisClassName, rhsClassName) == 0);
5373}
5374
5375
5376template <typename A>
5377const char* Objc1ClassReferences<A>::targetCString(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5378{
5379 assert(atom->fixupCount() == 2);
5380 ld::Fixup::iterator fit = atom->fixupsBegin();
5381 if ( fit->kind == ld::Fixup::kindSetTargetAddress )
5382 ++fit;
5383 const ld::Atom* targetAtom = NULL;
5384 switch ( fit->binding ) {
5385 case ld::Fixup::bindingByContentBound:
5386 targetAtom = fit->u.target;
5387 break;
5388 case ld::Fixup::bindingsIndirectlyBound:
5389 targetAtom = ind.indirectAtom(fit->u.bindingIndex);
5390 if ( targetAtom == NULL ) {
5391 fprintf(stderr, "missing target named %s\n", ind.indirectName(fit->u.bindingIndex));
5392 }
5393 break;
5394 default:
5395 assert(0);
5396 }
5397 assert(targetAtom != NULL);
5398 const Atom<A>* target = dynamic_cast<const Atom<A>*>(targetAtom);
5399 assert(target != NULL);
5400 return (char*)target->contentPointer();
5401}
5402
5403
5404template <typename A>
5405const char* PointerToCStringSection<A>::targetCString(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5406{
5407 assert(atom->fixupCount() == 1);
5408 ld::Fixup::iterator fit = atom->fixupsBegin();
5409 const ld::Atom* targetAtom = NULL;
5410 switch ( fit->binding ) {
5411 case ld::Fixup::bindingByContentBound:
5412 targetAtom = fit->u.target;
5413 break;
5414 case ld::Fixup::bindingsIndirectlyBound:
5415 targetAtom = ind.indirectAtom(fit->u.bindingIndex);
5416 break;
f80fe69f
A
5417 case ld::Fixup::bindingDirectlyBound:
5418 targetAtom = fit->u.target;
5419 break;
a645023d 5420 default:
f80fe69f 5421 assert(0 && "unsupported reference to selector");
a645023d
A
5422 }
5423 assert(targetAtom != NULL);
5424 const Atom<A>* target = dynamic_cast<const Atom<A>*>(targetAtom);
f80fe69f
A
5425 assert(target != NULL);
5426 assert(target->contentType() == ld::Atom::typeCString);
a645023d
A
5427 return (char*)target->contentPointer();
5428}
5429
5430template <typename A>
5431unsigned long PointerToCStringSection<A>::contentHash(const class Atom<A>* atom,
5432 const ld::IndirectBindingTable& indirectBindingTable) const
5433{
5434 // make hash from section name and target cstring name
5435 unsigned long hash = 123;
5436 for (const char* s = this->sectionName(); *s != '\0'; ++s) {
5437 hash = hash * 33 + *s;
5438 }
5439 for (const char* s = this->targetCString(atom, indirectBindingTable); *s != '\0'; ++s) {
5440 hash = hash * 33 + *s;
5441 }
5442 return hash;
5443}
5444
5445template <typename A>
5446bool PointerToCStringSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5447 const ld::IndirectBindingTable& indirectBindingTable) const
5448{
5449 assert(this->type() == rhs.section().type());
5450 // there can be pointers-to-cstrings in different section names
5451 // we only want to coalesce in same section name
5452 if ( *this != rhs.section() )
5453 return false;
5454
5455 // get string content for this
5456 const char* cstringContent = this->targetCString(atom, indirectBindingTable);
5457 const Atom<A>* rhsAtom = dynamic_cast<const Atom<A>*>(&rhs);
5458 assert(rhsAtom != NULL);
5459 const char* rhsCstringContent = this->targetCString(rhsAtom, indirectBindingTable);
5460
5461 assert(cstringContent != NULL);
5462 assert(rhsCstringContent != NULL);
5463 return (strcmp(cstringContent, rhsCstringContent) == 0);
5464}
5465
5466
5467
5468template <typename A>
5469unsigned long UTF16StringSection<A>::contentHash(const class Atom<A>* atom, const ld::IndirectBindingTable& ind) const
5470{
5471 unsigned long hash = 5381;
5472 const uint16_t* stringContent = (uint16_t*)atom->contentPointer();
5473 // some buggy compilers end utf16 data with single byte, so don't use last word in hash computation
5474 unsigned int count = (atom->size()/2) - 1;
5475 for (const uint16_t* s = stringContent; count > 0; ++s, --count) {
5476 hash = hash * 33 + *s;
5477 }
5478 return hash;
5479}
5480
5481template <typename A>
5482bool UTF16StringSection<A>::canCoalesceWith(const class Atom<A>* atom, const ld::Atom& rhs,
5483 const ld::IndirectBindingTable& ind) const
5484{
5485 if ( rhs.section().type() != ld::Section::typeUTF16Strings )
5486 return false;
5487 assert(0);
5488 return false;
5489}
5490
5491
5492
5493
5494
5495
5496
5497template <>
5498uint32_t Section<x86_64>::x86_64PcRelOffset(uint8_t r_type)
5499{
5500 switch ( r_type ) {
5501 case X86_64_RELOC_SIGNED:
5502 return 4;
5503 case X86_64_RELOC_SIGNED_1:
5504 return 5;
5505 case X86_64_RELOC_SIGNED_2:
5506 return 6;
5507 case X86_64_RELOC_SIGNED_4:
5508 return 8;
5509 }
5510 return 0;
5511}
5512
5513
5514template <>
5515bool Section<x86_64>::addRelocFixup(class Parser<x86_64>& parser, const macho_relocation_info<P>* reloc)
5516{
5517 const macho_section<P>* sect = this->machoSection();
5518 uint64_t srcAddr = sect->addr() + reloc->r_address();
5519 Parser<x86_64>::SourceLocation src;
5520 Parser<x86_64>::TargetDesc target;
5521 Parser<x86_64>::TargetDesc toTarget;
5522 src.atom = this->findAtomByAddress(srcAddr);
5523 src.offsetInAtom = srcAddr - src.atom->_objAddress;
5524 const uint8_t* fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
5525 uint64_t contentValue = 0;
5526 const macho_relocation_info<x86_64::P>* nextReloc = &reloc[1];
5527 bool result = false;
5528 bool useDirectBinding;
5529 switch ( reloc->r_length() ) {
5530 case 0:
5531 contentValue = *fixUpPtr;
5532 break;
5533 case 1:
5534 contentValue = (int64_t)(int16_t)E::get16(*((uint16_t*)fixUpPtr));
5535 break;
5536 case 2:
5537 contentValue = (int64_t)(int32_t)E::get32(*((uint32_t*)fixUpPtr));
5538 break;
5539 case 3:
5540 contentValue = E::get64(*((uint64_t*)fixUpPtr));
5541 break;
5542 }
5543 target.atom = NULL;
5544 target.name = NULL;
5545 target.weakImport = false;
5546 target.addend = 0;
5547 if ( reloc->r_extern() ) {
5548 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
5549 // use direct reference for local symbols
5550 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (parser.nameFromSymbol(sym)[0] == 'L')) ) {
5551 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
5552 target.addend += contentValue;
5553 }
5554 else {
5555 target.name = parser.nameFromSymbol(sym);
5556 target.weakImport = parser.weakImportFromSymbol(sym);
5557 target.addend = contentValue;
5558 }
5559 // cfstrings should always use direct reference to backing store
5560 if ( (this->type() == ld::Section::typeCFString) && (src.offsetInAtom != 0) ) {
5561 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
5562 target.addend = contentValue;
5563 }
5564 }
5565 else {
5566 if ( reloc->r_pcrel() )
5567 contentValue += srcAddr + x86_64PcRelOffset(reloc->r_type());
5568 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), target);
5569 }
5570 switch ( reloc->r_type() ) {
5571 case X86_64_RELOC_UNSIGNED:
5572 if ( reloc->r_pcrel() )
5573 throw "pcrel and X86_64_RELOC_UNSIGNED not supported";
5574 switch ( reloc->r_length() ) {
5575 case 0:
5576 case 1:
5577 throw "length < 2 and X86_64_RELOC_UNSIGNED not supported";
5578 case 2:
5579 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
5580 break;
5581 case 3:
5582 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian64, target);
5583 break;
5584 }
5585 break;
5586 case X86_64_RELOC_SIGNED:
5587 case X86_64_RELOC_SIGNED_1:
5588 case X86_64_RELOC_SIGNED_2:
5589 case X86_64_RELOC_SIGNED_4:
5590 if ( ! reloc->r_pcrel() )
5591 throw "not pcrel and X86_64_RELOC_SIGNED* not supported";
5592 if ( reloc->r_length() != 2 )
5593 throw "length != 2 and X86_64_RELOC_SIGNED* not supported";
5594 switch ( reloc->r_type() ) {
5595 case X86_64_RELOC_SIGNED:
5596 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32, target);
5597 break;
5598 case X86_64_RELOC_SIGNED_1:
5599 if ( reloc->r_extern() )
5600 target.addend += 1;
5601 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32_1, target);
5602 break;
5603 case X86_64_RELOC_SIGNED_2:
5604 if ( reloc->r_extern() )
5605 target.addend += 2;
5606 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32_2, target);
5607 break;
5608 case X86_64_RELOC_SIGNED_4:
5609 if ( reloc->r_extern() )
5610 target.addend += 4;
5611 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32_4, target);
5612 break;
5613 }
5614 break;
5615 case X86_64_RELOC_BRANCH:
5616 if ( ! reloc->r_pcrel() )
5617 throw "not pcrel and X86_64_RELOC_BRANCH not supported";
5618 switch ( reloc->r_length() ) {
5619 case 2:
5620 if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_probe$", 16) == 0) ) {
5621 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreX86DtraceCallSiteNop, false, target.name);
5622 parser.addDtraceExtraInfos(src, &target.name[16]);
5623 }
5624 else if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_isenabled$", 20) == 0) ) {
5625 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreX86DtraceIsEnableSiteClear, false, target.name);
5626 parser.addDtraceExtraInfos(src, &target.name[20]);
5627 }
5628 else {
5629 parser.addFixups(src, ld::Fixup::kindStoreX86BranchPCRel32, target);
5630 }
5631 break;
5632 case 0:
5633 parser.addFixups(src, ld::Fixup::kindStoreX86BranchPCRel8, target);
5634 break;
5635 default:
5636 throwf("length=%d and X86_64_RELOC_BRANCH not supported", reloc->r_length());
5637 }
5638 break;
5639 case X86_64_RELOC_GOT:
5640 if ( ! reloc->r_extern() )
5641 throw "not extern and X86_64_RELOC_GOT not supported";
5642 if ( ! reloc->r_pcrel() )
5643 throw "not pcrel and X86_64_RELOC_GOT not supported";
5644 if ( reloc->r_length() != 2 )
5645 throw "length != 2 and X86_64_RELOC_GOT not supported";
5646 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32GOT, target);
5647 break;
5648 case X86_64_RELOC_GOT_LOAD:
5649 if ( ! reloc->r_extern() )
5650 throw "not extern and X86_64_RELOC_GOT_LOAD not supported";
5651 if ( ! reloc->r_pcrel() )
5652 throw "not pcrel and X86_64_RELOC_GOT_LOAD not supported";
5653 if ( reloc->r_length() != 2 )
5654 throw "length != 2 and X86_64_RELOC_GOT_LOAD not supported";
5655 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32GOTLoad, target);
5656 break;
5657 case X86_64_RELOC_SUBTRACTOR:
5658 if ( reloc->r_pcrel() )
5659 throw "X86_64_RELOC_SUBTRACTOR cannot be pc-relative";
5660 if ( reloc->r_length() < 2 )
5661 throw "X86_64_RELOC_SUBTRACTOR must have r_length of 2 or 3";
5662 if ( !reloc->r_extern() )
5663 throw "X86_64_RELOC_SUBTRACTOR must have r_extern=1";
5664 if ( nextReloc->r_type() != X86_64_RELOC_UNSIGNED )
5665 throw "X86_64_RELOC_SUBTRACTOR must be followed by X86_64_RELOC_UNSIGNED";
5666 result = true;
5667 if ( nextReloc->r_pcrel() )
5668 throw "X86_64_RELOC_UNSIGNED following a X86_64_RELOC_SUBTRACTOR cannot be pc-relative";
5669 if ( nextReloc->r_length() != reloc->r_length() )
5670 throw "X86_64_RELOC_UNSIGNED following a X86_64_RELOC_SUBTRACTOR must have same r_length";
5671 if ( nextReloc->r_extern() ) {
5672 const macho_nlist<P>& sym = parser.symbolFromIndex(nextReloc->r_symbolnum());
5673 // use direct reference for local symbols
5674 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (parser.nameFromSymbol(sym)[0] == 'L')) ) {
5675 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), toTarget);
5676 toTarget.addend = contentValue;
5677 useDirectBinding = true;
5678 }
5679 else {
5680 toTarget.name = parser.nameFromSymbol(sym);
5681 toTarget.weakImport = parser.weakImportFromSymbol(sym);
5682 toTarget.addend = contentValue;
5683 useDirectBinding = false;
5684 }
5685 }
5686 else {
5687 parser.findTargetFromAddressAndSectionNum(contentValue, nextReloc->r_symbolnum(), toTarget);
5688 useDirectBinding = (toTarget.atom->scope() == ld::Atom::scopeTranslationUnit);
5689 }
5690 if ( useDirectBinding )
5691 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, toTarget.atom);
5692 else
5693 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, toTarget.weakImport, toTarget.name);
5694 parser.addFixup(src, ld::Fixup::k2of4, ld::Fixup::kindAddAddend, toTarget.addend);
5695 if ( target.atom == NULL )
5696 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, false, target.name);
5697 else
5698 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, target.atom);
5699 if ( reloc->r_length() == 2 )
5700 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian32);
5701 else
5702 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian64);
5703 break;
5704 case X86_64_RELOC_TLV:
5705 if ( ! reloc->r_extern() )
5706 throw "not extern and X86_64_RELOC_TLV not supported";
5707 if ( ! reloc->r_pcrel() )
5708 throw "not pcrel and X86_64_RELOC_TLV not supported";
5709 if ( reloc->r_length() != 2 )
5710 throw "length != 2 and X86_64_RELOC_TLV not supported";
5711 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32TLVLoad, target);
5712 break;
5713 default:
5714 throwf("unknown relocation type %d", reloc->r_type());
5715 }
5716 return result;
5717}
5718
5719
5720
5721template <>
5722bool Section<x86>::addRelocFixup(class Parser<x86>& parser, const macho_relocation_info<P>* reloc)
5723{
5724 const macho_section<P>* sect = this->machoSection();
5725 uint32_t srcAddr;
5726 const uint8_t* fixUpPtr;
5727 uint32_t contentValue = 0;
5728 ld::Fixup::Kind kind = ld::Fixup::kindNone;
5729 Parser<x86>::SourceLocation src;
5730 Parser<x86>::TargetDesc target;
5731
5732 if ( (reloc->r_address() & R_SCATTERED) == 0 ) {
5733 srcAddr = sect->addr() + reloc->r_address();
5734 src.atom = this->findAtomByAddress(srcAddr);
5735 src.offsetInAtom = srcAddr - src.atom->_objAddress;
5736 fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
5737 switch ( reloc->r_type() ) {
5738 case GENERIC_RELOC_VANILLA:
5739 switch ( reloc->r_length() ) {
5740 case 0:
5741 contentValue = (int32_t)(int8_t)*fixUpPtr;
5742 if ( reloc->r_pcrel() ) {
5743 kind = ld::Fixup::kindStoreX86BranchPCRel8;
5744 contentValue += srcAddr + sizeof(uint8_t);
5745 }
5746 else
5747 throw "r_length=0 and r_pcrel=0 not supported";
5748 break;
5749 case 1:
5750 contentValue = (int32_t)(int16_t)E::get16(*((uint16_t*)fixUpPtr));
5751 if ( reloc->r_pcrel() ) {
5752 kind = ld::Fixup::kindStoreX86PCRel16;
5753 contentValue += srcAddr + sizeof(uint16_t);
5754 }
5755 else
5756 kind = ld::Fixup::kindStoreLittleEndian16;
5757 break;
5758 case 2:
5759 contentValue = E::get32(*((uint32_t*)fixUpPtr));
5760 if ( reloc->r_pcrel() ) {
5761 kind = ld::Fixup::kindStoreX86BranchPCRel32;
5762 contentValue += srcAddr + sizeof(uint32_t);
5763 }
5764 else
5765 kind = ld::Fixup::kindStoreLittleEndian32;
5766 break;
5767 case 3:
5768 throw "r_length=3 not supported";
5769 }
5770 if ( reloc->r_extern() ) {
5771 target.atom = NULL;
5772 const macho_nlist<P>& targetSymbol = parser.symbolFromIndex(reloc->r_symbolnum());
5773 target.name = parser.nameFromSymbol(targetSymbol);
5774 target.weakImport = parser.weakImportFromSymbol(targetSymbol);
afe874b1 5775 target.addend = (int32_t)contentValue;
a645023d
A
5776 }
5777 else {
5778 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), target);
5779 }
5780 if ( (kind == ld::Fixup::kindStoreX86BranchPCRel32) && (target.name != NULL) ) {
5781 if ( strncmp(target.name, "___dtrace_probe$", 16) == 0 ) {
5782 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreX86DtraceCallSiteNop, false, target.name);
5783 parser.addDtraceExtraInfos(src, &target.name[16]);
5784 return false;
5785 }
5786 else if ( strncmp(target.name, "___dtrace_isenabled$", 20) == 0 ) {
5787 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreX86DtraceIsEnableSiteClear, false, target.name);
5788 parser.addDtraceExtraInfos(src, &target.name[20]);
5789 return false;
5790 }
5791 }
5792 parser.addFixups(src, kind, target);
5793 return false;
5794 break;
5795 case GENERIC_RLEOC_TLV:
5796 {
5797 if ( !reloc->r_extern() )
5798 throw "r_extern=0 and r_type=GENERIC_RLEOC_TLV not supported";
5799 if ( reloc->r_length() != 2 )
5800 throw "r_length!=2 and r_type=GENERIC_RLEOC_TLV not supported";
5801 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
5802 // use direct reference for local symbols
5803 if ( ((sym.n_type() & N_TYPE) == N_SECT) && ((sym.n_type() & N_EXT) == 0) ) {
5804 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
5805 }
5806 else {
5807 target.atom = NULL;
5808 target.name = parser.nameFromSymbol(sym);
5809 target.weakImport = parser.weakImportFromSymbol(sym);
5810 }
5811 target.addend = (int64_t)(int32_t)E::get32(*((uint32_t*)fixUpPtr));
5812 if ( reloc->r_pcrel() ) {
5813 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32TLVLoad, target);
5814 }
5815 else {
5816 parser.addFixups(src, ld::Fixup::kindStoreX86Abs32TLVLoad, target);
5817 }
5818 return false;
5819 }
5820 break;
5821 default:
5822 throwf("unsupported i386 relocation type (%d)", reloc->r_type());
5823 }
5824 }
5825 else {
5826 // scattered relocation
5827 const macho_scattered_relocation_info<P>* sreloc = (macho_scattered_relocation_info<P>*)reloc;
5828 srcAddr = sect->addr() + sreloc->r_address();
5829 src.atom = this->findAtomByAddress(srcAddr);
afe874b1 5830 assert(src.atom != NULL);
a645023d
A
5831 src.offsetInAtom = srcAddr - src.atom->_objAddress;
5832 fixUpPtr = file().fileContent() + sect->offset() + sreloc->r_address();
5833 uint32_t relocValue = sreloc->r_value();
5834 bool result = false;
5835 // file format allows pair to be scattered or not
5836 const macho_scattered_relocation_info<P>* nextSReloc = &sreloc[1];
5837 const macho_relocation_info<P>* nextReloc = &reloc[1];
5838 bool nextRelocIsPair = false;
5839 uint32_t nextRelocAddress = 0;
5840 uint32_t nextRelocValue = 0;
5841 if ( (nextReloc->r_address() & R_SCATTERED) == 0 ) {
5842 if ( nextReloc->r_type() == GENERIC_RELOC_PAIR ) {
5843 nextRelocIsPair = true;
5844 nextRelocAddress = nextReloc->r_address();
5845 result = true; // iterator should skip next reloc, since we've consumed it here
5846 }
5847 }
5848 else {
5849 if ( nextSReloc->r_type() == GENERIC_RELOC_PAIR ) {
5850 nextRelocIsPair = true;
5851 nextRelocAddress = nextSReloc->r_address();
5852 nextRelocValue = nextSReloc->r_value();
5853 }
5854 }
5855 switch (sreloc->r_type()) {
5856 case GENERIC_RELOC_VANILLA:
5857 // with a scattered relocation we get both the target (sreloc->r_value()) and the target+offset (*fixUpPtr)
5858 target.atom = parser.findAtomByAddress(relocValue);
5859 if ( sreloc->r_pcrel() ) {
5860 switch ( sreloc->r_length() ) {
5861 case 0:
5862 contentValue = srcAddr + 1 + *fixUpPtr;
afe874b1 5863 target.addend = (int32_t)contentValue - (int32_t)relocValue;
a645023d
A
5864 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel8, target);
5865 break;
5866 case 1:
5867 contentValue = srcAddr + 2 + LittleEndian::get16(*((uint16_t*)fixUpPtr));
afe874b1 5868 target.addend = (int32_t)contentValue - (int32_t)relocValue;
a645023d
A
5869 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel16, target);
5870 break;
5871 case 2:
5872 contentValue = srcAddr + 4 + LittleEndian::get32(*((uint32_t*)fixUpPtr));
afe874b1 5873 target.addend = (int32_t)contentValue - (int32_t)relocValue;
a645023d
A
5874 parser.addFixups(src, ld::Fixup::kindStoreX86PCRel32, target);
5875 break;
5876 case 3:
5877 throw "unsupported r_length=3 for scattered pc-rel vanilla reloc";
5878 break;
5879 }
5880 }
5881 else {
5882 if ( sreloc->r_length() != 2 )
5883 throwf("unsupported r_length=%d for scattered vanilla reloc", sreloc->r_length());
5884 contentValue = LittleEndian::get32(*((uint32_t*)fixUpPtr));
afe874b1 5885 target.addend = (int32_t)contentValue - (int32_t)(target.atom->objectAddress());
a645023d
A
5886 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
5887 }
5888 break;
5889 case GENERIC_RELOC_SECTDIFF:
5890 case GENERIC_RELOC_LOCAL_SECTDIFF:
5891 {
5892 if ( !nextRelocIsPair )
5893 throw "GENERIC_RELOC_SECTDIFF missing following pair";
5894 switch ( sreloc->r_length() ) {
5895 case 0:
5896 case 3:
5897 throw "bad length for GENERIC_RELOC_SECTDIFF";
5898 case 1:
5899 contentValue = (int32_t)(int16_t)LittleEndian::get16(*((uint16_t*)fixUpPtr));
5900 kind = ld::Fixup::kindStoreLittleEndian16;
5901 break;
5902 case 2:
5903 contentValue = LittleEndian::get32(*((uint32_t*)fixUpPtr));
5904 kind = ld::Fixup::kindStoreLittleEndian32;
5905 break;
5906 }
5907 Atom<x86>* fromAtom = parser.findAtomByAddress(nextRelocValue);
5908 uint32_t offsetInFrom = nextRelocValue - fromAtom->_objAddress;
5909 parser.findTargetFromAddress(sreloc->r_value(), target);
5910 // check for addend encoded in the section content
afe874b1 5911 int64_t addend = (int32_t)contentValue - (int32_t)(sreloc->r_value() - nextRelocValue);
a645023d
A
5912 if ( addend < 0 ) {
5913 // switch binding base on coalescing
5914 if ( target.atom == NULL ) {
5915 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, target.name);
5916 }
5917 else if ( target.atom->scope() == ld::Atom::scopeTranslationUnit ) {
5918 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, target.atom);
5919 }
5920 else if ( (target.atom->combine() == ld::Atom::combineByNameAndContent) || (target.atom->combine() == ld::Atom::combineByNameAndReferences) ) {
5921 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, target.atom);
5922 }
5923 else {
5924 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, target.atom->name());
5925 }
5926 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, target.addend);
5927 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
5928 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom-addend);
5929 parser.addFixup(src, ld::Fixup::k5of5, kind);
5930 }
5931 else {
5932 // switch binding base on coalescing
5933 if ( target.atom == NULL ) {
5934 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, target.name);
5935 }
5936 else if ( target.atom->scope() == ld::Atom::scopeTranslationUnit ) {
5937 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, target.atom);
5938 }
5939 else if ( (target.atom->combine() == ld::Atom::combineByNameAndContent) || (target.atom->combine() == ld::Atom::combineByNameAndReferences) ) {
5940 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, target.atom);
5941 }
5942 else {
5943 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, target.atom->name());
5944 }
5945 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, target.addend+addend);
5946 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
5947 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom);
5948 parser.addFixup(src, ld::Fixup::k5of5, kind);
5949 }
5950 }
5951 break;
5952 }
5953 return result;
5954 }
5955}
5956
5957
5958
a645023d
A
5959
5960
ebf6f434 5961#if SUPPORT_ARCH_arm_any
a645023d
A
5962template <>
5963bool Section<arm>::addRelocFixup(class Parser<arm>& parser, const macho_relocation_info<P>* reloc)
5964{
5965 const macho_section<P>* sect = this->machoSection();
5966 bool result = false;
5967 uint32_t srcAddr;
5968 uint32_t dstAddr;
5969 uint32_t* fixUpPtr;
5970 int32_t displacement = 0;
5971 uint32_t instruction = 0;
5972 pint_t contentValue = 0;
5973 Parser<arm>::SourceLocation src;
5974 Parser<arm>::TargetDesc target;
5975 const macho_relocation_info<P>* nextReloc;
5976
5977 if ( (reloc->r_address() & R_SCATTERED) == 0 ) {
5978 bool externSymbolIsThumbDef = false;
5979 srcAddr = sect->addr() + reloc->r_address();
5980 src.atom = this->findAtomByAddress(srcAddr);
5981 src.offsetInAtom = srcAddr - src.atom->_objAddress;
5982 fixUpPtr = (uint32_t*)(file().fileContent() + sect->offset() + reloc->r_address());
5983 if ( reloc->r_type() != ARM_RELOC_PAIR )
5984 instruction = LittleEndian::get32(*fixUpPtr);
5985 if ( reloc->r_extern() ) {
a645023d 5986 const macho_nlist<P>& targetSymbol = parser.symbolFromIndex(reloc->r_symbolnum());
afe874b1
A
5987 // use direct reference for local symbols
5988 if ( ((targetSymbol.n_type() & N_TYPE) == N_SECT) && (((targetSymbol.n_type() & N_EXT) == 0) || (parser.nameFromSymbol(targetSymbol)[0] == 'L')) ) {
5989 parser.findTargetFromAddressAndSectionNum(targetSymbol.n_value(), targetSymbol.n_sect(), target);
5990 }
5991 else {
5992 target.atom = NULL;
5993 target.name = parser.nameFromSymbol(targetSymbol);
5994 target.weakImport = parser.weakImportFromSymbol(targetSymbol);
5995 if ( ((targetSymbol.n_type() & N_TYPE) == N_SECT) && (targetSymbol.n_desc() & N_ARM_THUMB_DEF) )
5996 externSymbolIsThumbDef = true;
5997 }
a645023d
A
5998 }
5999 switch ( reloc->r_type() ) {
6000 case ARM_RELOC_BR24:
6001 // Sign-extend displacement
6002 displacement = (instruction & 0x00FFFFFF) << 2;
6003 if ( (displacement & 0x02000000) != 0 )
6004 displacement |= 0xFC000000;
6005 // The pc added will be +8 from the pc
6006 displacement += 8;
6007 // If this is BLX add H << 1
6008 if ((instruction & 0xFE000000) == 0xFA000000)
6009 displacement += ((instruction & 0x01000000) >> 23);
6010 if ( reloc->r_extern() ) {
6011 target.addend = srcAddr + displacement;
6012 if ( externSymbolIsThumbDef )
6013 target.addend &= -2; // remove thumb bit
6014 }
6015 else {
6016 dstAddr = srcAddr + displacement;
6017 parser.findTargetFromAddressAndSectionNum(dstAddr, reloc->r_symbolnum(), target);
6018 }
6019 // special case "calls" for dtrace
6020 if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_probe$", 16) == 0) ) {
6021 parser.addFixup(src, ld::Fixup::k1of1,
6022 ld::Fixup::kindStoreARMDtraceCallSiteNop, false, target.name);
6023 parser.addDtraceExtraInfos(src, &target.name[16]);
6024 }
6025 else if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_isenabled$", 20) == 0) ) {
6026 parser.addFixup(src, ld::Fixup::k1of1,
6027 ld::Fixup::kindStoreARMDtraceIsEnableSiteClear, false, target.name);
6028 parser.addDtraceExtraInfos(src, &target.name[20]);
6029 }
6030 else {
6031 parser.addFixups(src, ld::Fixup::kindStoreARMBranch24, target);
6032 }
6033 break;
6034 case ARM_THUMB_RELOC_BR22:
6035 // thumb2 added two more bits to displacement, complicating the displacement decoding
6036 {
6037 uint32_t s = (instruction >> 10) & 0x1;
6038 uint32_t j1 = (instruction >> 29) & 0x1;
6039 uint32_t j2 = (instruction >> 27) & 0x1;
6040 uint32_t imm10 = instruction & 0x3FF;
6041 uint32_t imm11 = (instruction >> 16) & 0x7FF;
6042 uint32_t i1 = (j1 == s);
6043 uint32_t i2 = (j2 == s);
6044 uint32_t dis = (s << 24) | (i1 << 23) | (i2 << 22) | (imm10 << 12) | (imm11 << 1);
6045 int32_t sdis = dis;
6046 if ( s )
6047 sdis |= 0xFE000000;
6048 displacement = sdis;
6049 }
6050 // The pc added will be +4 from the pc
6051 displacement += 4;
6052 // If the instruction was blx, force the low 2 bits to be clear
6053 dstAddr = srcAddr + displacement;
d425e388 6054 if ((instruction & 0xD0000000) == 0xC0000000)
a645023d
A
6055 dstAddr &= 0xFFFFFFFC;
6056
6057 if ( reloc->r_extern() ) {
6058 target.addend = dstAddr;
6059 }
6060 else {
6061 parser.findTargetFromAddressAndSectionNum(dstAddr, reloc->r_symbolnum(), target);
6062 }
6063 // special case "calls" for dtrace
6064 if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_probe$", 16) == 0) ) {
6065 parser.addFixup(src, ld::Fixup::k1of1,
6066 ld::Fixup::kindStoreThumbDtraceCallSiteNop, false, target.name);
6067 parser.addDtraceExtraInfos(src, &target.name[16]);
6068 }
6069 else if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_isenabled$", 20) == 0) ) {
6070 parser.addFixup(src, ld::Fixup::k1of1,
6071 ld::Fixup::kindStoreThumbDtraceIsEnableSiteClear, false, target.name);
6072 parser.addDtraceExtraInfos(src, &target.name[20]);
6073 }
6074 else {
6075 parser.addFixups(src, ld::Fixup::kindStoreThumbBranch22, target);
6076 }
6077 break;
6078 case ARM_RELOC_VANILLA:
6079 if ( reloc->r_length() != 2 )
6080 throw "bad length for ARM_RELOC_VANILLA";
6081 contentValue = LittleEndian::get32(*fixUpPtr);
6082 if ( reloc->r_extern() ) {
afe874b1 6083 target.addend = (int32_t)contentValue;
a645023d
A
6084 if ( externSymbolIsThumbDef )
6085 target.addend &= -2; // remove thumb bit
6086 }
6087 else {
6088 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), target);
6089 // possible non-extern relocation turned into by-name ref because target is a weak-def
6090 if ( target.atom != NULL ) {
6091 if ( target.atom->isThumb() )
6092 target.addend &= -2; // remove thumb bit
6093 // if reference to LSDA, add group subordinate fixup
6094 if ( target.atom->contentType() == ld::Atom::typeLSDA ) {
6095 Parser<arm>::SourceLocation src2;
6096 src2.atom = src.atom;
6097 src2.offsetInAtom = 0;
6098 parser.addFixup(src2, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateLSDA, target.atom);
6099 }
6100 }
6101 }
6102 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
6103 break;
6104 case ARM_THUMB_32BIT_BRANCH:
6105 // silently ignore old unnecessary reloc
6106 break;
6107 case ARM_RELOC_HALF:
6108 nextReloc = &reloc[1];
6109 if ( nextReloc->r_type() == ARM_RELOC_PAIR ) {
6110 uint32_t instruction16;
6111 uint32_t other16 = (nextReloc->r_address() & 0xFFFF);
6112 bool isThumb;
6113 if ( reloc->r_length() & 2 ) {
6114 isThumb = true;
6115 uint32_t i = ((instruction & 0x00000400) >> 10);
6116 uint32_t imm4 = (instruction & 0x0000000F);
6117 uint32_t imm3 = ((instruction & 0x70000000) >> 28);
6118 uint32_t imm8 = ((instruction & 0x00FF0000) >> 16);
6119 instruction16 = (imm4 << 12) | (i << 11) | (imm3 << 8) | imm8;
6120 }
6121 else {
6122 isThumb = false;
6123 uint32_t imm4 = ((instruction & 0x000F0000) >> 16);
6124 uint32_t imm12 = (instruction & 0x00000FFF);
6125 instruction16 = (imm4 << 12) | imm12;
6126 }
6127 if ( reloc->r_length() & 1 ) {
6128 // high 16
6129 dstAddr = ((instruction16 << 16) | other16);
afe874b1
A
6130 if ( reloc->r_extern() ) {
6131 target.addend = dstAddr;
b2fa67a8
A
6132 if ( externSymbolIsThumbDef )
6133 target.addend &= -2; // remove thumb bit
6134 }
afe874b1
A
6135 else {
6136 parser.findTargetFromAddress(dstAddr, target);
6137 if ( target.atom->isThumb() )
6138 target.addend &= (-2); // remove thumb bit
6139 }
a645023d
A
6140 parser.addFixups(src, (isThumb ? ld::Fixup::kindStoreThumbHigh16 : ld::Fixup::kindStoreARMHigh16), target);
6141 }
6142 else {
6143 // low 16
6144 dstAddr = (other16 << 16) | instruction16;
afe874b1
A
6145 if ( reloc->r_extern() ) {
6146 target.addend = dstAddr;
b2fa67a8
A
6147 if ( externSymbolIsThumbDef )
6148 target.addend &= -2; // remove thumb bit
afe874b1
A
6149 }
6150 else {
6151 parser.findTargetFromAddress(dstAddr, target);
6152 if ( target.atom->isThumb() )
6153 target.addend &= (-2); // remove thumb bit
6154 }
a645023d
A
6155 parser.addFixups(src, (isThumb ? ld::Fixup::kindStoreThumbLow16 : ld::Fixup::kindStoreARMLow16), target);
6156 }
6157 result = true;
6158 }
6159 else
6160 throw "for ARM_RELOC_HALF, next reloc is not ARM_RELOC_PAIR";
6161 break;
6162 default:
6163 throwf("unknown relocation type %d", reloc->r_type());
6164 break;
6165 }
6166 }
6167 else {
6168 const macho_scattered_relocation_info<P>* sreloc = (macho_scattered_relocation_info<P>*)reloc;
6169 // file format allows pair to be scattered or not
6170 const macho_scattered_relocation_info<P>* nextSReloc = &sreloc[1];
6171 nextReloc = &reloc[1];
6172 srcAddr = sect->addr() + sreloc->r_address();
6173 dstAddr = sreloc->r_value();
6174 fixUpPtr = (uint32_t*)(file().fileContent() + sect->offset() + sreloc->r_address());
6175 instruction = LittleEndian::get32(*fixUpPtr);
6176 src.atom = this->findAtomByAddress(srcAddr);
6177 src.offsetInAtom = srcAddr - src.atom->_objAddress;
6178 bool nextRelocIsPair = false;
6179 uint32_t nextRelocAddress = 0;
6180 uint32_t nextRelocValue = 0;
6181 if ( (nextReloc->r_address() & R_SCATTERED) == 0 ) {
6182 if ( nextReloc->r_type() == ARM_RELOC_PAIR ) {
6183 nextRelocIsPair = true;
6184 nextRelocAddress = nextReloc->r_address();
6185 result = true;
6186 }
6187 }
6188 else {
6189 if ( nextSReloc->r_type() == ARM_RELOC_PAIR ) {
6190 nextRelocIsPair = true;
6191 nextRelocAddress = nextSReloc->r_address();
6192 nextRelocValue = nextSReloc->r_value();
6193 result = true;
6194 }
6195 }
6196 switch ( sreloc->r_type() ) {
6197 case ARM_RELOC_VANILLA:
6198 // with a scattered relocation we get both the target (sreloc->r_value()) and the target+offset (*fixUpPtr)
6199 if ( sreloc->r_length() != 2 )
6200 throw "bad length for ARM_RELOC_VANILLA";
6201 target.atom = parser.findAtomByAddress(sreloc->r_value());
d425e388
A
6202 if ( target.atom == NULL )
6203 throwf("bad r_value (0x%08X) for ARM_RELOC_VANILLA\n", sreloc->r_value());
a645023d
A
6204 contentValue = LittleEndian::get32(*fixUpPtr);
6205 target.addend = contentValue - target.atom->_objAddress;
6206 if ( target.atom->isThumb() )
6207 target.addend &= -2; // remove thumb bit
6208 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
6209 break;
6210 case ARM_RELOC_BR24:
6211 // Sign-extend displacement
6212 displacement = (instruction & 0x00FFFFFF) << 2;
6213 if ( (displacement & 0x02000000) != 0 )
6214 displacement |= 0xFC000000;
6215 // The pc added will be +8 from the pc
6216 displacement += 8;
6217 // If this is BLX add H << 1
6218 if ((instruction & 0xFE000000) == 0xFA000000)
6219 displacement += ((instruction & 0x01000000) >> 23);
6220 target.atom = parser.findAtomByAddress(sreloc->r_value());
6221 target.addend = (int64_t)(srcAddr + displacement) - (int64_t)(target.atom->_objAddress);
6222 parser.addFixups(src, ld::Fixup::kindStoreARMBranch24, target);
6223 break;
6224 case ARM_THUMB_RELOC_BR22:
6225 // thumb2 added two more bits to displacement, complicating the displacement decoding
6226 {
6227 uint32_t s = (instruction >> 10) & 0x1;
6228 uint32_t j1 = (instruction >> 29) & 0x1;
6229 uint32_t j2 = (instruction >> 27) & 0x1;
6230 uint32_t imm10 = instruction & 0x3FF;
6231 uint32_t imm11 = (instruction >> 16) & 0x7FF;
6232 uint32_t i1 = (j1 == s);
6233 uint32_t i2 = (j2 == s);
6234 uint32_t dis = (s << 24) | (i1 << 23) | (i2 << 22) | (imm10 << 12) | (imm11 << 1);
6235 int32_t sdis = dis;
6236 if ( s )
6237 sdis |= 0xFE000000;
6238 displacement = sdis;
6239 }
6240 // The pc added will be +4 from the pc
6241 displacement += 4;
6242 dstAddr = srcAddr+displacement;
6243 // If the instruction was blx, force the low 2 bits to be clear
6244 if ((instruction & 0xF8000000) == 0xE8000000)
6245 dstAddr &= 0xFFFFFFFC;
6246 target.atom = parser.findAtomByAddress(sreloc->r_value());
6247 target.addend = dstAddr - target.atom->_objAddress;
6248 parser.addFixups(src, ld::Fixup::kindStoreThumbBranch22, target);
6249 break;
6250 case ARM_RELOC_SECTDIFF:
6251 case ARM_RELOC_LOCAL_SECTDIFF:
6252 {
6253 if ( ! nextRelocIsPair )
6254 throw "ARM_RELOC_SECTDIFF missing following pair";
6255 if ( sreloc->r_length() != 2 )
6256 throw "bad length for ARM_RELOC_SECTDIFF";
6257 contentValue = LittleEndian::get32(*fixUpPtr);
6258 Atom<arm>* fromAtom = parser.findAtomByAddress(nextRelocValue);
6259 uint32_t offsetInFrom = nextRelocValue - fromAtom->_objAddress;
6260 uint32_t offsetInTarget;
6261 Atom<arm>* targetAtom = parser.findAtomByAddressOrLocalTargetOfStub(sreloc->r_value(), &offsetInTarget);
6262 // check for addend encoded in the section content
afe874b1 6263 int64_t addend = (int32_t)contentValue - (int32_t)(sreloc->r_value() - nextRelocValue);
a645023d
A
6264 if ( targetAtom->isThumb() )
6265 addend &= -2; // remove thumb bit
6266 // if reference to LSDA, add group subordinate fixup
6267 if ( targetAtom->contentType() == ld::Atom::typeLSDA ) {
6268 Parser<arm>::SourceLocation src2;
6269 src2.atom = src.atom;
6270 src2.offsetInAtom = 0;
6271 parser.addFixup(src2, ld::Fixup::k1of1, ld::Fixup::kindNoneGroupSubordinateLSDA, targetAtom);
6272 }
6273 if ( addend < 0 ) {
6274 // switch binding base on coalescing
6275 if ( targetAtom->scope() == ld::Atom::scopeTranslationUnit ) {
6276 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, targetAtom);
6277 }
6278 else if ( (targetAtom->combine() == ld::Atom::combineByNameAndContent) || (targetAtom->combine() == ld::Atom::combineByNameAndReferences) ) {
6279 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, targetAtom);
6280 }
6281 else {
6282 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, targetAtom->name());
6283 }
a645023d
A
6284 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, offsetInTarget);
6285 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
6286 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom-addend);
6287 parser.addFixup(src, ld::Fixup::k5of5, ld::Fixup::kindStoreLittleEndian32);
6288 }
6289 else {
6290 if ( targetAtom->scope() == ld::Atom::scopeTranslationUnit ) {
6291 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, targetAtom);
6292 }
6293 else if ( (targetAtom->combine() == ld::Atom::combineByNameAndContent) || (targetAtom->combine() == ld::Atom::combineByNameAndReferences) ) {
6294 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, targetAtom);
6295 }
6296 else {
6297 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, targetAtom->name());
6298 }
6299 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, (uint32_t)(offsetInTarget+addend));
6300 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
6301 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom);
6302 parser.addFixup(src, ld::Fixup::k5of5, ld::Fixup::kindStoreLittleEndian32);
6303 }
6304 }
6305 break;
6306 case ARM_RELOC_HALF_SECTDIFF:
6307 if ( nextRelocIsPair ) {
6308 instruction = LittleEndian::get32(*fixUpPtr);
6309 Atom<arm>* fromAtom = parser.findAtomByAddress(nextRelocValue);
6310 uint32_t offsetInFrom = nextRelocValue - fromAtom->_objAddress;
6311 Atom<arm>* targetAtom = parser.findAtomByAddress(sreloc->r_value());
6312 uint32_t offsetInTarget = sreloc->r_value() - targetAtom->_objAddress;
a645023d
A
6313 uint32_t instruction16;
6314 uint32_t other16 = (nextRelocAddress & 0xFFFF);
6315 bool isThumb;
6316 if ( sreloc->r_length() & 2 ) {
6317 isThumb = true;
6318 uint32_t i = ((instruction & 0x00000400) >> 10);
6319 uint32_t imm4 = (instruction & 0x0000000F);
6320 uint32_t imm3 = ((instruction & 0x70000000) >> 28);
6321 uint32_t imm8 = ((instruction & 0x00FF0000) >> 16);
6322 instruction16 = (imm4 << 12) | (i << 11) | (imm3 << 8) | imm8;
6323 }
6324 else {
6325 isThumb = false;
6326 uint32_t imm4 = ((instruction & 0x000F0000) >> 16);
6327 uint32_t imm12 = (instruction & 0x00000FFF);
6328 instruction16 = (imm4 << 12) | imm12;
6329 }
6330 if ( sreloc->r_length() & 1 )
6331 dstAddr = ((instruction16 << 16) | other16);
6332 else
6333 dstAddr = (other16 << 16) | instruction16;
afe874b1
A
6334 if ( targetAtom->isThumb() )
6335 dstAddr &= (-2); // remove thumb bit
a645023d
A
6336 int32_t addend = dstAddr - (sreloc->r_value() - nextRelocValue);
6337 if ( targetAtom->scope() == ld::Atom::scopeTranslationUnit ) {
6338 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, targetAtom);
6339 }
6340 else if ( (targetAtom->combine() == ld::Atom::combineByNameAndContent) || (targetAtom->combine() == ld::Atom::combineByNameAndReferences) ) {
6341 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, targetAtom);
6342 }
6343 else {
6344 parser.addFixup(src, ld::Fixup::k1of5, ld::Fixup::kindSetTargetAddress, false, targetAtom->name());
6345 }
6346 parser.addFixup(src, ld::Fixup::k2of5, ld::Fixup::kindAddAddend, (uint32_t)offsetInTarget+addend);
6347 parser.addFixup(src, ld::Fixup::k3of5, ld::Fixup::kindSubtractTargetAddress, fromAtom);
6348 parser.addFixup(src, ld::Fixup::k4of5, ld::Fixup::kindSubtractAddend, offsetInFrom);
6349 if ( sreloc->r_length() & 1 ) {
6350 // high 16
6351 parser.addFixup(src, ld::Fixup::k5of5, (isThumb ? ld::Fixup::kindStoreThumbHigh16 : ld::Fixup::kindStoreARMHigh16));
6352 }
6353 else {
6354 // low 16
6355 parser.addFixup(src, ld::Fixup::k5of5, (isThumb ? ld::Fixup::kindStoreThumbLow16 : ld::Fixup::kindStoreARMLow16));
6356 }
6357 result = true;
6358 }
6359 else
6360 throw "ARM_RELOC_HALF_SECTDIFF reloc missing following pair";
6361 break;
6362 case ARM_RELOC_HALF:
6363 if ( nextRelocIsPair ) {
6364 instruction = LittleEndian::get32(*fixUpPtr);
6365 Atom<arm>* targetAtom = parser.findAtomByAddress(sreloc->r_value());
6366 uint32_t instruction16;
6367 uint32_t other16 = (nextRelocAddress & 0xFFFF);
6368 bool isThumb;
6369 if ( sreloc->r_length() & 2 ) {
6370 isThumb = true;
6371 uint32_t i = ((instruction & 0x00000400) >> 10);
6372 uint32_t imm4 = (instruction & 0x0000000F);
6373 uint32_t imm3 = ((instruction & 0x70000000) >> 28);
6374 uint32_t imm8 = ((instruction & 0x00FF0000) >> 16);
6375 instruction16 = (imm4 << 12) | (i << 11) | (imm3 << 8) | imm8;
6376 }
6377 else {
6378 isThumb = false;
6379 uint32_t imm4 = ((instruction & 0x000F0000) >> 16);
6380 uint32_t imm12 = (instruction & 0x00000FFF);
6381 instruction16 = (imm4 << 12) | imm12;
6382 }
6383 if ( sreloc->r_length() & 1 )
6384 dstAddr = ((instruction16 << 16) | other16);
6385 else
6386 dstAddr = (other16 << 16) | instruction16;
6387 if ( targetAtom->scope() == ld::Atom::scopeTranslationUnit ) {
6388 parser.addFixup(src, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, targetAtom);
6389 }
6390 else if ( (targetAtom->combine() == ld::Atom::combineByNameAndContent) || (targetAtom->combine() == ld::Atom::combineByNameAndReferences) ) {
6391 parser.addFixup(src, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, ld::Fixup::bindingByContentBound, targetAtom);
6392 }
6393 else {
6394 parser.addFixup(src, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, false, targetAtom->name());
6395 }
6396 parser.addFixup(src, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, dstAddr - targetAtom->_objAddress);
6397 if ( sreloc->r_length() & 1 ) {
6398 // high 16
6399 parser.addFixup(src, ld::Fixup::k3of3, (isThumb ? ld::Fixup::kindStoreThumbHigh16 : ld::Fixup::kindStoreARMHigh16));
6400 }
6401 else {
6402 // low 16
6403 parser.addFixup(src, ld::Fixup::k3of3, (isThumb ? ld::Fixup::kindStoreThumbLow16 : ld::Fixup::kindStoreARMLow16));
6404 }
6405 result = true;
6406 }
6407 else
6408 throw "scattered ARM_RELOC_HALF reloc missing following pair";
6409 break;
6410 default:
6411 throwf("unknown ARM scattered relocation type %d", sreloc->r_type());
6412 }
6413 }
6414 return result;
6415}
ebf6f434 6416#endif
a645023d
A
6417
6418
f80fe69f
A
6419#if SUPPORT_ARCH_arm64
6420template <>
6421bool Section<arm64>::addRelocFixup(class Parser<arm64>& parser, const macho_relocation_info<P>* reloc)
6422{
6423 bool result = false;
6424 Parser<arm64>::SourceLocation src;
6425 Parser<arm64>::TargetDesc target = { NULL, NULL, false, 0 };
6426 Parser<arm64>::TargetDesc toTarget;
6427 int32_t prefixRelocAddend = 0;
6428 if ( reloc->r_type() == ARM64_RELOC_ADDEND ) {
6429 uint32_t rawAddend = reloc->r_symbolnum();
6430 prefixRelocAddend = rawAddend;
6431 if ( rawAddend & 0x00800000 )
6432 prefixRelocAddend |= 0xFF000000; // sign extend 24-bit signed int to 32-bits
6433 uint32_t addendAddress = reloc->r_address();
6434 ++reloc; //advance to next reloc record
6435 result = true;
6436 if ( reloc->r_address() != addendAddress )
6437 throw "ARM64_RELOC_ADDEND r_address does not match next reloc's r_address";
6438 }
6439 const macho_section<P>* sect = this->machoSection();
6440 uint64_t srcAddr = sect->addr() + reloc->r_address();
6441 src.atom = this->findAtomByAddress(srcAddr);
6442 src.offsetInAtom = srcAddr - src.atom->_objAddress;
6443 const uint8_t* fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
6444 uint64_t contentValue = 0;
6445 const macho_relocation_info<arm64::P>* nextReloc = &reloc[1];
6446 bool useDirectBinding;
6447 uint32_t instruction;
6448 uint32_t encodedAddend;
6449 switch ( reloc->r_length() ) {
6450 case 0:
6451 contentValue = *fixUpPtr;
6452 break;
6453 case 1:
6454 contentValue = (int64_t)(int16_t)E::get16(*((uint16_t*)fixUpPtr));
6455 break;
6456 case 2:
6457 contentValue = (int64_t)(int32_t)E::get32(*((uint32_t*)fixUpPtr));
6458 break;
6459 case 3:
6460 contentValue = E::get64(*((uint64_t*)fixUpPtr));
6461 break;
6462 }
6463 if ( reloc->r_extern() ) {
6464 const macho_nlist<P>& sym = parser.symbolFromIndex(reloc->r_symbolnum());
6465 const char* symbolName = parser.nameFromSymbol(sym);
6466 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (symbolName[0] == 'L') || (symbolName[0] == 'l')) ) {
6467 // use direct reference for local symbols
6468 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
6469 //target.addend += contentValue;
6470 }
6471 else if ( ((sym.n_type() & N_TYPE) == N_SECT) && (src.atom->_objAddress <= sym.n_value()) && (sym.n_value() < (src.atom->_objAddress+src.atom->size())) ) {
6472 // <rdar://problem/13700961> spurious warning when weak function has reference to itself
6473 // use direct reference when atom targets itself
6474 target.atom = src.atom;
6475 target.name = NULL;
6476 }
6477 else {
6478 target.name = symbolName;
6479 target.weakImport = parser.weakImportFromSymbol(sym);
6480 //target.addend = contentValue;
6481 }
6482 // cfstrings should always use direct reference to backing store
6483 if ( (this->type() == ld::Section::typeCFString) && (src.offsetInAtom != 0) ) {
6484 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), target);
6485 //target.addend = contentValue;
6486 }
6487 }
6488 else {
6489 if ( reloc->r_pcrel() )
6490 contentValue += srcAddr;
6491 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), target);
6492 }
6493 switch ( reloc->r_type() ) {
6494 case ARM64_RELOC_UNSIGNED:
6495 if ( reloc->r_pcrel() )
6496 throw "pcrel and ARM64_RELOC_UNSIGNED not supported";
6497 target.addend = contentValue;
6498 switch ( reloc->r_length() ) {
6499 case 0:
6500 case 1:
6501 throw "length < 2 and ARM64_RELOC_UNSIGNED not supported";
6502 case 2:
6503 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian32, target);
6504 break;
6505 case 3:
6506 parser.addFixups(src, ld::Fixup::kindStoreLittleEndian64, target);
6507 break;
6508 }
6509 break;
6510 case ARM64_RELOC_BRANCH26:
6511 if ( ! reloc->r_pcrel() )
6512 throw "not pcrel and ARM64_RELOC_BRANCH26 not supported";
6513 if ( ! reloc->r_extern() )
6514 throw "r_extern == 0 and ARM64_RELOC_BRANCH26 not supported";
6515 if ( reloc->r_length() != 2 )
6516 throw "r_length != 2 and ARM64_RELOC_BRANCH26 not supported";
6517 if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_probe$", 16) == 0) ) {
6518 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreARM64DtraceCallSiteNop, false, target.name);
6519 parser.addDtraceExtraInfos(src, &target.name[16]);
6520 }
6521 else if ( (target.name != NULL) && (strncmp(target.name, "___dtrace_isenabled$", 20) == 0) ) {
6522 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindStoreARM64DtraceIsEnableSiteClear, false, target.name);
6523 parser.addDtraceExtraInfos(src, &target.name[20]);
6524 }
6525 else {
6526 target.addend = prefixRelocAddend;
6527 instruction = contentValue;
6528 encodedAddend = (instruction & 0x03FFFFFF) << 2;
6529 if ( encodedAddend != 0 ) {
6530 if ( prefixRelocAddend == 0 ) {
6531 warning("branch26 instruction at 0x%08X has embedded addend. ARM64_RELOC_ADDEND should be used instead", reloc->r_address());
6532 target.addend = encodedAddend;
6533 }
6534 else {
6535 throwf("branch26 instruction at 0x%08X has embedded addend and ARM64_RELOC_ADDEND also used", reloc->r_address());
6536 }
6537 }
6538 parser.addFixups(src, ld::Fixup::kindStoreARM64Branch26, target);
6539 }
6540 break;
6541 case ARM64_RELOC_PAGE21:
6542 if ( ! reloc->r_pcrel() )
6543 throw "not pcrel and ARM64_RELOC_PAGE21 not supported";
6544 if ( ! reloc->r_extern() )
6545 throw "r_extern == 0 and ARM64_RELOC_PAGE21 not supported";
6546 if ( reloc->r_length() != 2 )
6547 throw "length != 2 and ARM64_RELOC_PAGE21 not supported";
6548 target.addend = prefixRelocAddend;
6549 instruction = contentValue;
6550 encodedAddend = ((instruction & 0x60000000) >> 29) | ((instruction & 0x01FFFFE0) >> 3);
6551 encodedAddend *= 4096; // internally addend is in bytes, so scale
6552 if ( encodedAddend != 0 ) {
6553 if ( prefixRelocAddend == 0 ) {
6554 warning("adrp instruction at 0x%08X has embedded addend. ARM64_RELOC_ADDEND should be used instead", reloc->r_address());
6555 target.addend = encodedAddend;
6556 }
6557 else {
6558 throwf("adrp instruction at 0x%08X has embedded addend and ARM64_RELOC_ADDEND also used", reloc->r_address());
6559 }
6560 }
6561 parser.addFixups(src, ld::Fixup::kindStoreARM64Page21, target);
6562 break;
6563 case ARM64_RELOC_PAGEOFF12:
6564 if ( reloc->r_pcrel() )
6565 throw "pcrel and ARM64_RELOC_PAGEOFF12 not supported";
6566 if ( ! reloc->r_extern() )
6567 throw "r_extern == 0 and ARM64_RELOC_PAGEOFF12 not supported";
6568 if ( reloc->r_length() != 2 )
6569 throw "length != 2 and ARM64_RELOC_PAGEOFF12 not supported";
6570 target.addend = prefixRelocAddend;
6571 instruction = contentValue;
6572 encodedAddend = ((instruction & 0x003FFC00) >> 10);
6573 // internally addend is in bytes. Some instructions have an implicit scale factor
6574 if ( (instruction & 0x3B000000) == 0x39000000 ) {
6575 switch ( instruction & 0xC0000000 ) {
6576 case 0x00000000:
6577 break;
6578 case 0x40000000:
6579 encodedAddend *= 2;
6580 break;
6581 case 0x80000000:
6582 encodedAddend *= 4;
6583 break;
6584 case 0xC0000000:
6585 encodedAddend *= 8;
6586 break;
6587 }
6588 }
6589 if ( encodedAddend != 0 ) {
6590 if ( prefixRelocAddend == 0 ) {
6591 warning("pageoff12 instruction at 0x%08X has embedded addend. ARM64_RELOC_ADDEND should be used instead", reloc->r_address());
6592 target.addend = encodedAddend;
6593 }
6594 else {
6595 throwf("pageoff12 instruction at 0x%08X has embedded addend and ARM64_RELOC_ADDEND also used", reloc->r_address());
6596 }
6597 }
6598 parser.addFixups(src, ld::Fixup::kindStoreARM64PageOff12, target);
6599 break;
6600 case ARM64_RELOC_GOT_LOAD_PAGE21:
6601 if ( ! reloc->r_pcrel() )
6602 throw "not pcrel and ARM64_RELOC_GOT_LOAD_PAGE21 not supported";
6603 if ( ! reloc->r_extern() )
6604 throw "r_extern == 0 and ARM64_RELOC_GOT_LOAD_PAGE21 not supported";
6605 if ( reloc->r_length() != 2 )
6606 throw "length != 2 and ARM64_RELOC_GOT_LOAD_PAGE21 not supported";
6607 if ( prefixRelocAddend != 0 )
6608 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_GOT_LOAD_PAGE21 not supported";
6609 instruction = contentValue;
6610 target.addend = ((instruction & 0x60000000) >> 29) | ((instruction & 0x01FFFFE0) >> 3);
6611 if ( target.addend != 0 )
6612 throw "non-zero addend with ARM64_RELOC_GOT_LOAD_PAGE21 is not supported";
6613 parser.addFixups(src, ld::Fixup::kindStoreARM64GOTLoadPage21, target);
6614 break;
6615 case ARM64_RELOC_GOT_LOAD_PAGEOFF12:
6616 if ( reloc->r_pcrel() )
6617 throw "pcrel and ARM64_RELOC_GOT_LOAD_PAGEOFF12 not supported";
6618 if ( ! reloc->r_extern() )
6619 throw "r_extern == 0 and ARM64_RELOC_GOT_LOAD_PAGEOFF12 not supported";
6620 if ( reloc->r_length() != 2 )
6621 throw "length != 2 and ARM64_RELOC_GOT_LOAD_PAGEOFF12 not supported";
6622 if ( prefixRelocAddend != 0 )
6623 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_GOT_LOAD_PAGEOFF12 not supported";
6624 instruction = contentValue;
6625 target.addend = ((instruction & 0x003FFC00) >> 10);
6626 parser.addFixups(src, ld::Fixup::kindStoreARM64GOTLoadPageOff12, target);
6627 break;
6628 case ARM64_RELOC_TLVP_LOAD_PAGE21:
6629 if ( ! reloc->r_pcrel() )
6630 throw "not pcrel and ARM64_RELOC_TLVP_LOAD_PAGE21 not supported";
6631 if ( ! reloc->r_extern() )
6632 throw "r_extern == 0 and ARM64_RELOC_TLVP_LOAD_PAGE21 not supported";
6633 if ( reloc->r_length() != 2 )
6634 throw "length != 2 and ARM64_RELOC_TLVP_LOAD_PAGE21 not supported";
6635 if ( prefixRelocAddend != 0 )
6636 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_TLVP_LOAD_PAGE21 not supported";
6637 instruction = contentValue;
6638 target.addend = ((instruction & 0x60000000) >> 29) | ((instruction & 0x01FFFFE0) >> 3);
6639 if ( target.addend != 0 )
6640 throw "non-zero addend with ARM64_RELOC_GOT_LOAD_PAGE21 is not supported";
6641 parser.addFixups(src, ld::Fixup::kindStoreARM64TLVPLoadPage21, target);
6642 break;
6643 case ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
6644 if ( reloc->r_pcrel() )
6645 throw "pcrel and ARM64_RELOC_TLVP_LOAD_PAGEOFF12 not supported";
6646 if ( ! reloc->r_extern() )
6647 throw "r_extern == 0 and ARM64_RELOC_TLVP_LOAD_PAGEOFF12 not supported";
6648 if ( reloc->r_length() != 2 )
6649 throw "length != 2 and ARM64_RELOC_TLVP_LOAD_PAGEOFF12 not supported";
6650 if ( prefixRelocAddend != 0 )
6651 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_TLVP_LOAD_PAGEOFF12 not supported";
6652 instruction = contentValue;
6653 target.addend = ((instruction & 0x003FFC00) >> 10);
6654 parser.addFixups(src, ld::Fixup::kindStoreARM64TLVPLoadPageOff12, target);
6655 break;
6656 case ARM64_RELOC_SUBTRACTOR:
6657 if ( reloc->r_pcrel() )
6658 throw "ARM64_RELOC_SUBTRACTOR cannot be pc-relative";
6659 if ( reloc->r_length() < 2 )
6660 throw "ARM64_RELOC_SUBTRACTOR must have r_length of 2 or 3";
6661 if ( !reloc->r_extern() )
6662 throw "ARM64_RELOC_SUBTRACTOR must have r_extern=1";
6663 if ( nextReloc->r_type() != ARM64_RELOC_UNSIGNED )
6664 throw "ARM64_RELOC_SUBTRACTOR must be followed by ARM64_RELOC_UNSIGNED";
6665 if ( prefixRelocAddend != 0 )
6666 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_SUBTRACTOR not supported";
6667 result = true;
6668 if ( nextReloc->r_pcrel() )
6669 throw "ARM64_RELOC_UNSIGNED following a ARM64_RELOC_SUBTRACTOR cannot be pc-relative";
6670 if ( nextReloc->r_length() != reloc->r_length() )
6671 throw "ARM64_RELOC_UNSIGNED following a ARM64_RELOC_SUBTRACTOR must have same r_length";
6672 if ( nextReloc->r_extern() ) {
6673 const macho_nlist<P>& sym = parser.symbolFromIndex(nextReloc->r_symbolnum());
6674 // use direct reference for local symbols
6675 if ( ((sym.n_type() & N_TYPE) == N_SECT) && (((sym.n_type() & N_EXT) == 0) || (parser.nameFromSymbol(sym)[0] == 'L')) ) {
6676 parser.findTargetFromAddressAndSectionNum(sym.n_value(), sym.n_sect(), toTarget);
6677 toTarget.addend = contentValue;
6678 useDirectBinding = true;
6679 }
6680 else {
6681 toTarget.name = parser.nameFromSymbol(sym);
6682 toTarget.weakImport = parser.weakImportFromSymbol(sym);
6683 toTarget.addend = contentValue;
6684 useDirectBinding = false;
6685 }
6686 }
6687 else {
6688 parser.findTargetFromAddressAndSectionNum(contentValue, nextReloc->r_symbolnum(), toTarget);
6689 useDirectBinding = (toTarget.atom->scope() == ld::Atom::scopeTranslationUnit);
6690 }
6691 if ( useDirectBinding )
6692 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, toTarget.atom);
6693 else
6694 parser.addFixup(src, ld::Fixup::k1of4, ld::Fixup::kindSetTargetAddress, toTarget.weakImport, toTarget.name);
6695 parser.addFixup(src, ld::Fixup::k2of4, ld::Fixup::kindAddAddend, toTarget.addend);
6696 if ( target.atom == NULL )
6697 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, false, target.name);
6698 else
6699 parser.addFixup(src, ld::Fixup::k3of4, ld::Fixup::kindSubtractTargetAddress, target.atom);
6700 if ( reloc->r_length() == 2 )
6701 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian32);
6702 else
6703 parser.addFixup(src, ld::Fixup::k4of4, ld::Fixup::kindStoreLittleEndian64);
6704 break;
6705 case ARM64_RELOC_POINTER_TO_GOT:
6706 if ( ! reloc->r_extern() )
6707 throw "r_extern == 0 and ARM64_RELOC_POINTER_TO_GOT not supported";
6708 if ( prefixRelocAddend != 0 )
6709 throw "ARM64_RELOC_ADDEND followed by ARM64_RELOC_POINTER_TO_GOT not supported";
6710 if ( reloc->r_pcrel() ) {
6711 if ( reloc->r_length() != 2 )
6712 throw "r_length != 2 and r_extern = 1 and ARM64_RELOC_POINTER_TO_GOT not supported";
6713 parser.addFixups(src, ld::Fixup::kindStoreARM64PCRelToGOT, target);
6714 }
6715 else {
6716 if ( reloc->r_length() != 3 )
6717 throw "r_length != 3 and r_extern = 0 and ARM64_RELOC_POINTER_TO_GOT not supported";
6718 parser.addFixups(src, ld::Fixup::kindStoreARM64PointerToGOT, target);
6719 }
6720 break;
6721 default:
6722 throwf("unknown relocation type %d", reloc->r_type());
6723 }
6724 return result;
6725}
6726#endif
a645023d
A
6727
6728template <typename A>
6729bool ObjC1ClassSection<A>::addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>* reloc)
6730{
6731 // inherited
6732 FixedSizeSection<A>::addRelocFixup(parser, reloc);
6733
6734 assert(0 && "needs template specialization");
6735 return false;
6736}
6737
6738template <>
6739bool ObjC1ClassSection<x86>::addRelocFixup(class Parser<x86>& parser, const macho_relocation_info<x86::P>* reloc)
6740{
6741 // if this is the reloc for the super class name string, add implicit reference to super class
6742 if ( ((reloc->r_address() & R_SCATTERED) == 0) && (reloc->r_type() == GENERIC_RELOC_VANILLA) ) {
6743 assert( reloc->r_length() == 2 );
6744 assert( ! reloc->r_pcrel() );
6745
6746 const macho_section<P>* sect = this->machoSection();
6747 Parser<x86>::SourceLocation src;
6748 uint32_t srcAddr = sect->addr() + reloc->r_address();
6749 src.atom = this->findAtomByAddress(srcAddr);
6750 src.offsetInAtom = srcAddr - src.atom->objectAddress();
6751 if ( src.offsetInAtom == 4 ) {
6752 Parser<x86>::TargetDesc stringTarget;
6753 const uint8_t* fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
6754 uint32_t contentValue = LittleEndian::get32(*((uint32_t*)fixUpPtr));
6755 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), stringTarget);
6756
6757 assert(stringTarget.atom != NULL);
6758 assert(stringTarget.atom->contentType() == ld::Atom::typeCString);
6759 const char* superClassBaseName = (char*)stringTarget.atom->rawContentPointer();
6760 char* superClassName = new char[strlen(superClassBaseName) + 20];
6761 strcpy(superClassName, ".objc_class_name_");
6762 strcat(superClassName, superClassBaseName);
6763
6764 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindSetTargetAddress, false, superClassName);
6765 }
6766 }
6767 // inherited
6768 return FixedSizeSection<x86>::addRelocFixup(parser, reloc);
6769}
6770
a645023d
A
6771
6772
6773template <typename A>
6774bool Objc1ClassReferences<A>::addRelocFixup(class Parser<A>& parser, const macho_relocation_info<P>* reloc)
6775{
6776 // inherited
6777 PointerToCStringSection<A>::addRelocFixup(parser, reloc);
6778
6779 assert(0 && "needs template specialization");
6780 return false;
6781}
6782
6783
a645023d
A
6784
6785template <>
6786bool Objc1ClassReferences<x86>::addRelocFixup(class Parser<x86>& parser, const macho_relocation_info<x86::P>* reloc)
6787{
6788 // add implict class refs, fixups not usable yet, so look at relocations
6789 assert( (reloc->r_address() & R_SCATTERED) == 0 );
6790 assert( reloc->r_type() == GENERIC_RELOC_VANILLA );
6791 assert( reloc->r_length() == 2 );
6792 assert( ! reloc->r_pcrel() );
6793
6794 const macho_section<P>* sect = this->machoSection();
6795 Parser<x86>::SourceLocation src;
6796 uint32_t srcAddr = sect->addr() + reloc->r_address();
6797 src.atom = this->findAtomByAddress(srcAddr);
6798 src.offsetInAtom = srcAddr - src.atom->objectAddress();
6799 Parser<x86>::TargetDesc stringTarget;
6800 const uint8_t* fixUpPtr = file().fileContent() + sect->offset() + reloc->r_address();
6801 uint32_t contentValue = LittleEndian::get32(*((uint32_t*)fixUpPtr));
6802 parser.findTargetFromAddressAndSectionNum(contentValue, reloc->r_symbolnum(), stringTarget);
6803
6804 assert(stringTarget.atom != NULL);
6805 assert(stringTarget.atom->contentType() == ld::Atom::typeCString);
6806 const char* baseClassName = (char*)stringTarget.atom->rawContentPointer();
6807 char* objcClassName = new char[strlen(baseClassName) + 20];
6808 strcpy(objcClassName, ".objc_class_name_");
6809 strcat(objcClassName, baseClassName);
6810
6811 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindSetTargetAddress, false, objcClassName);
6812
6813 // inherited
6814 return PointerToCStringSection<x86>::addRelocFixup(parser, reloc);
6815}
6816
6817
6818template <typename A>
afe874b1 6819void Section<A>::makeFixups(class Parser<A>& parser, const struct Parser<A>::CFI_CU_InfoArrays&)
a645023d
A
6820{
6821 const macho_section<P>* sect = this->machoSection();
6822 const macho_relocation_info<P>* relocs = (macho_relocation_info<P>*)(file().fileContent() + sect->reloff());
6823 const uint32_t relocCount = sect->nreloc();
6824 for (uint32_t r = 0; r < relocCount; ++r) {
6825 try {
6826 if ( this->addRelocFixup(parser, &relocs[r]) )
6827 ++r; // skip next
6828 }
6829 catch (const char* msg) {
afe874b1 6830 throwf("in section %s,%s reloc %u: %s", sect->segname(), Section<A>::makeSectionName(sect), r, msg);
a645023d
A
6831 }
6832 }
6833
6834 // add follow-on fixups if .o file is missing .subsections_via_symbols
6835 if ( this->addFollowOnFixups() ) {
6836 Atom<A>* end = &_endAtoms[-1];
6837 for(Atom<A>* p = _beginAtoms; p < end; ++p) {
6838 typename Parser<A>::SourceLocation src(p, 0);
6839 Atom<A>* nextAtom = &p[1];
6840 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneFollowOn, nextAtom);
6841 }
6842 }
6843 else if ( this->type() == ld::Section::typeCode ) {
6844 // if FDE broke text not at a symbol, use followOn to keep code together
6845 Atom<A>* end = &_endAtoms[-1];
6846 for(Atom<A>* p = _beginAtoms; p < end; ++p) {
6847 typename Parser<A>::SourceLocation src(p, 0);
6848 Atom<A>* nextAtom = &p[1];
6849 if ( (p->symbolTableInclusion() == ld::Atom::symbolTableIn) && (nextAtom->symbolTableInclusion() == ld::Atom::symbolTableNotIn) ) {
6850 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneFollowOn, nextAtom);
6851 }
6852 }
6853 }
6854
ebf6f434
A
6855 // <rdar://problem/9218847> track data-in-code
6856 if ( parser.hasDataInCodeLabels() && (this->type() == ld::Section::typeCode) ) {
6857 for (uint32_t i=0; i < parser.symbolCount(); ++i) {
6858 const macho_nlist<P>& sym = parser.symbolFromIndex(i);
6859 // ignore stabs
6860 if ( (sym.n_type() & N_STAB) != 0 )
6861 continue;
6862 // ignore non-definitions
6863 if ( (sym.n_type() & N_TYPE) != N_SECT )
6864 continue;
6865
6866 // 'L' labels do not denote atom breaks
6867 const char* symbolName = parser.nameFromSymbol(sym);
6868 if ( symbolName[0] == 'L' ) {
6869 if ( strncmp(symbolName, "L$start$", 8) == 0 ) {
6870 ld::Fixup::Kind kind = ld::Fixup::kindNone;
6871 if ( strncmp(&symbolName[8], "data$", 5) == 0 )
6872 kind = ld::Fixup::kindDataInCodeStartData;
6873 else if ( strncmp(&symbolName[8], "code$", 5) == 0 )
6874 kind = ld::Fixup::kindDataInCodeEnd;
6875 else if ( strncmp(&symbolName[8], "jt8$", 4) == 0 )
6876 kind = ld::Fixup::kindDataInCodeStartJT8;
6877 else if ( strncmp(&symbolName[8], "jt16$", 4) == 0 )
6878 kind = ld::Fixup::kindDataInCodeStartJT16;
6879 else if ( strncmp(&symbolName[8], "jt32$", 4) == 0 )
6880 kind = ld::Fixup::kindDataInCodeStartJT32;
6881 else if ( strncmp(&symbolName[8], "jta32$", 4) == 0 )
6882 kind = ld::Fixup::kindDataInCodeStartJTA32;
6883 else
6884 warning("unknown L$start$ label %s in file %s", symbolName, this->file().path());
6885 if ( kind != ld::Fixup::kindNone ) {
6886 Atom<A>* inAtom = parser.findAtomByAddress(sym.n_value());
6887 typename Parser<A>::SourceLocation src(inAtom, sym.n_value() - inAtom->objectAddress());
6888 parser.addFixup(src, ld::Fixup::k1of1, kind);
6889 }
6890 }
6891 }
6892 }
6893 }
6894
b1f7435d
A
6895 // <rdar://problem/11150575> Handle LC_DATA_IN_CODE in object files
6896 if ( this->type() == ld::Section::typeCode ) {
6897 const pint_t startAddr = this->_machOSection->addr();
6898 const pint_t endAddr = startAddr + this->_machOSection->size();
6899 for ( const macho_data_in_code_entry<P>* p = parser.dataInCodeStart(); p != parser.dataInCodeEnd(); ++p ) {
6900 if ( (p->offset() >= startAddr) && (p->offset() < endAddr) ) {
6901 ld::Fixup::Kind kind = ld::Fixup::kindNone;
6902 switch ( p->kind() ) {
6903 case DICE_KIND_DATA:
6904 kind = ld::Fixup::kindDataInCodeStartData;
6905 break;
6906 case DICE_KIND_JUMP_TABLE8:
6907 kind = ld::Fixup::kindDataInCodeStartJT8;
6908 break;
6909 case DICE_KIND_JUMP_TABLE16:
6910 kind = ld::Fixup::kindDataInCodeStartJT16;
6911 break;
6912 case DICE_KIND_JUMP_TABLE32:
6913 kind = ld::Fixup::kindDataInCodeStartJT32;
6914 break;
6915 case DICE_KIND_ABS_JUMP_TABLE32:
6916 kind = ld::Fixup::kindDataInCodeStartJTA32;
6917 break;
6918 default:
6919 kind = ld::Fixup::kindDataInCodeStartData;
6920 warning("uknown LC_DATA_IN_CODE kind (%d) at offset 0x%08X", p->kind(), p->offset());
6921 break;
6922 }
6923 Atom<A>* inAtom = parser.findAtomByAddress(p->offset());
6924 typename Parser<A>::SourceLocation srcStart(inAtom, p->offset() - inAtom->objectAddress());
6925 parser.addFixup(srcStart, ld::Fixup::k1of1, kind);
6926 typename Parser<A>::SourceLocation srcEnd(inAtom, p->offset() + p->length() - inAtom->objectAddress());
6927 parser.addFixup(srcEnd, ld::Fixup::k1of1, ld::Fixup::kindDataInCodeEnd);
6928 }
6929 }
6930 }
6931
6932
a645023d
A
6933 // add follow-on fixups for aliases
6934 if ( _hasAliases ) {
6935 for(Atom<A>* p = _beginAtoms; p < _endAtoms; ++p) {
6936 if ( p->isAlias() && ! this->addFollowOnFixups() ) {
6937 Atom<A>* targetOfAlias = &p[1];
6938 assert(p < &_endAtoms[-1]);
6939 assert(p->_objAddress == targetOfAlias->_objAddress);
6940 typename Parser<A>::SourceLocation src(p, 0);
6941 parser.addFixup(src, ld::Fixup::k1of1, ld::Fixup::kindNoneFollowOn, targetOfAlias);
6942 }
6943 }
6944 }
6945}
6946
6947
6948
6949//
6950// main function used by linker to instantiate ld::Files
6951//
6952ld::relocatable::File* parse(const uint8_t* fileContent, uint64_t fileLength,
ebf6f434 6953 const char* path, time_t modTime, ld::File::Ordinal ordinal, const ParserOptions& opts)
a645023d
A
6954{
6955 switch ( opts.architecture ) {
ebf6f434 6956#if SUPPORT_ARCH_x86_64
a645023d
A
6957 case CPU_TYPE_X86_64:
6958 if ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) )
6959 return mach_o::relocatable::Parser<x86_64>::parse(fileContent, fileLength, path, modTime, ordinal, opts);
6960 break;
ebf6f434
A
6961#endif
6962#if SUPPORT_ARCH_i386
a645023d
A
6963 case CPU_TYPE_I386:
6964 if ( mach_o::relocatable::Parser<x86>::validFile(fileContent) )
6965 return mach_o::relocatable::Parser<x86>::parse(fileContent, fileLength, path, modTime, ordinal, opts);
6966 break;
ebf6f434
A
6967#endif
6968#if SUPPORT_ARCH_arm_any
a645023d
A
6969 case CPU_TYPE_ARM:
6970 if ( mach_o::relocatable::Parser<arm>::validFile(fileContent, opts.objSubtypeMustMatch, opts.subType) )
6971 return mach_o::relocatable::Parser<arm>::parse(fileContent, fileLength, path, modTime, ordinal, opts);
6972 break;
f80fe69f
A
6973#endif
6974#if SUPPORT_ARCH_arm64
6975 case CPU_TYPE_ARM64:
6976 if ( mach_o::relocatable::Parser<arm64>::validFile(fileContent, opts.objSubtypeMustMatch, opts.subType) )
6977 return mach_o::relocatable::Parser<arm64>::parse(fileContent, fileLength, path, modTime, ordinal, opts);
6978 break;
ebf6f434 6979#endif
a645023d
A
6980 }
6981 return NULL;
6982}
6983
6984//
6985// used by archive reader to validate member object file
6986//
6987bool isObjectFile(const uint8_t* fileContent, uint64_t fileLength, const ParserOptions& opts)
6988{
6989 switch ( opts.architecture ) {
6990 case CPU_TYPE_X86_64:
6991 return ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) );
6992 case CPU_TYPE_I386:
6993 return ( mach_o::relocatable::Parser<x86>::validFile(fileContent) );
6994 case CPU_TYPE_ARM:
6995 return ( mach_o::relocatable::Parser<arm>::validFile(fileContent, opts.objSubtypeMustMatch, opts.subType) );
f80fe69f
A
6996 case CPU_TYPE_ARM64:
6997 return ( mach_o::relocatable::Parser<arm64>::validFile(fileContent, opts.objSubtypeMustMatch, opts.subType) );
a645023d
A
6998 }
6999 return false;
7000}
7001
7002//
7003// used by linker to infer architecture when no -arch is on command line
7004//
7005bool isObjectFile(const uint8_t* fileContent, cpu_type_t* result, cpu_subtype_t* subResult)
7006{
7007 if ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) ) {
7008 *result = CPU_TYPE_X86_64;
7009 *subResult = CPU_SUBTYPE_X86_64_ALL;
7010 return true;
7011 }
7012 if ( mach_o::relocatable::Parser<x86>::validFile(fileContent) ) {
7013 *result = CPU_TYPE_I386;
7014 *subResult = CPU_SUBTYPE_X86_ALL;
7015 return true;
7016 }
7017 if ( mach_o::relocatable::Parser<arm>::validFile(fileContent, false, 0) ) {
7018 *result = CPU_TYPE_ARM;
7019 const macho_header<Pointer32<LittleEndian> >* header = (const macho_header<Pointer32<LittleEndian> >*)fileContent;
7020 *subResult = header->cpusubtype();
7021 return true;
7022 }
f80fe69f
A
7023 if ( mach_o::relocatable::Parser<arm64>::validFile(fileContent, false, 0) ) {
7024 *result = CPU_TYPE_ARM64;
7025 *subResult = CPU_SUBTYPE_ARM64_ALL;
7026 return true;
7027 }
a645023d
A
7028 return false;
7029}
7030
7031//
7032// used by linker is error messages to describe bad .o file
7033//
7034const char* archName(const uint8_t* fileContent)
7035{
7036 if ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) ) {
7037 return mach_o::relocatable::Parser<x86_64>::fileKind(fileContent);
7038 }
7039 if ( mach_o::relocatable::Parser<x86>::validFile(fileContent) ) {
7040 return mach_o::relocatable::Parser<x86>::fileKind(fileContent);
7041 }
7042 if ( mach_o::relocatable::Parser<arm>::validFile(fileContent, false, 0) ) {
7043 return mach_o::relocatable::Parser<arm>::fileKind(fileContent);
7044 }
a645023d
A
7045 return NULL;
7046}
7047
7048//
7049// Used by archive reader when -ObjC option is specified
7050//
7051bool hasObjC2Categories(const uint8_t* fileContent)
7052{
7053 if ( mach_o::relocatable::Parser<x86_64>::validFile(fileContent) ) {
7054 return mach_o::relocatable::Parser<x86_64>::hasObjC2Categories(fileContent);
7055 }
7056 else if ( mach_o::relocatable::Parser<arm>::validFile(fileContent, false, 0) ) {
7057 return mach_o::relocatable::Parser<arm>::hasObjC2Categories(fileContent);
7058 }
afe874b1
A
7059 else if ( mach_o::relocatable::Parser<x86>::validFile(fileContent, false, 0) ) {
7060 return mach_o::relocatable::Parser<x86>::hasObjC2Categories(fileContent);
7061 }
f80fe69f
A
7062#if SUPPORT_ARCH_arm64
7063 else if ( mach_o::relocatable::Parser<arm64>::validFile(fileContent, false, 0) ) {
7064 return mach_o::relocatable::Parser<arm64>::hasObjC2Categories(fileContent);
7065 }
7066#endif
a645023d
A
7067 return false;
7068}
7069
ebf6f434
A
7070//
7071// Used by archive reader when -ObjC option is specified
7072//
7073bool hasObjC1Categories(const uint8_t* fileContent)
7074{
7075 if ( mach_o::relocatable::Parser<x86>::validFile(fileContent, false, 0) ) {
7076 return mach_o::relocatable::Parser<x86>::hasObjC1Categories(fileContent);
7077 }
7078 return false;
7079}
7080
a645023d
A
7081
7082
7083} // namespace relocatable
7084} // namespace mach_o
7085
7086