#ifndef MacroAssembler_h
#define MacroAssembler_h
-#include <wtf/Platform.h>
-
#if ENABLE(ASSEMBLER)
-#if PLATFORM_ARM_ARCH(7)
+#if CPU(ARM_THUMB2)
#include "MacroAssemblerARMv7.h"
namespace JSC { typedef MacroAssemblerARMv7 MacroAssemblerBase; };
-#elif PLATFORM(X86)
+#elif CPU(ARM_TRADITIONAL)
+#include "MacroAssemblerARM.h"
+namespace JSC { typedef MacroAssemblerARM MacroAssemblerBase; };
+
+#elif CPU(MIPS)
+#include "MacroAssemblerMIPS.h"
+namespace JSC {
+typedef MacroAssemblerMIPS MacroAssemblerBase;
+};
+
+#elif CPU(X86)
#include "MacroAssemblerX86.h"
namespace JSC { typedef MacroAssemblerX86 MacroAssemblerBase; };
-#elif PLATFORM(X86_64)
+#elif CPU(X86_64)
#include "MacroAssemblerX86_64.h"
namespace JSC { typedef MacroAssemblerX86_64 MacroAssemblerBase; };
+#elif CPU(SH4)
+#include "MacroAssemblerSH4.h"
+namespace JSC {
+typedef MacroAssemblerSH4 MacroAssemblerBase;
+};
+
#else
#error "The MacroAssembler is not supported on this platform."
#endif
-
namespace JSC {
class MacroAssembler : public MacroAssemblerBase {
using MacroAssemblerBase::pop;
using MacroAssemblerBase::jump;
using MacroAssemblerBase::branch32;
- using MacroAssemblerBase::branch16;
-#if PLATFORM(X86_64)
+#if CPU(X86_64)
using MacroAssemblerBase::branchPtr;
using MacroAssemblerBase::branchTestPtr;
#endif
+ using MacroAssemblerBase::move;
+
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ using MacroAssemblerBase::add32;
+ using MacroAssemblerBase::and32;
+ using MacroAssemblerBase::branchAdd32;
+ using MacroAssemblerBase::branchMul32;
+ using MacroAssemblerBase::branchSub32;
+ using MacroAssemblerBase::lshift32;
+ using MacroAssemblerBase::or32;
+ using MacroAssemblerBase::rshift32;
+ using MacroAssemblerBase::store32;
+ using MacroAssemblerBase::sub32;
+ using MacroAssemblerBase::urshift32;
+ using MacroAssemblerBase::xor32;
+#endif
+ // Utilities used by the DFG JIT.
+#if ENABLE(DFG_JIT)
+ using MacroAssemblerBase::invert;
+
+ static DoubleCondition invert(DoubleCondition cond)
+ {
+ switch (cond) {
+ case DoubleEqual:
+ return DoubleNotEqualOrUnordered;
+ case DoubleNotEqual:
+ return DoubleEqualOrUnordered;
+ case DoubleGreaterThan:
+ return DoubleLessThanOrEqualOrUnordered;
+ case DoubleGreaterThanOrEqual:
+ return DoubleLessThanOrUnordered;
+ case DoubleLessThan:
+ return DoubleGreaterThanOrEqualOrUnordered;
+ case DoubleLessThanOrEqual:
+ return DoubleGreaterThanOrUnordered;
+ case DoubleEqualOrUnordered:
+ return DoubleNotEqual;
+ case DoubleNotEqualOrUnordered:
+ return DoubleEqual;
+ case DoubleGreaterThanOrUnordered:
+ return DoubleLessThanOrEqual;
+ case DoubleGreaterThanOrEqualOrUnordered:
+ return DoubleLessThan;
+ case DoubleLessThanOrUnordered:
+ return DoubleGreaterThanOrEqual;
+ case DoubleLessThanOrEqualOrUnordered:
+ return DoubleGreaterThan;
+ default:
+ ASSERT_NOT_REACHED();
+ return DoubleEqual; // make compiler happy
+ }
+ }
+
+ static bool isInvertible(ResultCondition cond)
+ {
+ switch (cond) {
+ case Zero:
+ case NonZero:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ static ResultCondition invert(ResultCondition cond)
+ {
+ switch (cond) {
+ case Zero:
+ return NonZero;
+ case NonZero:
+ return Zero;
+ default:
+ ASSERT_NOT_REACHED();
+ return Zero; // Make compiler happy for release builds.
+ }
+ }
+#endif
// Platform agnostic onvenience functions,
// described in terms of other macro assembly methods.
void pop()
{
- addPtr(Imm32(sizeof(void*)), stackPointerRegister);
+ addPtr(TrustedImm32(sizeof(void*)), stackPointerRegister);
}
void peek(RegisterID dest, int index = 0)
loadPtr(Address(stackPointerRegister, (index * sizeof(void*))), dest);
}
+ Address addressForPoke(int index)
+ {
+ return Address(stackPointerRegister, (index * sizeof(void*)));
+ }
+
void poke(RegisterID src, int index = 0)
{
- storePtr(src, Address(stackPointerRegister, (index * sizeof(void*))));
+ storePtr(src, addressForPoke(index));
}
- void poke(Imm32 value, int index = 0)
+ void poke(TrustedImm32 value, int index = 0)
{
- store32(value, Address(stackPointerRegister, (index * sizeof(void*))));
+ store32(value, addressForPoke(index));
}
- void poke(ImmPtr imm, int index = 0)
+ void poke(TrustedImmPtr imm, int index = 0)
{
- storePtr(imm, Address(stackPointerRegister, (index * sizeof(void*))));
+ storePtr(imm, addressForPoke(index));
}
// Backwards banches, these are currently all implemented using existing forwards branch mechanisms.
- void branchPtr(Condition cond, RegisterID op1, ImmPtr imm, Label target)
+ void branchPtr(RelationalCondition cond, RegisterID op1, TrustedImmPtr imm, Label target)
+ {
+ branchPtr(cond, op1, imm).linkTo(target, this);
+ }
+ void branchPtr(RelationalCondition cond, RegisterID op1, ImmPtr imm, Label target)
{
branchPtr(cond, op1, imm).linkTo(target, this);
}
- void branch32(Condition cond, RegisterID op1, RegisterID op2, Label target)
+ void branch32(RelationalCondition cond, RegisterID op1, RegisterID op2, Label target)
{
branch32(cond, op1, op2).linkTo(target, this);
}
- void branch32(Condition cond, RegisterID op1, Imm32 imm, Label target)
+ void branch32(RelationalCondition cond, RegisterID op1, TrustedImm32 imm, Label target)
+ {
+ branch32(cond, op1, imm).linkTo(target, this);
+ }
+
+ void branch32(RelationalCondition cond, RegisterID op1, Imm32 imm, Label target)
{
branch32(cond, op1, imm).linkTo(target, this);
}
- void branch32(Condition cond, RegisterID left, Address right, Label target)
+ void branch32(RelationalCondition cond, RegisterID left, Address right, Label target)
{
branch32(cond, left, right).linkTo(target, this);
}
- void branch16(Condition cond, BaseIndex left, RegisterID right, Label target)
+ Jump branch32(RelationalCondition cond, TrustedImm32 left, RegisterID right)
{
- branch16(cond, left, right).linkTo(target, this);
+ return branch32(commute(cond), right, left);
}
-
- void branchTestPtr(Condition cond, RegisterID reg, Label target)
+
+ Jump branch32(RelationalCondition cond, Imm32 left, RegisterID right)
+ {
+ return branch32(commute(cond), right, left);
+ }
+
+ void branchTestPtr(ResultCondition cond, RegisterID reg, Label target)
{
branchTestPtr(cond, reg).linkTo(target, this);
}
+#if !CPU(ARM_THUMB2)
+ PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
+ {
+ return PatchableJump(branchPtrWithPatch(cond, left, dataLabel, initialRightValue));
+ }
+
+ PatchableJump patchableJump()
+ {
+ return PatchableJump(jump());
+ }
+#endif
+
void jump(Label target)
{
jump().linkTo(target, this);
}
+ // Commute a relational condition, returns a new condition that will produce
+ // the same results given the same inputs but with their positions exchanged.
+ static RelationalCondition commute(RelationalCondition condition)
+ {
+ switch (condition) {
+ case Above:
+ return Below;
+ case AboveOrEqual:
+ return BelowOrEqual;
+ case Below:
+ return Above;
+ case BelowOrEqual:
+ return AboveOrEqual;
+ case GreaterThan:
+ return LessThan;
+ case GreaterThanOrEqual:
+ return LessThanOrEqual;
+ case LessThan:
+ return GreaterThan;
+ case LessThanOrEqual:
+ return GreaterThanOrEqual;
+ default:
+ break;
+ }
+
+ ASSERT(condition == Equal || condition == NotEqual);
+ return condition;
+ }
+
// Ptr methods
// On 32-bit platforms (i.e. x86), these methods directly map onto their 32-bit equivalents.
-#if !PLATFORM(X86_64)
+ // FIXME: should this use a test for 32-bitness instead of this specific exception?
+#if !CPU(X86_64)
void addPtr(RegisterID src, RegisterID dest)
{
add32(src, dest);
}
- void addPtr(Imm32 imm, RegisterID srcDest)
+ void addPtr(TrustedImm32 imm, RegisterID srcDest)
{
add32(imm, srcDest);
}
- void addPtr(ImmPtr imm, RegisterID dest)
+ void addPtr(TrustedImmPtr imm, RegisterID dest)
{
- add32(Imm32(imm), dest);
+ add32(TrustedImm32(imm), dest);
}
- void addPtr(Imm32 imm, RegisterID src, RegisterID dest)
+ void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
add32(imm, src, dest);
}
+ void addPtr(TrustedImm32 imm, AbsoluteAddress address)
+ {
+ add32(imm, address);
+ }
+
void andPtr(RegisterID src, RegisterID dest)
{
and32(src, dest);
}
- void andPtr(Imm32 imm, RegisterID srcDest)
+ void andPtr(TrustedImm32 imm, RegisterID srcDest)
{
and32(imm, srcDest);
}
or32(src, dest);
}
- void orPtr(ImmPtr imm, RegisterID dest)
+ void orPtr(RegisterID op1, RegisterID op2, RegisterID dest)
{
- or32(Imm32(imm), dest);
+ or32(op1, op2, dest);
}
- void orPtr(Imm32 imm, RegisterID dest)
+ void orPtr(TrustedImmPtr imm, RegisterID dest)
{
- or32(imm, dest);
- }
-
- void rshiftPtr(RegisterID shift_amount, RegisterID dest)
- {
- rshift32(shift_amount, dest);
+ or32(TrustedImm32(imm), dest);
}
- void rshiftPtr(Imm32 imm, RegisterID dest)
+ void orPtr(TrustedImm32 imm, RegisterID dest)
{
- rshift32(imm, dest);
+ or32(imm, dest);
}
void subPtr(RegisterID src, RegisterID dest)
sub32(src, dest);
}
- void subPtr(Imm32 imm, RegisterID dest)
+ void subPtr(TrustedImm32 imm, RegisterID dest)
{
sub32(imm, dest);
}
- void subPtr(ImmPtr imm, RegisterID dest)
+ void subPtr(TrustedImmPtr imm, RegisterID dest)
{
- sub32(Imm32(imm), dest);
+ sub32(TrustedImm32(imm), dest);
}
void xorPtr(RegisterID src, RegisterID dest)
xor32(src, dest);
}
- void xorPtr(Imm32 imm, RegisterID srcDest)
+ void xorPtr(TrustedImm32 imm, RegisterID srcDest)
{
xor32(imm, srcDest);
}
load32(address, dest);
}
- void loadPtr(void* address, RegisterID dest)
+ void loadPtr(const void* address, RegisterID dest)
{
load32(address, dest);
}
{
return load32WithAddressOffsetPatch(address, dest);
}
+
+ DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest)
+ {
+ return load32WithCompactAddressOffsetPatch(address, dest);
+ }
- void setPtr(Condition cond, RegisterID left, Imm32 right, RegisterID dest)
+ void move(ImmPtr imm, RegisterID dest)
{
- set32(cond, left, right, dest);
+ move(Imm32(imm.asTrustedImmPtr()), dest);
+ }
+
+ void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
+ {
+ compare32(cond, left, right, dest);
}
void storePtr(RegisterID src, ImplicitAddress address)
store32(src, address);
}
- void storePtr(ImmPtr imm, ImplicitAddress address)
+ void storePtr(TrustedImmPtr imm, ImplicitAddress address)
+ {
+ store32(TrustedImm32(imm), address);
+ }
+
+ void storePtr(ImmPtr imm, Address address)
{
- store32(Imm32(imm), address);
+ store32(Imm32(imm.asTrustedImmPtr()), address);
}
- void storePtr(ImmPtr imm, void* address)
+ void storePtr(TrustedImmPtr imm, void* address)
{
- store32(Imm32(imm), address);
+ store32(TrustedImm32(imm), address);
}
DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address)
return store32WithAddressOffsetPatch(src, address);
}
-
- Jump branchPtr(Condition cond, RegisterID left, RegisterID right)
+ Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right)
{
return branch32(cond, left, right);
}
- Jump branchPtr(Condition cond, RegisterID left, ImmPtr right)
+ Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right)
{
- return branch32(cond, left, Imm32(right));
+ return branch32(cond, left, TrustedImm32(right));
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right)
+ {
+ return branch32(cond, left, Imm32(right.asTrustedImmPtr()));
}
- Jump branchPtr(Condition cond, RegisterID left, Address right)
+ Jump branchPtr(RelationalCondition cond, RegisterID left, Address right)
{
return branch32(cond, left, right);
}
- Jump branchPtr(Condition cond, Address left, RegisterID right)
+ Jump branchPtr(RelationalCondition cond, Address left, RegisterID right)
{
return branch32(cond, left, right);
}
- Jump branchPtr(Condition cond, AbsoluteAddress left, RegisterID right)
+ Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
return branch32(cond, left, right);
}
- Jump branchPtr(Condition cond, Address left, ImmPtr right)
+ Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right)
{
- return branch32(cond, left, Imm32(right));
+ return branch32(cond, left, TrustedImm32(right));
}
-
- Jump branchPtr(Condition cond, AbsoluteAddress left, ImmPtr right)
+
+ Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, TrustedImmPtr right)
{
- return branch32(cond, left, Imm32(right));
+ return branch32(cond, left, TrustedImm32(right));
}
- Jump branchTestPtr(Condition cond, RegisterID reg, RegisterID mask)
+ Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask)
{
return branchTest32(cond, reg, mask);
}
- Jump branchTestPtr(Condition cond, RegisterID reg, Imm32 mask = Imm32(-1))
+ Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest32(cond, reg, mask);
}
- Jump branchTestPtr(Condition cond, Address address, Imm32 mask = Imm32(-1))
+ Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest32(cond, address, mask);
}
- Jump branchTestPtr(Condition cond, BaseIndex address, Imm32 mask = Imm32(-1))
+ Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest32(cond, address, mask);
}
-
- Jump branchAddPtr(Condition cond, RegisterID src, RegisterID dest)
+ Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchAdd32(cond, src, dest);
}
- Jump branchSubPtr(Condition cond, Imm32 imm, RegisterID dest)
+ Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchSub32(cond, imm, dest);
}
+ using MacroAssemblerBase::branchTest8;
+ Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
+ {
+ return MacroAssemblerBase::branchTest8(cond, Address(address.base, address.offset), mask);
+ }
+#else
+
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ using MacroAssemblerBase::addPtr;
+ using MacroAssemblerBase::andPtr;
+ using MacroAssemblerBase::branchSubPtr;
+ using MacroAssemblerBase::convertInt32ToDouble;
+ using MacroAssemblerBase::storePtr;
+ using MacroAssemblerBase::subPtr;
+ using MacroAssemblerBase::xorPtr;
+
+ bool shouldBlindDouble(double value)
+ {
+ // Don't trust NaN or +/-Infinity
+ if (!isfinite(value))
+ return true;
+
+ // Try to force normalisation, and check that there's no change
+ // in the bit pattern
+ if (bitwise_cast<uintptr_t>(value * 1.0) != bitwise_cast<uintptr_t>(value))
+ return true;
+
+ value = abs(value);
+ // Only allow a limited set of fractional components
+ double scaledValue = value * 8;
+ if (scaledValue / 8 != value)
+ return true;
+ double frac = scaledValue - floor(scaledValue);
+ if (frac != 0.0)
+ return true;
+
+ return value > 0xff;
+ }
+
+ bool shouldBlind(ImmPtr imm)
+ {
+#if !defined(NDEBUG)
+ UNUSED_PARAM(imm);
+ // Debug always blind all constants, if only so we know
+ // if we've broken blinding during patch development.
+ return true;
+#endif
+
+ // First off we'll special case common, "safe" values to avoid hurting
+ // performance too much
+ uintptr_t value = imm.asTrustedImmPtr().asIntptr();
+ switch (value) {
+ case 0xffff:
+ case 0xffffff:
+ case 0xffffffffL:
+ case 0xffffffffffL:
+ case 0xffffffffffffL:
+ case 0xffffffffffffffL:
+ case 0xffffffffffffffffL:
+ return false;
+ default: {
+ if (value <= 0xff)
+ return false;
+#if CPU(X86_64)
+ JSValue jsValue = JSValue::decode(reinterpret_cast<void*>(value));
+ if (jsValue.isInt32())
+ return shouldBlind(Imm32(jsValue.asInt32()));
+ if (jsValue.isDouble() && !shouldBlindDouble(jsValue.asDouble()))
+ return false;
+
+ if (!shouldBlindDouble(bitwise_cast<double>(value)))
+ return false;
+#endif
+ }
+ }
+ return shouldBlindForSpecificArch(value);
+ }
+
+ struct RotatedImmPtr {
+ RotatedImmPtr(uintptr_t v1, uint8_t v2)
+ : value(v1)
+ , rotation(v2)
+ {
+ }
+ TrustedImmPtr value;
+ TrustedImm32 rotation;
+ };
+
+ RotatedImmPtr rotationBlindConstant(ImmPtr imm)
+ {
+ uint8_t rotation = random() % (sizeof(void*) * 8);
+ uintptr_t value = imm.asTrustedImmPtr().asIntptr();
+ value = (value << rotation) | (value >> (sizeof(void*) * 8 - rotation));
+ return RotatedImmPtr(value, rotation);
+ }
+
+ void loadRotationBlindedConstant(RotatedImmPtr constant, RegisterID dest)
+ {
+ move(constant.value, dest);
+ rotateRightPtr(constant.rotation, dest);
+ }
+
+ void convertInt32ToDouble(Imm32 imm, FPRegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ RegisterID scratchRegister = scratchRegisterForBlinding();
+ loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister);
+ convertInt32ToDouble(scratchRegister, dest);
+ } else
+ convertInt32ToDouble(imm.asTrustedImm32(), dest);
+ }
+
+ void move(ImmPtr imm, RegisterID dest)
+ {
+ if (shouldBlind(imm))
+ loadRotationBlindedConstant(rotationBlindConstant(imm), dest);
+ else
+ move(imm.asTrustedImmPtr(), dest);
+ }
+
+ Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right)
+ {
+ if (shouldBlind(right)) {
+ RegisterID scratchRegister = scratchRegisterForBlinding();
+ loadRotationBlindedConstant(rotationBlindConstant(right), scratchRegister);
+ return branchPtr(cond, left, scratchRegister);
+ }
+ return branchPtr(cond, left, right.asTrustedImmPtr());
+ }
+
+ void storePtr(ImmPtr imm, Address dest)
+ {
+ if (shouldBlind(imm)) {
+ RegisterID scratchRegister = scratchRegisterForBlinding();
+ loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
+ storePtr(scratchRegister, dest);
+ } else
+ storePtr(imm.asTrustedImmPtr(), dest);
+ }
+
#endif
+#endif // !CPU(X86_64)
+
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ bool shouldBlind(Imm32 imm)
+ {
+#if !defined(NDEBUG)
+ UNUSED_PARAM(imm);
+ // Debug always blind all constants, if only so we know
+ // if we've broken blinding during patch development.
+ return true;
+#else
+
+ // First off we'll special case common, "safe" values to avoid hurting
+ // performance too much
+ uint32_t value = imm.asTrustedImm32().m_value;
+ switch (value) {
+ case 0xffff:
+ case 0xffffff:
+ case 0xffffffff:
+ return false;
+ default:
+ if (value <= 0xff)
+ return false;
+ }
+ return shouldBlindForSpecificArch(value);
+#endif
+ }
+
+ struct BlindedImm32 {
+ BlindedImm32(int32_t v1, int32_t v2)
+ : value1(v1)
+ , value2(v2)
+ {
+ }
+ TrustedImm32 value1;
+ TrustedImm32 value2;
+ };
+
+ uint32_t keyForConstant(uint32_t value, uint32_t& mask)
+ {
+ uint32_t key = random();
+ if (value <= 0xff)
+ mask = 0xff;
+ else if (value <= 0xffff)
+ mask = 0xffff;
+ else if (value <= 0xffffff)
+ mask = 0xffffff;
+ else
+ mask = 0xffffffff;
+ return key & mask;
+ }
+
+ uint32_t keyForConstant(uint32_t value)
+ {
+ uint32_t mask = 0;
+ return keyForConstant(value, mask);
+ }
+
+ BlindedImm32 xorBlindConstant(Imm32 imm)
+ {
+ uint32_t baseValue = imm.asTrustedImm32().m_value;
+ uint32_t key = keyForConstant(baseValue);
+ return BlindedImm32(baseValue ^ key, key);
+ }
+
+ BlindedImm32 additionBlindedConstant(Imm32 imm)
+ {
+ // The addition immediate may be used as a pointer offset. Keep aligned based on "imm".
+ static uint32_t maskTable[4] = { 0xfffffffc, 0xffffffff, 0xfffffffe, 0xffffffff };
+
+ uint32_t baseValue = imm.asTrustedImm32().m_value;
+ uint32_t key = keyForConstant(baseValue) & maskTable[baseValue & 3];
+ if (key > baseValue)
+ key = key - baseValue;
+ return BlindedImm32(baseValue - key, key);
+ }
+
+ BlindedImm32 andBlindedConstant(Imm32 imm)
+ {
+ uint32_t baseValue = imm.asTrustedImm32().m_value;
+ uint32_t mask = 0;
+ uint32_t key = keyForConstant(baseValue, mask);
+ ASSERT((baseValue & mask) == baseValue);
+ return BlindedImm32(((baseValue & key) | ~key) & mask, ((baseValue & ~key) | key) & mask);
+ }
+
+ BlindedImm32 orBlindedConstant(Imm32 imm)
+ {
+ uint32_t baseValue = imm.asTrustedImm32().m_value;
+ uint32_t mask = 0;
+ uint32_t key = keyForConstant(baseValue, mask);
+ ASSERT((baseValue & mask) == baseValue);
+ return BlindedImm32((baseValue & key) & mask, (baseValue & ~key) & mask);
+ }
+
+ void loadXorBlindedConstant(BlindedImm32 constant, RegisterID dest)
+ {
+ move(constant.value1, dest);
+ xor32(constant.value2, dest);
+ }
+
+ void add32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = additionBlindedConstant(imm);
+ add32(key.value1, dest);
+ add32(key.value2, dest);
+ } else
+ add32(imm.asTrustedImm32(), dest);
+ }
+
+ void addPtr(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = additionBlindedConstant(imm);
+ addPtr(key.value1, dest);
+ addPtr(key.value2, dest);
+ } else
+ addPtr(imm.asTrustedImm32(), dest);
+ }
+
+ void and32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = andBlindedConstant(imm);
+ and32(key.value1, dest);
+ and32(key.value2, dest);
+ } else
+ and32(imm.asTrustedImm32(), dest);
+ }
+
+ void andPtr(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = andBlindedConstant(imm);
+ andPtr(key.value1, dest);
+ andPtr(key.value2, dest);
+ } else
+ andPtr(imm.asTrustedImm32(), dest);
+ }
+
+ void and32(Imm32 imm, RegisterID src, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ if (src == dest)
+ return and32(imm.asTrustedImm32(), dest);
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ and32(src, dest);
+ } else
+ and32(imm.asTrustedImm32(), src, dest);
+ }
+
+ void move(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm))
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ else
+ move(imm.asTrustedImm32(), dest);
+ }
+
+ void or32(Imm32 imm, RegisterID src, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ if (src == dest)
+ return or32(imm, dest);
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ or32(src, dest);
+ } else
+ or32(imm.asTrustedImm32(), src, dest);
+ }
+
+ void or32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = orBlindedConstant(imm);
+ or32(key.value1, dest);
+ or32(key.value2, dest);
+ } else
+ or32(imm.asTrustedImm32(), dest);
+ }
+
+ void poke(Imm32 value, int index = 0)
+ {
+ store32(value, addressForPoke(index));
+ }
+
+ void poke(ImmPtr value, int index = 0)
+ {
+ storePtr(value, addressForPoke(index));
+ }
+
+ void store32(Imm32 imm, Address dest)
+ {
+ if (shouldBlind(imm)) {
+#if CPU(X86) || CPU(X86_64)
+ BlindedImm32 blind = xorBlindConstant(imm);
+ store32(blind.value1, dest);
+ xor32(blind.value2, dest);
+#else
+ if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) {
+ loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister);
+ store32(scratchRegister, dest);
+ } else {
+ // If we don't have a scratch register available for use, we'll just
+ // place a random number of nops.
+ uint32_t nopCount = random() & 3;
+ while (nopCount--)
+ nop();
+ store32(imm.asTrustedImm32(), dest);
+ }
+#endif
+ } else
+ store32(imm.asTrustedImm32(), dest);
+ }
+
+ void sub32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = additionBlindedConstant(imm);
+ sub32(key.value1, dest);
+ sub32(key.value2, dest);
+ } else
+ sub32(imm.asTrustedImm32(), dest);
+ }
+
+ void subPtr(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 key = additionBlindedConstant(imm);
+ subPtr(key.value1, dest);
+ subPtr(key.value2, dest);
+ } else
+ subPtr(imm.asTrustedImm32(), dest);
+ }
+
+ void xor32(Imm32 imm, RegisterID src, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 blind = xorBlindConstant(imm);
+ xor32(blind.value1, src, dest);
+ xor32(blind.value2, dest);
+ } else
+ xor32(imm.asTrustedImm32(), src, dest);
+ }
+
+ void xor32(Imm32 imm, RegisterID dest)
+ {
+ if (shouldBlind(imm)) {
+ BlindedImm32 blind = xorBlindConstant(imm);
+ xor32(blind.value1, dest);
+ xor32(blind.value2, dest);
+ } else
+ xor32(imm.asTrustedImm32(), dest);
+ }
+
+ Jump branch32(RelationalCondition cond, RegisterID left, Imm32 right)
+ {
+ if (shouldBlind(right)) {
+ if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) {
+ loadXorBlindedConstant(xorBlindConstant(right), scratchRegister);
+ return branch32(cond, left, scratchRegister);
+ }
+ // If we don't have a scratch register available for use, we'll just
+ // place a random number of nops.
+ uint32_t nopCount = random() & 3;
+ while (nopCount--)
+ nop();
+ return branch32(cond, left, right.asTrustedImm32());
+ }
+
+ return branch32(cond, left, right.asTrustedImm32());
+ }
+
+ Jump branchAdd32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest)
+ {
+ if (src == dest) {
+ if (!scratchRegisterForBlinding()) {
+ // Release mode ASSERT, if this fails we will perform incorrect codegen.
+ CRASH();
+ }
+ }
+ if (shouldBlind(imm)) {
+ if (src == dest) {
+ if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) {
+ move(src, scratchRegister);
+ src = scratchRegister;
+ }
+ }
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ return branchAdd32(cond, src, dest);
+ }
+ return branchAdd32(cond, src, imm.asTrustedImm32(), dest);
+ }
+
+ Jump branchMul32(ResultCondition cond, Imm32 imm, RegisterID src, RegisterID dest)
+ {
+ if (src == dest) {
+ if (!scratchRegisterForBlinding()) {
+ // Release mode ASSERT, if this fails we will perform incorrect codegen.
+ CRASH();
+ }
+ }
+ if (shouldBlind(imm)) {
+ if (src == dest) {
+ if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) {
+ move(src, scratchRegister);
+ src = scratchRegister;
+ }
+ }
+ loadXorBlindedConstant(xorBlindConstant(imm), dest);
+ return branchMul32(cond, src, dest);
+ }
+ return branchMul32(cond, imm.asTrustedImm32(), src, dest);
+ }
+
+ // branchSub32 takes a scratch register as 32 bit platforms make use of this,
+ // with src == dst, and on x86-32 we don't have a platform scratch register.
+ Jump branchSub32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest, RegisterID scratch)
+ {
+ if (shouldBlind(imm)) {
+ ASSERT(scratch != dest);
+ ASSERT(scratch != src);
+ loadXorBlindedConstant(xorBlindConstant(imm), scratch);
+ return branchSub32(cond, src, scratch, dest);
+ }
+ return branchSub32(cond, src, imm.asTrustedImm32(), dest);
+ }
+
+ // Immediate shifts only have 5 controllable bits
+ // so we'll consider them safe for now.
+ TrustedImm32 trustedImm32ForShift(Imm32 imm)
+ {
+ return TrustedImm32(imm.asTrustedImm32().m_value & 31);
+ }
+
+ void lshift32(Imm32 imm, RegisterID dest)
+ {
+ lshift32(trustedImm32ForShift(imm), dest);
+ }
+
+ void lshift32(RegisterID src, Imm32 amount, RegisterID dest)
+ {
+ lshift32(src, trustedImm32ForShift(amount), dest);
+ }
+
+ void rshift32(Imm32 imm, RegisterID dest)
+ {
+ rshift32(trustedImm32ForShift(imm), dest);
+ }
+
+ void rshift32(RegisterID src, Imm32 amount, RegisterID dest)
+ {
+ rshift32(src, trustedImm32ForShift(amount), dest);
+ }
+
+ void urshift32(Imm32 imm, RegisterID dest)
+ {
+ urshift32(trustedImm32ForShift(imm), dest);
+ }
+
+ void urshift32(RegisterID src, Imm32 amount, RegisterID dest)
+ {
+ urshift32(src, trustedImm32ForShift(amount), dest);
+ }
+#endif
};
} // namespace JSC
+#else // ENABLE(ASSEMBLER)
+
+// If there is no assembler for this platform, at least allow code to make references to
+// some of the things it would otherwise define, albeit without giving that code any way
+// of doing anything useful.
+class MacroAssembler {
+private:
+ MacroAssembler() { }
+
+public:
+
+ enum RegisterID { NoRegister };
+ enum FPRegisterID { NoFPRegister };
+};
+
#endif // ENABLE(ASSEMBLER)
#endif // MacroAssembler_h