-/*
- * #define IEEE_8087 for IEEE-arithmetic machines where the least
- * significant byte has the lowest address.
- * #define IEEE_MC68k for IEEE-arithmetic machines where the most
- * significant byte has the lowest address.
- * #define No_leftright to omit left-right logic in fast floating-point
- * computation of dtoa.
- * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
- * and Honor_FLT_ROUNDS is not #defined.
- * #define Inaccurate_Divide for IEEE-format with correctly rounded
- * products but inaccurate quotients, e.g., for Intel i860.
- * #define USE_LONG_LONG on machines that have a "long long"
- * integer type (of >= 64 bits), and performance testing shows that
- * it is faster than 32-bit fallback (which is often not the case
- * on 32-bit machines). On such machines, you can #define Just_16
- * to store 16 bits per 32-bit int32_t when doing high-precision integer
- * arithmetic. Whether this speeds things up or slows things down
- * depends on the machine and the number being converted.
- * #define Bad_float_h if your system lacks a float.h or if it does not
- * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
- * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
- * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
- * Infinity and NaN (case insensitively). On some systems (e.g.,
- * some HP systems), it may be necessary to #define NAN_WORD0
- * appropriately -- to the most significant word of a quiet NaN.
- * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
- * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
- * strtod also accepts (case insensitively) strings of the form
- * NaN(x), where x is a string of hexadecimal digits and spaces;
- * if there is only one string of hexadecimal digits, it is taken
- * for the 52 fraction bits of the resulting NaN; if there are two
- * or more strings of hex digits, the first is for the high 20 bits,
- * the second and subsequent for the low 32 bits, with intervening
- * white space ignored; but if this results in none of the 52
- * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
- * and NAN_WORD1 are used instead.
- * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
- * avoids underflows on inputs whose result does not underflow.
- * If you #define NO_IEEE_Scale on a machine that uses IEEE-format
- * floating-point numbers and flushes underflows to zero rather
- * than implementing gradual underflow, then you must also #define
- * Sudden_Underflow.
- * #define YES_ALIAS to permit aliasing certain double values with
- * arrays of ULongs. This leads to slightly better code with
- * some compilers and was always used prior to 19990916, but it
- * is not strictly legal and can cause trouble with aggressively
- * optimizing compilers (e.g., gcc 2.95.1 under -O2).
- * #define SET_INEXACT if IEEE arithmetic is being used and extra
- * computation should be done to set the inexact flag when the
- * result is inexact and avoid setting inexact when the result
- * is exact. In this case, dtoa.c must be compiled in
- * an environment, perhaps provided by #include "dtoa.c" in a
- * suitable wrapper, that defines two functions,
- * int get_inexact(void);
- * void clear_inexact(void);
- * such that get_inexact() returns a nonzero value if the
- * inexact bit is already set, and clear_inexact() sets the
- * inexact bit to 0. When SET_INEXACT is #defined, strtod
- * also does extra computations to set the underflow and overflow
- * flags when appropriate (i.e., when the result is tiny and
- * inexact or when it is a numeric value rounded to +-infinity).
- * #define NO_ERRNO if strtod should not assign errno = ERANGE when
- * the result overflows to +-Infinity or underflows to 0.
- */
-