+ return ((relative << 11) >> 11) == relative && !wouldTriggerA8Errata;
+ }
+
+ static bool canBeJumpT4(const uint16_t* instruction, const void* target, bool& mayTriggerErrata)
+ {
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ // From Cortex-A8 errata:
+ // If the 32-bit Thumb-2 branch instruction spans two 4KiB regions and
+ // the target of the branch falls within the first region it is
+ // possible for the processor to incorrectly determine the branch
+ // instruction, and it is also possible in some cases for the processor
+ // to enter a deadlock state.
+ // The instruction is spanning two pages if it ends at an address ending 0x002
+ bool spansTwo4K = ((reinterpret_cast<intptr_t>(instruction) & 0xfff) == 0x002);
+ mayTriggerErrata = spansTwo4K;
+ // The target is in the first page if the jump branch back by [3..0x1002] bytes
+ bool targetInFirstPage = (relative >= -0x1002) && (relative < -2);
+ bool wouldTriggerA8Errata = spansTwo4K && targetInFirstPage;
+ return ((relative << 7) >> 7) == relative && !wouldTriggerA8Errata;
+ }
+
+ void linkJumpT1(Condition cond, uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+ ASSERT(canBeJumpT1(instruction, target));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ // It does not appear to be documented in the ARM ARM (big surprise), but
+ // for OP_B_T1 the branch displacement encoded in the instruction is 2
+ // less than the actual displacement.
+ relative -= 2;
+
+ // All branch offsets should be an even distance.
+ ASSERT(!(relative & 1));
+ instruction[-1] = OP_B_T1 | ((cond & 0xf) << 8) | ((relative & 0x1fe) >> 1);
+ }
+
+ static void linkJumpT2(uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+ ASSERT(canBeJumpT2(instruction, target));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ // It does not appear to be documented in the ARM ARM (big surprise), but
+ // for OP_B_T2 the branch displacement encoded in the instruction is 2
+ // less than the actual displacement.
+ relative -= 2;
+
+ // All branch offsets should be an even distance.
+ ASSERT(!(relative & 1));
+ instruction[-1] = OP_B_T2 | ((relative & 0xffe) >> 1);
+ }
+
+ void linkJumpT3(Condition cond, uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+ bool scratch;
+ UNUSED_PARAM(scratch);
+ ASSERT(canBeJumpT3(instruction, target, scratch));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+
+ // All branch offsets should be an even distance.
+ ASSERT(!(relative & 1));
+ instruction[-2] = OP_B_T3a | ((relative & 0x100000) >> 10) | ((cond & 0xf) << 6) | ((relative & 0x3f000) >> 12);
+ instruction[-1] = OP_B_T3b | ((relative & 0x80000) >> 8) | ((relative & 0x40000) >> 5) | ((relative & 0xffe) >> 1);
+ }
+
+ static void linkJumpT4(uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+ bool scratch;
+ UNUSED_PARAM(scratch);
+ ASSERT(canBeJumpT4(instruction, target, scratch));
+
+ intptr_t relative = reinterpret_cast<intptr_t>(target) - (reinterpret_cast<intptr_t>(instruction));
+ // ARM encoding for the top two bits below the sign bit is 'peculiar'.
+ if (relative >= 0)
+ relative ^= 0xC00000;
+
+ // All branch offsets should be an even distance.
+ ASSERT(!(relative & 1));
+ instruction[-2] = OP_B_T4a | ((relative & 0x1000000) >> 14) | ((relative & 0x3ff000) >> 12);
+ instruction[-1] = OP_B_T4b | ((relative & 0x800000) >> 10) | ((relative & 0x400000) >> 11) | ((relative & 0xffe) >> 1);
+ }
+
+ void linkConditionalJumpT4(Condition cond, uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ instruction[-3] = ifThenElse(cond) | OP_IT;
+ linkJumpT4(instruction, target);
+ }
+
+ static void linkBX(uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ const uint16_t JUMP_TEMPORARY_REGISTER = ARMRegisters::ip;
+ ARMThumbImmediate lo16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) + 1));
+ ARMThumbImmediate hi16 = ARMThumbImmediate::makeUInt16(static_cast<uint16_t>(reinterpret_cast<uint32_t>(target) >> 16));
+ instruction[-5] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOV_imm_T3, lo16);
+ instruction[-4] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, lo16);
+ instruction[-3] = twoWordOp5i6Imm4Reg4EncodedImmFirst(OP_MOVT, hi16);
+ instruction[-2] = twoWordOp5i6Imm4Reg4EncodedImmSecond(JUMP_TEMPORARY_REGISTER, hi16);
+ instruction[-1] = OP_BX | (JUMP_TEMPORARY_REGISTER << 3);
+ }
+
+ void linkConditionalBX(Condition cond, uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ linkBX(instruction, target);
+ instruction[-6] = ifThenElse(cond, true, true) | OP_IT;
+ }
+
+ static void linkJumpAbsolute(uint16_t* instruction, void* target)
+ {
+ // FIMXE: this should be up in the MacroAssembler layer. :-(
+ ASSERT(!(reinterpret_cast<intptr_t>(instruction) & 1));
+ ASSERT(!(reinterpret_cast<intptr_t>(target) & 1));
+
+ ASSERT((isMOV_imm_T3(instruction - 5) && isMOVT(instruction - 3) && isBX(instruction - 1))
+ || (isNOP_T1(instruction - 5) && isNOP_T2(instruction - 4) && isB(instruction - 2)));
+
+ bool scratch;
+ if (canBeJumpT4(instruction, target, scratch)) {