]> git.saurik.com Git - apple/javascriptcore.git/blobdiff - jit/ExecutableAllocatorFixedVMPool.cpp
JavaScriptCore-7600.1.4.11.8.tar.gz
[apple/javascriptcore.git] / jit / ExecutableAllocatorFixedVMPool.cpp
index dd1db4e24ab85df7d8ff8e7c22d89489af8b4918..9afb055d47a0545d833bdadfcdb24acbae6bb1a7 100644 (file)
  */
 
 #include "config.h"
-
 #include "ExecutableAllocator.h"
 
-#include <errno.h>
+#include "JSCInlines.h"
 
-#if ENABLE(ASSEMBLER) && OS(DARWIN) && CPU(X86_64)
+#if ENABLE(EXECUTABLE_ALLOCATOR_FIXED)
 
-#include "TCSpinLock.h"
-#include <mach/mach_init.h>
-#include <mach/vm_map.h>
-#include <sys/mman.h>
+#include "CodeProfiling.h"
+#include <errno.h>
 #include <unistd.h>
-#include <wtf/AVLTree.h>
+#include <wtf/MetaAllocator.h>
+#include <wtf/PageReservation.h>
 #include <wtf/VMTags.h>
 
-using namespace WTF;
-
-namespace JSC {
-
-#define TWO_GB (2u * 1024u * 1024u * 1024u)
-#define SIXTEEN_MB (16u * 1024u * 1024u)
-
-// FreeListEntry describes a free chunk of memory, stored in the freeList.
-struct FreeListEntry {
-    FreeListEntry(void* pointer, size_t size)
-        : pointer(pointer)
-        , size(size)
-        , nextEntry(0)
-        , less(0)
-        , greater(0)
-        , balanceFactor(0)
-    {
-    }
-
-    // All entries of the same size share a single entry
-    // in the AVLTree, and are linked together in a linked
-    // list, using nextEntry.
-    void* pointer;
-    size_t size;
-    FreeListEntry* nextEntry;
-
-    // These fields are used by AVLTree.
-    FreeListEntry* less;
-    FreeListEntry* greater;
-    int balanceFactor;
-};
-
-// Abstractor class for use in AVLTree.
-// Nodes in the AVLTree are of type FreeListEntry, keyed on
-// (and thus sorted by) their size.
-struct AVLTreeAbstractorForFreeList {
-    typedef FreeListEntry* handle;
-    typedef int32_t size;
-    typedef size_t key;
-
-    handle get_less(handle h) { return h->less; }
-    void set_less(handle h, handle lh) { h->less = lh; }
-    handle get_greater(handle h) { return h->greater; }
-    void set_greater(handle h, handle gh) { h->greater = gh; }
-    int get_balance_factor(handle h) { return h->balanceFactor; }
-    void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; }
-
-    static handle null() { return 0; }
-
-    int compare_key_key(key va, key vb) { return va - vb; }
-    int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); }
-    int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); }
-};
-
-// Used to reverse sort an array of FreeListEntry pointers.
-static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr)
-{
-    FreeListEntry* left = *(FreeListEntry**)leftPtr;
-    FreeListEntry* right = *(FreeListEntry**)rightPtr;
-
-    return (intptr_t)(right->pointer) - (intptr_t)(left->pointer);
-}
-
-// Used to reverse sort an array of pointers.
-static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr)
-{
-    void* left = *(void**)leftPtr;
-    void* right = *(void**)rightPtr;
-
-    return (intptr_t)right - (intptr_t)left;
-}
-
-class FixedVMPoolAllocator
-{
-    // The free list is stored in a sorted tree.
-    typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree;
-
-    // Use madvise as apropriate to prevent freed pages from being spilled,
-    // and to attempt to ensure that used memory is reported correctly.
-#if HAVE(MADV_FREE_REUSE)
-    void release(void* position, size_t size)
-    {
-        while (madvise(position, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { }
-    }
+#if OS(DARWIN)
+#include <sys/mman.h>
+#endif
 
-    void reuse(void* position, size_t size)
-    {
-        while (madvise(position, size, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { }
-    }
-#elif HAVE(MADV_DONTNEED)
-    void release(void* position, size_t size)
-    {
-        while (madvise(position, size, MADV_DONTNEED) == -1 && errno == EAGAIN) { }
-    }
+#if OS(LINUX)
+#include <stdio.h>
+#endif
 
-    void reuse(void*, size_t) {}
-#else
-    void release(void*, size_t) {}
-    void reuse(void*, size_t) {}
+#if PLATFORM(MAC) && __MAC_OS_X_VERSION_MIN_REQUIRED < 1090
+// MADV_FREE_REUSABLE does not work for JIT memory on older OSes so use MADV_FREE in that case.
+#define WTF_USE_MADV_FREE_FOR_JIT_MEMORY 1
 #endif
 
-    // All addition to the free list should go through this method, rather than
-    // calling insert directly, to avoid multiple entries beging added with the
-    // same key.  All nodes being added should be singletons, they should not
-    // already be a part of a chain.
-    void addToFreeList(FreeListEntry* entry)
-    {
-        ASSERT(!entry->nextEntry);
+using namespace WTF;
 
-        if (entry->size == m_commonSize) {
-            m_commonSizedAllocations.append(entry->pointer);
-            delete entry;
-        } else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) {
-            // m_freeList already contain an entry for this size - insert this node into the chain.
-            entry->nextEntry = entryInFreeList->nextEntry;
-            entryInFreeList->nextEntry = entry;
-        } else
-            m_freeList.insert(entry);
-    }
+namespace JSC {
+    
+uintptr_t startOfFixedExecutableMemoryPool;
 
-    // We do not attempt to coalesce addition, which may lead to fragmentation;
-    // instead we periodically perform a sweep to try to coalesce neigboring
-    // entries in m_freeList.  Presently this is triggered at the point 16MB
-    // of memory has been released.
-    void coalesceFreeSpace()
+class FixedVMPoolExecutableAllocator : public MetaAllocator {
+    WTF_MAKE_FAST_ALLOCATED;
+public:
+    FixedVMPoolExecutableAllocator()
+        : MetaAllocator(jitAllocationGranule) // round up all allocations to 32 bytes
     {
-        Vector<FreeListEntry*> freeListEntries;
-        SizeSortedFreeTree::Iterator iter;
-        iter.start_iter_least(m_freeList);
-
-        // Empty m_freeList into a Vector.
-        for (FreeListEntry* entry; (entry = *iter); ++iter) {
-            // Each entry in m_freeList might correspond to multiple
-            // free chunks of memory (of the same size).  Walk the chain
-            // (this is likely of couse only be one entry long!) adding
-            // each entry to the Vector (at reseting the next in chain
-            // pointer to separate each node out).
-            FreeListEntry* next;
-            do {
-                next = entry->nextEntry;
-                entry->nextEntry = 0;
-                freeListEntries.append(entry);
-            } while ((entry = next));
-        }
-        // All entries are now in the Vector; purge the tree.
-        m_freeList.purge();
-
-        // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors.
-        // We reverse-sort so that we can logically work forwards through memory,
-        // whilst popping items off the end of the Vectors using last() and removeLast().
-        qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer);
-        qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations);
-
-        // The entries from m_commonSizedAllocations that cannot be
-        // coalesced into larger chunks will be temporarily stored here.
-        Vector<void*> newCommonSizedAllocations;
-
-        // Keep processing so long as entries remain in either of the vectors.
-        while (freeListEntries.size() || m_commonSizedAllocations.size()) {
-            // We're going to try to find a FreeListEntry node that we can coalesce onto.
-            FreeListEntry* coalescionEntry = 0;
-
-            // Is the lowest addressed chunk of free memory of common-size, or is it in the free list?
-            if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) {
-                // Pop an item from the m_commonSizedAllocations vector - this is the lowest
-                // addressed free chunk.  Find out the begin and end addresses of the memory chunk.
-                void* begin = m_commonSizedAllocations.last();
-                void* end = (void*)((intptr_t)begin + m_commonSize);
-                m_commonSizedAllocations.removeLast();
-
-                // Try to find another free chunk abutting onto the end of the one we have already found.
-                if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
-                    // There is an existing FreeListEntry for the next chunk of memory!
-                    // we can reuse this.  Pop it off the end of m_freeList.
-                    coalescionEntry = freeListEntries.last();
-                    freeListEntries.removeLast();
-                    // Update the existing node to include the common-sized chunk that we also found. 
-                    coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize);
-                    coalescionEntry->size += m_commonSize;
-                } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
-                    // There is a second common-sized chunk that can be coalesced.
-                    // Allocate a new node.
-                    m_commonSizedAllocations.removeLast();
-                    coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize);
-                } else {
-                    // Nope - this poor little guy is all on his own. :-(
-                    // Add him into the newCommonSizedAllocations vector for now, we're
-                    // going to end up adding him back into the m_commonSizedAllocations
-                    // list when we're done.
-                    newCommonSizedAllocations.append(begin);
-                    continue;
-                }
-            } else {
-                ASSERT(freeListEntries.size());
-                ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last()));
-                // The lowest addressed item is from m_freeList; pop it from the Vector.
-                coalescionEntry = freeListEntries.last();
-                freeListEntries.removeLast();
-            }
+        m_reservation = PageReservation::reserveWithGuardPages(fixedExecutableMemoryPoolSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true);
+        if (m_reservation) {
+            ASSERT(m_reservation.size() == fixedExecutableMemoryPoolSize);
+            addFreshFreeSpace(m_reservation.base(), m_reservation.size());
             
-            // Right, we have a FreeListEntry, we just need check if there is anything else
-            // to coalesce onto the end.
-            ASSERT(coalescionEntry);
-            while (true) {
-                // Calculate the end address of the chunk we have found so far.
-                void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size);
-
-                // Is there another chunk adjacent to the one we already have?
-                if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
-                    // Yes - another FreeListEntry -pop it from the list.
-                    FreeListEntry* coalescee = freeListEntries.last();
-                    freeListEntries.removeLast();
-                    // Add it's size onto our existing node.
-                    coalescionEntry->size += coalescee->size;
-                    delete coalescee;
-                } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
-                    // We can coalesce the next common-sized chunk.
-                    m_commonSizedAllocations.removeLast();
-                    coalescionEntry->size += m_commonSize;
-                } else
-                    break; // Nope, nothing to be added - stop here.
-            }
-
-            // We've coalesced everything we can onto the current chunk.
-            // Add it back into m_freeList.
-            addToFreeList(coalescionEntry);
+            startOfFixedExecutableMemoryPool = reinterpret_cast<uintptr_t>(m_reservation.base());
         }
-
-        // All chunks of free memory larger than m_commonSize should be
-        // back in m_freeList by now.  All that remains to be done is to
-        // copy the contents on the newCommonSizedAllocations back into
-        // the m_commonSizedAllocations Vector.
-        ASSERT(m_commonSizedAllocations.size() == 0);
-        m_commonSizedAllocations.append(newCommonSizedAllocations);
     }
 
-public:
-
-    FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize)
-        : m_commonSize(commonSize)
-        , m_countFreedSinceLastCoalesce(0)
-        , m_totalHeapSize(totalHeapSize)
+    virtual ~FixedVMPoolExecutableAllocator();
+    
+protected:
+    virtual void* allocateNewSpace(size_t&) override
     {
-        // Cook up an address to allocate at, using the following recipe:
-        //   17 bits of zero, stay in userspace kids.
-        //   26 bits of randomness for ASLR.
-        //   21 bits of zero, at least stay aligned within one level of the pagetables.
-        //
-        // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854),
-        // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus
-        // 2^24, which should put up somewhere in the middle of usespace (in the address range
-        // 0x200000000000 .. 0x5fffffffffff).
-        intptr_t randomLocation = arc4random() & ((1 << 25) - 1);
-        randomLocation += (1 << 24);
-        randomLocation <<= 21;
-        m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MAP_PRIVATE | MAP_ANON, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, 0);
-        if (!m_base)
-            CRASH();
-
-        // For simplicity, we keep all memory in m_freeList in a 'released' state.
-        // This means that we can simply reuse all memory when allocating, without
-        // worrying about it's previous state, and also makes coalescing m_freeList
-        // simpler since we need not worry about the possibility of coalescing released
-        // chunks with non-released ones.
-        release(m_base, m_totalHeapSize);
-        m_freeList.insert(new FreeListEntry(m_base, m_totalHeapSize));
+        // We're operating in a fixed pool, so new allocation is always prohibited.
+        return 0;
     }
-
-    void* alloc(size_t size)
+    
+    virtual void notifyNeedPage(void* page) override
     {
-        void* result;
-
-        // Freed allocations of the common size are not stored back into the main
-        // m_freeList, but are instead stored in a separate vector.  If the request
-        // is for a common sized allocation, check this list.
-        if ((size == m_commonSize) && m_commonSizedAllocations.size()) {
-            result = m_commonSizedAllocations.last();
-            m_commonSizedAllocations.removeLast();
-        } else {
-            // Serach m_freeList for a suitable sized chunk to allocate memory from.
-            FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
-
-            // This would be bad news.
-            if (!entry) {
-                // Errk!  Lets take a last-ditch desparation attempt at defragmentation...
-                coalesceFreeSpace();
-                // Did that free up a large enough chunk?
-                entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
-                // No?...  *BOOM!*
-                if (!entry)
-                    CRASH();
-            }
-            ASSERT(entry->size != m_commonSize);
-
-            // Remove the entry from m_freeList.  But! -
-            // Each entry in the tree may represent a chain of multiple chunks of the
-            // same size, and we only want to remove one on them.  So, if this entry
-            // does have a chain, just remove the first-but-one item from the chain.
-            if (FreeListEntry* next = entry->nextEntry) {
-                // We're going to leave 'entry' in the tree; remove 'next' from its chain.
-                entry->nextEntry = next->nextEntry;
-                next->nextEntry = 0;
-                entry = next;
-            } else
-                m_freeList.remove(entry->size);
-
-            // Whoo!, we have a result!
-            ASSERT(entry->size >= size);
-            result = entry->pointer;
-
-            // If the allocation exactly fits the chunk we found in the,
-            // m_freeList then the FreeListEntry node is no longer needed.
-            if (entry->size == size)
-                delete entry;
-            else {
-                // There is memory left over, and it is not of the common size.
-                // We can reuse the existing FreeListEntry node to add this back
-                // into m_freeList.
-                entry->pointer = (void*)((intptr_t)entry->pointer + size);
-                entry->size -= size;
-                addToFreeList(entry);
-            }
-        }
-
-        // Call reuse to report to the operating system that this memory is in use.
-        ASSERT(isWithinVMPool(result, size));
-        reuse(result, size);
-        return result;
+#if USE(MADV_FREE_FOR_JIT_MEMORY)
+        UNUSED_PARAM(page);
+#else
+        m_reservation.commit(page, pageSize());
+#endif
     }
-
-    void free(void* pointer, size_t size)
+    
+    virtual void notifyPageIsFree(void* page) override
     {
-        // Call release to report to the operating system that this
-        // memory is no longer in use, and need not be paged out.
-        ASSERT(isWithinVMPool(pointer, size));
-        release(pointer, size);
-
-        // Common-sized allocations are stored in the m_commonSizedAllocations
-        // vector; all other freed chunks are added to m_freeList.
-        if (size == m_commonSize)
-            m_commonSizedAllocations.append(pointer);
-        else
-            addToFreeList(new FreeListEntry(pointer, size));
-
-        // Do some housekeeping.  Every time we reach a point that
-        // 16MB of allocations have been freed, sweep m_freeList
-        // coalescing any neighboring fragments.
-        m_countFreedSinceLastCoalesce += size;
-        if (m_countFreedSinceLastCoalesce >= SIXTEEN_MB) {
-            m_countFreedSinceLastCoalesce = 0;
-            coalesceFreeSpace();
+#if USE(MADV_FREE_FOR_JIT_MEMORY)
+        for (;;) {
+            int result = madvise(page, pageSize(), MADV_FREE);
+            if (!result)
+                return;
+            ASSERT(result == -1);
+            if (errno != EAGAIN) {
+                RELEASE_ASSERT_NOT_REACHED(); // In debug mode, this should be a hard failure.
+                break; // In release mode, we should just ignore the error - not returning memory to the OS is better than crashing, especially since we _will_ be able to reuse the memory internally anyway.
+            }
         }
+#else
+        m_reservation.decommit(page, pageSize());
+#endif
     }
 
 private:
+    PageReservation m_reservation;
+};
 
-#ifndef NDEBUG
-    bool isWithinVMPool(void* pointer, size_t size)
-    {
-        return pointer >= m_base && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_base) + m_totalHeapSize);
-    }
-#endif
+static FixedVMPoolExecutableAllocator* allocator;
 
-    // Freed space from the most common sized allocations will be held in this list, ...
-    const size_t m_commonSize;
-    Vector<void*> m_commonSizedAllocations;
+void ExecutableAllocator::initializeAllocator()
+{
+    ASSERT(!allocator);
+    allocator = new FixedVMPoolExecutableAllocator();
+    CodeProfiling::notifyAllocator(allocator);
+}
 
-    // ... and all other freed allocations are held in m_freeList.
-    SizeSortedFreeTree m_freeList;
+ExecutableAllocator::ExecutableAllocator(VM&)
+{
+    ASSERT(allocator);
+}
 
-    // This is used for housekeeping, to trigger defragmentation of the freed lists.
-    size_t m_countFreedSinceLastCoalesce;
+ExecutableAllocator::~ExecutableAllocator()
+{
+}
 
-    void* m_base;
-    size_t m_totalHeapSize;
-};
+FixedVMPoolExecutableAllocator::~FixedVMPoolExecutableAllocator()
+{
+    m_reservation.deallocate();
+}
 
-void ExecutableAllocator::intializePageSize()
+bool ExecutableAllocator::isValid() const
 {
-    ExecutableAllocator::pageSize = getpagesize();
+    return !!allocator->bytesReserved();
 }
 
-static FixedVMPoolAllocator* allocator = 0;
-static SpinLock spinlock = SPINLOCK_INITIALIZER;
+bool ExecutableAllocator::underMemoryPressure()
+{
+    MetaAllocator::Statistics statistics = allocator->currentStatistics();
+    return statistics.bytesAllocated > statistics.bytesReserved / 2;
+}
 
-ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size)
+double ExecutableAllocator::memoryPressureMultiplier(size_t addedMemoryUsage)
 {
-  SpinLockHolder lock_holder(&spinlock);
+    MetaAllocator::Statistics statistics = allocator->currentStatistics();
+    ASSERT(statistics.bytesAllocated <= statistics.bytesReserved);
+    size_t bytesAllocated = statistics.bytesAllocated + addedMemoryUsage;
+    if (bytesAllocated >= statistics.bytesReserved)
+        bytesAllocated = statistics.bytesReserved;
+    double result = 1.0;
+    size_t divisor = statistics.bytesReserved - bytesAllocated;
+    if (divisor)
+        result = static_cast<double>(statistics.bytesReserved) / divisor;
+    if (result < 1.0)
+        result = 1.0;
+    return result;
+}
 
-    if (!allocator)
-        allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, TWO_GB);
-    ExecutablePool::Allocation alloc = {reinterpret_cast<char*>(allocator->alloc(size)), size};
-    return alloc;
+PassRefPtr<ExecutableMemoryHandle> ExecutableAllocator::allocate(VM& vm, size_t sizeInBytes, void* ownerUID, JITCompilationEffort effort)
+{
+    RefPtr<ExecutableMemoryHandle> result = allocator->allocate(sizeInBytes, ownerUID);
+    if (!result) {
+        if (effort == JITCompilationCanFail)
+            return result;
+        releaseExecutableMemory(vm);
+        result = allocator->allocate(sizeInBytes, ownerUID);
+        RELEASE_ASSERT(result);
+    }
+    return result.release();
 }
 
-void ExecutablePool::systemRelease(const ExecutablePool::Allocation& allocation) 
+size_t ExecutableAllocator::committedByteCount()
 {
-  SpinLockHolder lock_holder(&spinlock);
+    return allocator->bytesCommitted();
+}
 
-    ASSERT(allocator);
-    allocator->free(allocation.pages, allocation.size);
+#if ENABLE(META_ALLOCATOR_PROFILE)
+void ExecutableAllocator::dumpProfile()
+{
+    allocator->dumpProfile();
 }
+#endif
 
 }
 
-#endif // HAVE(ASSEMBLER)
+
+#endif // ENABLE(EXECUTABLE_ALLOCATOR_FIXED)