if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT3, regT2);
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
- addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target + 3);
+ addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3);
+ addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
} else {
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
- addJump(branch32(GreaterThanOrEqual, regT0, regT2), target + 3);
+ addJump(branch32(GreaterThanOrEqual, regT0, regT2), target);
}
if (!supportsFloatingPoint()) {
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3);
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+}
+
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ // Int32 less.
+ if (isOperandConstantImmediateInt(op1)) {
+ emitLoad(op2, regT3, regT2);
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+ } else if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+ } else {
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThan, regT0, regT2), target);
+ }
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double less.
+ emitBinaryDoubleOp(op_jless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+ end.link(this);
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ if (!supportsFloatingPoint()) {
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter); // double check
+ linkSlowCase(iter); // int32 check
+ }
+ if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // double check
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
}
void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT3, regT2);
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
- addJump(branch32(LessThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target + 3);
+ addJump(branch32(LessThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
- addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3);
+ addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
} else {
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
- addJump(branch32(GreaterThan, regT0, regT2), target + 3);
+ addJump(branch32(GreaterThan, regT0, regT2), target);
}
if (!supportsFloatingPoint()) {
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3);
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
}
// LeftShift (<<)
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+ return;
+ }
+
JumpList notInt32Op1;
JumpList notInt32Op2;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ return;
+
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
break;
case op_jnless:
emitLoadDouble(op1, fpRegT2);
- addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT2), dst + 3);
+ addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
+ break;
+ case op_jless:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst);
break;
case op_jnlesseq:
emitLoadDouble(op1, fpRegT2);
- addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT2), dst + 3);
+ addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst);
break;
default:
ASSERT_NOT_REACHED();
break;
case op_jnless:
emitLoadDouble(op2, fpRegT1);
- addJump(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), dst + 3);
+ addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
+ break;
+ case op_jless:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst);
break;
case op_jnlesseq:
emitLoadDouble(op2, fpRegT1);
- addJump(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), dst + 3);
+ addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst);
break;
default:
ASSERT_NOT_REACHED();
divDouble(fpRegT1, fpRegT0);
JumpList doubleResult;
- if (!isOperandConstantImmediateInt(op1) || getConstantOperand(op1).asInt32() > 1) {
- m_assembler.cvttsd2si_rr(fpRegT0, regT0);
- convertInt32ToDouble(regT0, fpRegT1);
- m_assembler.ucomisd_rr(fpRegT1, fpRegT0);
-
- doubleResult.append(m_assembler.jne());
- doubleResult.append(m_assembler.jp());
-
- doubleResult.append(branchTest32(Zero, regT0));
+ branchConvertDoubleToInt32(fpRegT0, regT0, doubleResult, fpRegT1);
- // Int32 result.
- emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
- end.append(jump());
- }
+ // Int32 result.
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+ end.append(jump());
// Double result.
doubleResult.link(this);
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
-#if PLATFORM(X86) || PLATFORM(X86_64)
+#if CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
- emitLoad(op1, X86::edx, X86::eax);
- move(Imm32(getConstantOperand(op2).asInt32()), X86::ecx);
- addSlowCase(branch32(NotEqual, X86::edx, Imm32(JSValue::Int32Tag)));
+ emitLoad(op1, X86Registers::edx, X86Registers::eax);
+ move(Imm32(getConstantOperand(op2).asInt32()), X86Registers::ecx);
+ addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
if (getConstantOperand(op2).asInt32() == -1)
- addSlowCase(branch32(Equal, X86::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
+ addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
} else {
- emitLoad2(op1, X86::edx, X86::eax, op2, X86::ebx, X86::ecx);
- addSlowCase(branch32(NotEqual, X86::edx, Imm32(JSValue::Int32Tag)));
- addSlowCase(branch32(NotEqual, X86::ebx, Imm32(JSValue::Int32Tag)));
+ emitLoad2(op1, X86Registers::edx, X86Registers::eax, op2, X86Registers::ebx, X86Registers::ecx);
+ addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, X86Registers::ebx, Imm32(JSValue::Int32Tag)));
- addSlowCase(branch32(Equal, X86::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
- addSlowCase(branch32(Equal, X86::ecx, Imm32(0))); // divide by 0
+ addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
+ addSlowCase(branch32(Equal, X86Registers::ecx, Imm32(0))); // divide by 0
}
- move(X86::eax, X86::ebx); // Save dividend payload, in case of 0.
+ move(X86Registers::eax, X86Registers::ebx); // Save dividend payload, in case of 0.
m_assembler.cdq();
- m_assembler.idivl_r(X86::ecx);
+ m_assembler.idivl_r(X86Registers::ecx);
// If the remainder is zero and the dividend is negative, the result is -0.
- Jump storeResult1 = branchTest32(NonZero, X86::edx);
- Jump storeResult2 = branchTest32(Zero, X86::ebx, Imm32(0x80000000)); // not negative
+ Jump storeResult1 = branchTest32(NonZero, X86Registers::edx);
+ Jump storeResult2 = branchTest32(Zero, X86Registers::ebx, Imm32(0x80000000)); // not negative
emitStore(dst, jsNumber(m_globalData, -0.0));
Jump end = jump();
storeResult1.link(this);
storeResult2.link(this);
- emitStoreInt32(dst, X86::edx, (op1 == dst || op2 == dst));
+ emitStoreInt32(dst, X86Registers::edx, (op1 == dst || op2 == dst));
end.link(this);
}
stubCall.call(dst);
}
-#else // PLATFORM(X86) || PLATFORM(X86_64)
+#else // CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
{
}
-#endif // PLATFORM(X86) || PLATFORM(X86_64)
+#endif // CPU(X86) || CPU(X86_64)
/* ------------------------------ END: OP_MOD ------------------------------ */
emitJumpSlowCaseIfNotImmediateInteger(regT2);
emitFastArithImmToInt(regT0);
emitFastArithImmToInt(regT2);
-#if !PLATFORM(X86)
- // Mask with 0x1f as per ecma-262 11.7.2 step 7.
- // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction.
- and32(Imm32(0x1f), regT2);
-#endif
lshift32(regT2, regT0);
-#if !USE(JSVALUE64)
+#if USE(JSVALUE32)
addSlowCase(branchAdd32(Overflow, regT0, regT0));
signExtend32ToPtr(regT0, regT0);
#endif
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
// Mask with 0x1f as per ecma-262 11.7.2 step 7.
-#if USE(JSVALUE64)
rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
-#else
- rshiftPtr(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
-#endif
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT2);
if (supportsFloatingPointTruncate()) {
emitJumpSlowCaseIfNotImmediateInteger(regT2);
}
emitFastArithImmToInt(regT2);
-#if !PLATFORM(X86)
- // Mask with 0x1f as per ecma-262 11.7.2 step 7.
- // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction.
- and32(Imm32(0x1f), regT2);
-#endif
-#if USE(JSVALUE64)
rshift32(regT2, regT0);
-#else
- rshiftPtr(regT2, regT0);
+#if USE(JSVALUE32)
+ signExtend32ToPtr(regT0, regT0);
#endif
}
#if USE(JSVALUE64)
#else
int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
#endif
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target + 3);
+ addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
#else
int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
#endif
- addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target + 3);
+ addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
- addJump(branch32(GreaterThanOrEqual, regT0, regT1), target + 3);
+ addJump(branch32(GreaterThanOrEqual, regT0, regT1), target);
}
}
move(Imm32(op2imm), regT1);
convertInt32ToDouble(regT1, fpRegT1);
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3);
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3);
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
} else if (isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
move(Imm32(op1imm), regT0);
convertInt32ToDouble(regT0, fpRegT0);
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3);
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3);
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
} else {
linkSlowCase(iter);
loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
#endif
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3);
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3);
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+ }
+}
+
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the fast path:
+ // - int immediate to constant int immediate
+ // - constant int immediate to int immediate
+ // - int immediate to int immediate
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+ int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+ addJump(branch32(LessThan, regT0, Imm32(op2imm)), target);
+ } else if (isOperandConstantImmediateInt(op1)) {
+ emitGetVirtualRegister(op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+ int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+ int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+ addJump(branch32(GreaterThan, regT1, Imm32(op1imm)), target);
+ } else {
+ emitGetVirtualRegisters(op1, regT0, op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+ addJump(branch32(LessThan, regT0, regT1), target);
+ }
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the slow path:
+ // - floating-point number to constant int immediate
+ // - constant int immediate to floating-point number
+ // - floating-point number to floating-point number.
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+
+ int32_t op2imm = getConstantOperand(op2).asInt32();
+
+ move(Imm32(op2imm), regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+
+ } else if (isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ int32_t op1imm = getConstantOperand(op1).asInt32();
+
+ move(Imm32(op1imm), regT0);
+ convertInt32ToDouble(regT0, fpRegT0);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+
+ } else {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+ Jump fail3 = emitJumpIfImmediateInteger(regT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT0, fpRegT0);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+ Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+ fail2.link(this);
+ fail3.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2.link(this);
+ fail3.link(this);
+ fail4.link(this);
+#endif
+ }
+
+ linkSlowCase(iter);
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
}
}
#else
int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
#endif
- addJump(branch32(GreaterThan, regT0, Imm32(op2imm)), target + 3);
+ addJump(branch32(GreaterThan, regT0, Imm32(op2imm)), target);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
#else
int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
#endif
- addJump(branch32(LessThan, regT1, Imm32(op1imm)), target + 3);
+ addJump(branch32(LessThan, regT1, Imm32(op1imm)), target);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
- addJump(branch32(GreaterThan, regT0, regT1), target + 3);
+ addJump(branch32(GreaterThan, regT0, regT1), target);
}
}
move(Imm32(op2imm), regT1);
convertInt32ToDouble(regT1, fpRegT1);
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3);
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3);
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
} else if (isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
move(Imm32(op1imm), regT0);
convertInt32ToDouble(regT0, fpRegT0);
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3);
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3);
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
} else {
linkSlowCase(iter);
loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
#endif
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3);
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3);
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
}
}
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
-#if PLATFORM(X86) || PLATFORM(X86_64)
+#if CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
- emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::ecx);
+ emitGetVirtualRegisters(op1, X86Registers::eax, op2, X86Registers::ecx);
+ emitJumpSlowCaseIfNotImmediateInteger(X86Registers::eax);
+ emitJumpSlowCaseIfNotImmediateInteger(X86Registers::ecx);
#if USE(JSVALUE64)
- addSlowCase(branchPtr(Equal, X86::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))));
+ addSlowCase(branchPtr(Equal, X86Registers::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))));
m_assembler.cdq();
- m_assembler.idivl_r(X86::ecx);
+ m_assembler.idivl_r(X86Registers::ecx);
#else
- emitFastArithDeTagImmediate(X86::eax);
- addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86::ecx));
+ emitFastArithDeTagImmediate(X86Registers::eax);
+ addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86Registers::ecx));
m_assembler.cdq();
- m_assembler.idivl_r(X86::ecx);
- signExtend32ToPtr(X86::edx, X86::edx);
+ m_assembler.idivl_r(X86Registers::ecx);
+ signExtend32ToPtr(X86Registers::edx, X86Registers::edx);
#endif
- emitFastArithReTagImmediate(X86::edx, X86::eax);
+ emitFastArithReTagImmediate(X86Registers::edx, X86Registers::eax);
emitPutVirtualRegister(result);
}
Jump notImm1 = getSlowCase(iter);
Jump notImm2 = getSlowCase(iter);
linkSlowCase(iter);
- emitFastArithReTagImmediate(X86::eax, X86::eax);
- emitFastArithReTagImmediate(X86::ecx, X86::ecx);
+ emitFastArithReTagImmediate(X86Registers::eax, X86Registers::eax);
+ emitFastArithReTagImmediate(X86Registers::ecx, X86Registers::ecx);
notImm1.link(this);
notImm2.link(this);
#endif
JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(X86::eax);
- stubCall.addArgument(X86::ecx);
+ stubCall.addArgument(X86Registers::eax);
+ stubCall.addArgument(X86Registers::ecx);
stubCall.call(result);
}
-#else // PLATFORM(X86) || PLATFORM(X86_64)
+#else // CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
ASSERT_NOT_REACHED();
}
-#endif // PLATFORM(X86) || PLATFORM(X86_64)
+#endif // CPU(X86) || CPU(X86_64)
/* ------------------------------ END: OP_MOD ------------------------------ */
emitFastArithIntToImmNoCheck(regT0, regT0);
}
-void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned, OperandTypes types)
+void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
{
// We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset.
COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
-
- Jump notImm1 = getSlowCase(iter);
- Jump notImm2 = getSlowCase(iter);
+
+ Jump notImm1;
+ Jump notImm2;
+ if (op1HasImmediateIntFastCase) {
+ notImm2 = getSlowCase(iter);
+ } else if (op2HasImmediateIntFastCase) {
+ notImm1 = getSlowCase(iter);
+ } else {
+ notImm1 = getSlowCase(iter);
+ notImm2 = getSlowCase(iter);
+ }
linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare.
- if (opcodeID == op_mul) // op_mul has an extra slow case to handle 0 * negative number.
+ if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number.
linkSlowCase(iter);
emitGetVirtualRegister(op1, regT0);
Label stubFunctionCall(this);
JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
+ if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) {
+ emitGetVirtualRegister(op1, regT0);
+ emitGetVirtualRegister(op2, regT1);
+ }
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(result);
Jump end = jump();
- // if we get here, eax is not an int32, edx not yet checked.
- notImm1.link(this);
- if (!types.first().definitelyIsNumber())
- emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
- if (!types.second().definitelyIsNumber())
- emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT1);
- Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1);
- convertInt32ToDouble(regT1, fpRegT2);
- Jump op2wasInteger = jump();
-
- // if we get here, eax IS an int32, edx is not.
- notImm2.link(this);
- if (!types.second().definitelyIsNumber())
- emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
- convertInt32ToDouble(regT0, fpRegT1);
- op2isDouble.link(this);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT2);
- op2wasInteger.link(this);
+ if (op1HasImmediateIntFastCase) {
+ notImm2.link(this);
+ if (!types.second().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+ emitGetVirtualRegister(op1, regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT2);
+ } else if (op2HasImmediateIntFastCase) {
+ notImm1.link(this);
+ if (!types.first().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+ emitGetVirtualRegister(op2, regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT2);
+ } else {
+ // if we get here, eax is not an int32, edx not yet checked.
+ notImm1.link(this);
+ if (!types.first().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+ if (!types.second().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT1);
+ Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1);
+ convertInt32ToDouble(regT1, fpRegT2);
+ Jump op2wasInteger = jump();
+
+ // if we get here, eax IS an int32, edx is not.
+ notImm2.link(this);
+ if (!types.second().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
+ convertInt32ToDouble(regT0, fpRegT1);
+ op2isDouble.link(this);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT2);
+ op2wasInteger.link(this);
+ }
if (opcodeID == op_add)
addDouble(fpRegT2, fpRegT1);
else if (opcodeID == op_sub)
subDouble(fpRegT2, fpRegT1);
- else {
- ASSERT(opcodeID == op_mul);
+ else if (opcodeID == op_mul)
mulDouble(fpRegT2, fpRegT1);
+ else {
+ ASSERT(opcodeID == op_div);
+ divDouble(fpRegT2, fpRegT1);
}
moveDoubleToPtr(fpRegT1, regT0);
subPtr(tagTypeNumberRegister, regT0);
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if (isOperandConstantImmediateInt(op1) || isOperandConstantImmediateInt(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_add);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
- } else
- compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ return;
+
+ bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
+ bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
+ compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_mul(Instruction* currentInstruction)
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0))
- || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
- JITStubCall stubCall(this, cti_op_mul);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
- } else
- compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types);
+ bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0;
+ bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0;
+ compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+}
+
+void JIT::emit_op_div(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (isOperandConstantImmediateDouble(op1)) {
+ emitGetVirtualRegister(op1, regT0);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+ } else if (isOperandConstantImmediateInt(op1)) {
+ emitLoadInt32ToDouble(op1, fpRegT0);
+ } else {
+ emitGetVirtualRegister(op1, regT0);
+ if (!types.first().definitelyIsNumber())
+ emitJumpSlowCaseIfNotImmediateNumber(regT0);
+ Jump notInt = emitJumpIfNotImmediateInteger(regT0);
+ convertInt32ToDouble(regT0, fpRegT0);
+ Jump skipDoubleLoad = jump();
+ notInt.link(this);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+ skipDoubleLoad.link(this);
+ }
+
+ if (isOperandConstantImmediateDouble(op2)) {
+ emitGetVirtualRegister(op2, regT1);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
+ } else if (isOperandConstantImmediateInt(op2)) {
+ emitLoadInt32ToDouble(op2, fpRegT1);
+ } else {
+ emitGetVirtualRegister(op2, regT1);
+ if (!types.second().definitelyIsNumber())
+ emitJumpSlowCaseIfNotImmediateNumber(regT1);
+ Jump notInt = emitJumpIfNotImmediateInteger(regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+ Jump skipDoubleLoad = jump();
+ notInt.link(this);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
+ skipDoubleLoad.link(this);
+ }
+ divDouble(fpRegT1, fpRegT0);
+
+ // Double result.
+ moveDoubleToPtr(fpRegT0, regT0);
+ subPtr(tagTypeNumberRegister, regT0);
+
+ emitPutVirtualRegister(dst, regT0);
+}
+
+void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+ if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) {
+#ifndef NDEBUG
+ breakpoint();
+#endif
+ return;
+ }
+ if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter);
+ }
+ if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) {
+ if (!types.second().definitelyIsNumber())
+ linkSlowCase(iter);
+ }
+ // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
+ JITStubCall stubCall(this, cti_op_div);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call(result);
}
void JIT::emit_op_sub(Instruction* currentInstruction)
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
compileBinaryArithOp(op_sub, result, op1, op2, types);
-
emitPutVirtualRegister(result);
}
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types);
+ compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false);
}
#else // USE(JSVALUE64)
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call(result);
+ return;
+ }
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
signExtend32ToPtr(regT0, regT0);
emitPutVirtualRegister(result);
} else {
- OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if (types.first().mightBeNumber() && types.second().mightBeNumber())
- compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
- else {
- JITStubCall stubCall(this, cti_op_add);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
- }
+ compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
}
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ return;
+
if (isOperandConstantImmediateInt(op1)) {
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);