/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
- * Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved.
+ * Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2003 Peter Kelly (pmk@post.com)
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
#include "ArrayPrototype.h"
#include "CachedCall.h"
+#include "Error.h"
+#include "Executable.h"
#include "PropertyNameArray.h"
#include <wtf/AVLTree.h>
#include <wtf/Assertions.h>
#include <wtf/OwnPtr.h>
#include <Operations.h>
-#define CHECK_ARRAY_CONSISTENCY 0
-
using namespace std;
using namespace WTF;
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
#define MAX_ARRAY_INDEX 0xFFFFFFFEU
+// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
+// for an array that was created with a sepcified length (e.g. a = new Array(123))
+#define BASE_VECTOR_LEN 4U
+
+// The upper bound to the size we'll grow a zero length array when the first element
+// is added.
+#define FIRST_VECTOR_GROW 4U
+
// Our policy for when to use a vector and when to use a sparse map.
// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
// as long as it is 1/8 full. If more sparse than that, we use a map.
static const unsigned minDensityMultiplier = 8;
-const ClassInfo JSArray::info = {"Array", 0, 0, 0};
+const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0};
+
+// We keep track of the size of the last array after it was grown. We use this
+// as a simple heuristic for as the value to grow the next array from size 0.
+// This value is capped by the constant FIRST_VECTOR_GROW defined above.
+static unsigned lastArraySize = 0;
static inline size_t storageSize(unsigned vectorLength)
{
return size;
}
-static inline unsigned increasedVectorLength(unsigned newLength)
-{
- ASSERT(newLength <= MAX_STORAGE_VECTOR_LENGTH);
-
- // Mathematically equivalent to:
- // increasedLength = (newLength * 3 + 1) / 2;
- // or:
- // increasedLength = (unsigned)ceil(newLength * 1.5));
- // This form is not prone to internal overflow.
- unsigned increasedLength = newLength + (newLength >> 1) + (newLength & 1);
- ASSERT(increasedLength >= newLength);
-
- return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
-}
-
static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
return length / minDensityMultiplier <= numValues;
#endif
-JSArray::JSArray(PassRefPtr<Structure> structure)
- : JSObject(structure)
+JSArray::JSArray(VPtrStealingHackType)
+ : JSNonFinalObject(VPtrStealingHack)
{
+}
+
+JSArray::JSArray(JSGlobalData& globalData, Structure* structure)
+ : JSNonFinalObject(globalData, structure)
+{
+ ASSERT(inherits(&s_info));
+
unsigned initialCapacity = 0;
m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
- m_storage->m_vectorLength = initialCapacity;
-
- m_fastAccessCutoff = 0;
+ m_storage->m_allocBase = m_storage;
+ m_indexBias = 0;
+ m_vectorLength = initialCapacity;
checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(0));
}
-JSArray::JSArray(PassRefPtr<Structure> structure, unsigned initialLength)
- : JSObject(structure)
+JSArray::JSArray(JSGlobalData& globalData, Structure* structure, unsigned initialLength, ArrayCreationMode creationMode)
+ : JSNonFinalObject(globalData, structure)
{
- unsigned initialCapacity = min(initialLength, MIN_SPARSE_ARRAY_INDEX);
-
+ ASSERT(inherits(&s_info));
+
+ unsigned initialCapacity;
+ if (creationMode == CreateCompact)
+ initialCapacity = initialLength;
+ else
+ initialCapacity = min(BASE_VECTOR_LEN, MIN_SPARSE_ARRAY_INDEX);
+
m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
+ m_storage->m_allocBase = m_storage;
m_storage->m_length = initialLength;
- m_storage->m_vectorLength = initialCapacity;
- m_storage->m_numValuesInVector = 0;
+ m_indexBias = 0;
+ m_vectorLength = initialCapacity;
m_storage->m_sparseValueMap = 0;
- m_storage->lazyCreationData = 0;
+ m_storage->subclassData = 0;
+ m_storage->reportedMapCapacity = 0;
- JSValue* vector = m_storage->m_vector;
- for (size_t i = 0; i < initialCapacity; ++i)
- vector[i] = JSValue();
-
- m_fastAccessCutoff = 0;
+ if (creationMode == CreateCompact) {
+#if CHECK_ARRAY_CONSISTENCY
+ m_storage->m_inCompactInitialization = !!initialCapacity;
+#endif
+ m_storage->m_length = 0;
+ m_storage->m_numValuesInVector = initialCapacity;
+ } else {
+#if CHECK_ARRAY_CONSISTENCY
+ storage->m_inCompactInitialization = false;
+#endif
+ m_storage->m_length = initialLength;
+ m_storage->m_numValuesInVector = 0;
+ WriteBarrier<Unknown>* vector = m_storage->m_vector;
+ for (size_t i = 0; i < initialCapacity; ++i)
+ vector[i].clear();
+ }
checkConsistency();
-
- Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValue));
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
}
-JSArray::JSArray(PassRefPtr<Structure> structure, const ArgList& list)
- : JSObject(structure)
+JSArray::JSArray(JSGlobalData& globalData, Structure* structure, const ArgList& list)
+ : JSNonFinalObject(globalData, structure)
{
- unsigned initialCapacity = list.size();
+ ASSERT(inherits(&s_info));
- m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
+ unsigned initialCapacity = list.size();
+ unsigned initialStorage;
+
+ // If the ArgList is empty, allocate space for 3 entries. This value empirically
+ // works well for benchmarks.
+ if (!initialCapacity)
+ initialStorage = 3;
+ else
+ initialStorage = initialCapacity;
+
+ m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialStorage)));
+ m_storage->m_allocBase = m_storage;
+ m_indexBias = 0;
m_storage->m_length = initialCapacity;
- m_storage->m_vectorLength = initialCapacity;
+ m_vectorLength = initialStorage;
m_storage->m_numValuesInVector = initialCapacity;
m_storage->m_sparseValueMap = 0;
+ m_storage->subclassData = 0;
+ m_storage->reportedMapCapacity = 0;
+#if CHECK_ARRAY_CONSISTENCY
+ m_storage->m_inCompactInitialization = false;
+#endif
size_t i = 0;
+ WriteBarrier<Unknown>* vector = m_storage->m_vector;
ArgList::const_iterator end = list.end();
for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
- m_storage->m_vector[i] = *it;
-
- m_fastAccessCutoff = initialCapacity;
+ vector[i].set(globalData, this, *it);
+ for (; i < initialStorage; i++)
+ vector[i].clear();
checkConsistency();
- Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(initialStorage));
}
JSArray::~JSArray()
{
+ ASSERT(vptr() == JSGlobalData::jsArrayVPtr);
checkConsistency(DestructorConsistencyCheck);
delete m_storage->m_sparseValueMap;
- fastFree(m_storage);
+ fastFree(m_storage->m_allocBase);
}
bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
{
ArrayStorage* storage = m_storage;
-
+
if (i >= storage->m_length) {
if (i > MAX_ARRAY_INDEX)
return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
return false;
}
- if (i < storage->m_vectorLength) {
- JSValue& valueSlot = storage->m_vector[i];
- if (valueSlot) {
- slot.setValueSlot(&valueSlot);
+ if (i < m_vectorLength) {
+ JSValue value = storage->m_vector[i].get();
+ if (value) {
+ slot.setValue(value);
return true;
}
} else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
if (i >= MIN_SPARSE_ARRAY_INDEX) {
SparseArrayValueMap::iterator it = map->find(i);
if (it != map->end()) {
- slot.setValueSlot(&it->second);
+ slot.setValue(it->second.get());
return true;
}
}
}
- return false;
+ return JSObject::getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
}
bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
if (propertyName == exec->propertyNames().length) {
- slot.setValue(jsNumber(exec, length()));
+ slot.setValue(jsNumber(length()));
return true;
}
bool isArrayIndex;
- unsigned i = propertyName.toArrayIndex(&isArrayIndex);
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
if (isArrayIndex)
return JSArray::getOwnPropertySlot(exec, i, slot);
return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}
+bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
+{
+ if (propertyName == exec->propertyNames().length) {
+ descriptor.setDescriptor(jsNumber(length()), DontDelete | DontEnum);
+ return true;
+ }
+
+ ArrayStorage* storage = m_storage;
+
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
+ if (isArrayIndex) {
+ if (i >= storage->m_length)
+ return false;
+ if (i < m_vectorLength) {
+ WriteBarrier<Unknown>& value = storage->m_vector[i];
+ if (value) {
+ descriptor.setDescriptor(value.get(), 0);
+ return true;
+ }
+ } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ if (i >= MIN_SPARSE_ARRAY_INDEX) {
+ SparseArrayValueMap::iterator it = map->find(i);
+ if (it != map->end()) {
+ descriptor.setDescriptor(it->second.get(), 0);
+ return true;
+ }
+ }
+ }
+ }
+ return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor);
+}
+
// ECMA 15.4.5.1
void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
{
bool isArrayIndex;
- unsigned i = propertyName.toArrayIndex(&isArrayIndex);
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
if (isArrayIndex) {
put(exec, i, value);
return;
if (propertyName == exec->propertyNames().length) {
unsigned newLength = value.toUInt32(exec);
if (value.toNumber(exec) != static_cast<double>(newLength)) {
- throwError(exec, RangeError, "Invalid array length.");
+ throwError(exec, createRangeError(exec, "Invalid array length."));
return;
}
setLength(newLength);
{
checkConsistency();
- unsigned length = m_storage->m_length;
+ ArrayStorage* storage = m_storage;
+
+ unsigned length = storage->m_length;
if (i >= length && i <= MAX_ARRAY_INDEX) {
length = i + 1;
- m_storage->m_length = length;
+ storage->m_length = length;
}
- if (i < m_storage->m_vectorLength) {
- JSValue& valueSlot = m_storage->m_vector[i];
+ if (i < m_vectorLength) {
+ WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
if (valueSlot) {
- valueSlot = value;
+ valueSlot.set(exec->globalData(), this, value);
checkConsistency();
return;
}
- valueSlot = value;
- if (++m_storage->m_numValuesInVector == m_storage->m_length)
- m_fastAccessCutoff = m_storage->m_length;
+ valueSlot.set(exec->globalData(), this, value);
+ ++storage->m_numValuesInVector;
checkConsistency();
return;
}
NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value)
{
ArrayStorage* storage = m_storage;
+
SparseArrayValueMap* map = storage->m_sparseValueMap;
if (i >= MIN_SPARSE_ARRAY_INDEX) {
}
// We miss some cases where we could compact the storage, such as a large array that is being filled from the end
- // (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster.
+ // (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster.
if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
if (!map) {
map = new SparseArrayValueMap;
storage->m_sparseValueMap = map;
}
- map->set(i, value);
+
+ WriteBarrier<Unknown> temp;
+ pair<SparseArrayValueMap::iterator, bool> result = map->add(i, temp);
+ result.first->second.set(exec->globalData(), this, value);
+ if (!result.second) // pre-existing entry
+ return;
+
+ size_t capacity = map->capacity();
+ if (capacity != storage->reportedMapCapacity) {
+ Heap::heap(this)->reportExtraMemoryCost((capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue)));
+ storage->reportedMapCapacity = capacity;
+ }
return;
}
}
if (!map || map->isEmpty()) {
if (increaseVectorLength(i + 1)) {
storage = m_storage;
- storage->m_vector[i] = value;
- if (++storage->m_numValuesInVector == storage->m_length)
- m_fastAccessCutoff = storage->m_length;
+ storage->m_vector[i].set(exec->globalData(), this, value);
+ ++storage->m_numValuesInVector;
checkConsistency();
} else
throwOutOfMemoryError(exec);
// Decide how many values it would be best to move from the map.
unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
- unsigned newVectorLength = increasedVectorLength(i + 1);
- for (unsigned j = max(storage->m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
+ unsigned newVectorLength = getNewVectorLength(i + 1);
+ for (unsigned j = max(m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
newNumValuesInVector += map->contains(j);
if (i >= MIN_SPARSE_ARRAY_INDEX)
newNumValuesInVector -= map->contains(i);
if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
+ unsigned needLength = max(i + 1, storage->m_length);
unsigned proposedNewNumValuesInVector = newNumValuesInVector;
// If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
- while (newVectorLength < MAX_STORAGE_VECTOR_LENGTH) {
- unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1);
+ while ((newVectorLength < needLength) && (newVectorLength < MAX_STORAGE_VECTOR_LENGTH)) {
+ unsigned proposedNewVectorLength = getNewVectorLength(newVectorLength + 1);
for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
proposedNewNumValuesInVector += map->contains(j);
if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
}
}
- storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength)));
- if (!storage) {
+ void* baseStorage = storage->m_allocBase;
+
+ if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage)) {
throwOutOfMemoryError(exec);
return;
}
- unsigned vectorLength = storage->m_vectorLength;
-
- Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
+ m_storage->m_allocBase = baseStorage;
+ storage = m_storage;
+
+ unsigned vectorLength = m_vectorLength;
+ WriteBarrier<Unknown>* vector = storage->m_vector;
if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
for (unsigned j = vectorLength; j < newVectorLength; ++j)
- storage->m_vector[j] = JSValue();
+ vector[j].clear();
if (i > MIN_SPARSE_ARRAY_INDEX)
map->remove(i);
} else {
for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
- storage->m_vector[j] = JSValue();
+ vector[j].clear();
+ JSGlobalData& globalData = exec->globalData();
for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
- storage->m_vector[j] = map->take(j);
+ vector[j].set(globalData, this, map->take(j).get());
}
- storage->m_vector[i] = value;
+ ASSERT(i < newVectorLength);
- storage->m_vectorLength = newVectorLength;
+ m_vectorLength = newVectorLength;
storage->m_numValuesInVector = newNumValuesInVector;
- m_storage = storage;
+ storage->m_vector[i].set(exec->globalData(), this, value);
checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
}
bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
bool isArrayIndex;
- unsigned i = propertyName.toArrayIndex(&isArrayIndex);
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
if (isArrayIndex)
return deleteProperty(exec, i);
checkConsistency();
ArrayStorage* storage = m_storage;
-
- if (i < storage->m_vectorLength) {
- JSValue& valueSlot = storage->m_vector[i];
+
+ if (i < m_vectorLength) {
+ WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
if (!valueSlot) {
checkConsistency();
return false;
}
- valueSlot = JSValue();
+ valueSlot.clear();
--storage->m_numValuesInVector;
- if (m_fastAccessCutoff > i)
- m_fastAccessCutoff = i;
checkConsistency();
return true;
}
return false;
}
-void JSArray::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames)
+void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
{
// FIXME: Filling PropertyNameArray with an identifier for every integer
// is incredibly inefficient for large arrays. We need a different approach,
// which almost certainly means a different structure for PropertyNameArray.
ArrayStorage* storage = m_storage;
-
- unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength);
+
+ unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
for (unsigned i = 0; i < usedVectorLength; ++i) {
if (storage->m_vector[i])
propertyNames.add(Identifier::from(exec, i));
propertyNames.add(Identifier::from(exec, it->first));
}
- JSObject::getPropertyNames(exec, propertyNames);
+ if (mode == IncludeDontEnumProperties)
+ propertyNames.add(exec->propertyNames().length);
+
+ JSObject::getOwnPropertyNames(exec, propertyNames, mode);
+}
+
+ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
+{
+ ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);
+
+ unsigned increasedLength;
+ unsigned maxInitLength = min(m_storage->m_length, 100000U);
+
+ if (desiredLength < maxInitLength)
+ increasedLength = maxInitLength;
+ else if (!m_vectorLength)
+ increasedLength = max(desiredLength, lastArraySize);
+ else {
+ // Mathematically equivalent to:
+ // increasedLength = (newLength * 3 + 1) / 2;
+ // or:
+ // increasedLength = (unsigned)ceil(newLength * 1.5));
+ // This form is not prone to internal overflow.
+ increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
+ }
+
+ ASSERT(increasedLength >= desiredLength);
+
+ lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);
+
+ return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
}
bool JSArray::increaseVectorLength(unsigned newLength)
ArrayStorage* storage = m_storage;
- unsigned vectorLength = storage->m_vectorLength;
+ unsigned vectorLength = m_vectorLength;
ASSERT(newLength > vectorLength);
ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
- unsigned newVectorLength = increasedVectorLength(newLength);
+ unsigned newVectorLength = getNewVectorLength(newLength);
+ void* baseStorage = storage->m_allocBase;
- storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength)));
- if (!storage)
+ if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage))
return false;
- Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
- storage->m_vectorLength = newVectorLength;
+ storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
+ m_storage->m_allocBase = baseStorage;
+ WriteBarrier<Unknown>* vector = storage->m_vector;
for (unsigned i = vectorLength; i < newVectorLength; ++i)
- storage->m_vector[i] = JSValue();
+ vector[i].clear();
+
+ m_vectorLength = newVectorLength;
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
- m_storage = storage;
return true;
}
-void JSArray::setLength(unsigned newLength)
+bool JSArray::increaseVectorPrefixLength(unsigned newLength)
{
- checkConsistency();
+ // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
+ // to the vector. Callers have to account for that, because they can do it more efficiently.
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned vectorLength = m_vectorLength;
+ ASSERT(newLength > vectorLength);
+ ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
+ unsigned newVectorLength = getNewVectorLength(newLength);
+ void* newBaseStorage = fastMalloc(storageSize(newVectorLength + m_indexBias));
+ if (!newBaseStorage)
+ return false;
+
+ m_indexBias += newVectorLength - newLength;
+
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(newBaseStorage) + m_indexBias * sizeof(JSValue));
+
+ memcpy(m_storage, storage, storageSize(0));
+ memcpy(&m_storage->m_vector[newLength - m_vectorLength], &storage->m_vector[0], vectorLength * sizeof(JSValue));
+
+ m_storage->m_allocBase = newBaseStorage;
+ m_vectorLength = newLength;
+
+ fastFree(storage->m_allocBase);
+ ASSERT(newLength > vectorLength);
+ unsigned delta = newLength - vectorLength;
+ for (unsigned i = 0; i < delta; i++)
+ m_storage->m_vector[i].clear();
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+
+ return true;
+}
+
+
+void JSArray::setLength(unsigned newLength)
+{
ArrayStorage* storage = m_storage;
+
+#if CHECK_ARRAY_CONSISTENCY
+ if (!storage->m_inCompactInitialization)
+ checkConsistency();
+ else
+ storage->m_inCompactInitialization = false;
+#endif
- unsigned length = m_storage->m_length;
+ unsigned length = storage->m_length;
if (newLength < length) {
- if (m_fastAccessCutoff > newLength)
- m_fastAccessCutoff = newLength;
-
- unsigned usedVectorLength = min(length, storage->m_vectorLength);
+ unsigned usedVectorLength = min(length, m_vectorLength);
for (unsigned i = newLength; i < usedVectorLength; ++i) {
- JSValue& valueSlot = storage->m_vector[i];
+ WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
bool hadValue = valueSlot;
- valueSlot = JSValue();
+ valueSlot.clear();
storage->m_numValuesInVector -= hadValue;
}
}
}
- m_storage->m_length = newLength;
+ storage->m_length = newLength;
checkConsistency();
}
{
checkConsistency();
- unsigned length = m_storage->m_length;
+ ArrayStorage* storage = m_storage;
+
+ unsigned length = storage->m_length;
if (!length)
return jsUndefined();
JSValue result;
- if (m_fastAccessCutoff > length) {
- JSValue& valueSlot = m_storage->m_vector[length];
- result = valueSlot;
- ASSERT(result);
- valueSlot = JSValue();
- --m_storage->m_numValuesInVector;
- m_fastAccessCutoff = length;
- } else if (length < m_storage->m_vectorLength) {
- JSValue& valueSlot = m_storage->m_vector[length];
- result = valueSlot;
- valueSlot = JSValue();
- if (result)
- --m_storage->m_numValuesInVector;
- else
+ if (length < m_vectorLength) {
+ WriteBarrier<Unknown>& valueSlot = storage->m_vector[length];
+ if (valueSlot) {
+ --storage->m_numValuesInVector;
+ result = valueSlot.get();
+ valueSlot.clear();
+ } else
result = jsUndefined();
} else {
result = jsUndefined();
- if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap::iterator it = map->find(length);
if (it != map->end()) {
- result = it->second;
+ result = it->second.get();
map->remove(it);
if (map->isEmpty()) {
delete map;
- m_storage->m_sparseValueMap = 0;
+ storage->m_sparseValueMap = 0;
}
}
}
}
- m_storage->m_length = length;
+ storage->m_length = length;
checkConsistency();
void JSArray::push(ExecState* exec, JSValue value)
{
checkConsistency();
+
+ ArrayStorage* storage = m_storage;
- if (m_storage->m_length < m_storage->m_vectorLength) {
- ASSERT(!m_storage->m_vector[m_storage->m_length]);
- m_storage->m_vector[m_storage->m_length] = value;
- if (++m_storage->m_numValuesInVector == ++m_storage->m_length)
- m_fastAccessCutoff = m_storage->m_length;
+ if (storage->m_length < m_vectorLength) {
+ storage->m_vector[storage->m_length].set(exec->globalData(), this, value);
+ ++storage->m_numValuesInVector;
+ ++storage->m_length;
checkConsistency();
return;
}
- if (m_storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
- SparseArrayValueMap* map = m_storage->m_sparseValueMap;
+ if (storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
+ SparseArrayValueMap* map = storage->m_sparseValueMap;
if (!map || map->isEmpty()) {
- if (increaseVectorLength(m_storage->m_length + 1)) {
- m_storage->m_vector[m_storage->m_length] = value;
- if (++m_storage->m_numValuesInVector == ++m_storage->m_length)
- m_fastAccessCutoff = m_storage->m_length;
+ if (increaseVectorLength(storage->m_length + 1)) {
+ storage = m_storage;
+ storage->m_vector[storage->m_length].set(exec->globalData(), this, value);
+ ++storage->m_numValuesInVector;
+ ++storage->m_length;
checkConsistency();
return;
}
}
}
- putSlowCase(exec, m_storage->m_length++, value);
+ putSlowCase(exec, storage->m_length++, value);
}
-void JSArray::mark()
+void JSArray::shiftCount(ExecState* exec, int count)
{
- JSObject::mark();
-
+ ASSERT(count > 0);
+
ArrayStorage* storage = m_storage;
+
+ unsigned oldLength = storage->m_length;
+
+ if (!oldLength)
+ return;
+
+ if (oldLength != storage->m_numValuesInVector) {
+ // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
+ // which means we need to go through each entry looking for the the "empty"
+ // slots and then fill them with possible properties. See ECMA spec.
+ // 15.4.4.9 steps 11 through 13.
+ for (unsigned i = count; i < oldLength; ++i) {
+ if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
+ PropertySlot slot(this);
+ JSValue p = prototype();
+ if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
+ put(exec, i, slot.getValue(exec, i));
+ }
+ }
- unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength);
- for (unsigned i = 0; i < usedVectorLength; ++i) {
- JSValue value = storage->m_vector[i];
- if (value && !value.marked())
- value.mark();
+ storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
+
+ // Need to decrement numValuesInvector based on number of real entries
+ for (unsigned i = 0; i < (unsigned)count; ++i)
+ if ((i < m_vectorLength) && (storage->m_vector[i]))
+ --storage->m_numValuesInVector;
+ } else
+ storage->m_numValuesInVector -= count;
+
+ storage->m_length -= count;
+
+ if (m_vectorLength) {
+ count = min(m_vectorLength, (unsigned)count);
+
+ m_vectorLength -= count;
+
+ if (m_vectorLength) {
+ char* newBaseStorage = reinterpret_cast<char*>(storage) + count * sizeof(JSValue);
+ memmove(newBaseStorage, storage, storageSize(0));
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
+
+ m_indexBias += count;
+ }
}
+}
+
+void JSArray::unshiftCount(ExecState* exec, int count)
+{
+ ArrayStorage* storage = m_storage;
- if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
- SparseArrayValueMap::iterator end = map->end();
- for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
- JSValue value = it->second;
- if (!value.marked())
- value.mark();
+ ASSERT(m_indexBias >= 0);
+ ASSERT(count >= 0);
+
+ unsigned length = storage->m_length;
+
+ if (length != storage->m_numValuesInVector) {
+ // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
+ // which means we need to go through each entry looking for the the "empty"
+ // slots and then fill them with possible properties. See ECMA spec.
+ // 15.4.4.13 steps 8 through 10.
+ for (unsigned i = 0; i < length; ++i) {
+ if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
+ PropertySlot slot(this);
+ JSValue p = prototype();
+ if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
+ put(exec, i, slot.getValue(exec, i));
+ }
}
}
+
+ storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
+
+ if (m_indexBias >= count) {
+ m_indexBias -= count;
+ char* newBaseStorage = reinterpret_cast<char*>(storage) - count * sizeof(JSValue);
+ memmove(newBaseStorage, storage, storageSize(0));
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
+ m_vectorLength += count;
+ } else if (!increaseVectorPrefixLength(m_vectorLength + count)) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ WriteBarrier<Unknown>* vector = m_storage->m_vector;
+ for (int i = 0; i < count; i++)
+ vector[i].clear();
+}
+
+void JSArray::visitChildren(SlotVisitor& visitor)
+{
+ ASSERT_GC_OBJECT_INHERITS(this, &s_info);
+ COMPILE_ASSERT(StructureFlags & OverridesVisitChildren, OverridesVisitChildrenWithoutSettingFlag);
+ ASSERT(structure()->typeInfo().overridesVisitChildren());
+ visitChildrenDirect(visitor);
}
static int compareNumbersForQSort(const void* a, const void* b)
return (da > db) - (da < db);
}
-typedef std::pair<JSValue, UString> ValueStringPair;
-
static int compareByStringPairForQSort(const void* a, const void* b)
{
const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
- return compare(va->second, vb->second);
+ return codePointCompare(va->second, vb->second);
}
void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
+ ArrayStorage* storage = m_storage;
+
unsigned lengthNotIncludingUndefined = compactForSorting();
- if (m_storage->m_sparseValueMap) {
+ if (storage->m_sparseValueMap) {
throwOutOfMemoryError(exec);
return;
}
return;
bool allValuesAreNumbers = true;
- size_t size = m_storage->m_numValuesInVector;
+ size_t size = storage->m_numValuesInVector;
for (size_t i = 0; i < size; ++i) {
- if (!m_storage->m_vector[i].isNumber()) {
+ if (!storage->m_vector[i].isNumber()) {
allValuesAreNumbers = false;
break;
}
// For numeric comparison, which is fast, qsort is faster than mergesort. We
// also don't require mergesort's stability, since there's no user visible
// side-effect from swapping the order of equal primitive values.
- qsort(m_storage->m_vector, size, sizeof(JSValue), compareNumbersForQSort);
+ qsort(storage->m_vector, size, sizeof(JSValue), compareNumbersForQSort);
checkConsistency(SortConsistencyCheck);
}
void JSArray::sort(ExecState* exec)
{
+ ArrayStorage* storage = m_storage;
+
unsigned lengthNotIncludingUndefined = compactForSorting();
- if (m_storage->m_sparseValueMap) {
+ if (storage->m_sparseValueMap) {
throwOutOfMemoryError(exec);
return;
}
throwOutOfMemoryError(exec);
return;
}
+
+ Heap::heap(this)->pushTempSortVector(&values);
for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
- JSValue value = m_storage->m_vector[i];
+ JSValue value = storage->m_vector[i].get();
ASSERT(!value.isUndefined());
values[i].first = value;
}
- // FIXME: While calling these toString functions, the array could be mutated.
- // In that case, objects pointed to by values in this vector might get garbage-collected!
-
// FIXME: The following loop continues to call toString on subsequent values even after
// a toString call raises an exception.
for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
values[i].second = values[i].first.toString(exec);
- if (exec->hadException())
+ if (exec->hadException()) {
+ Heap::heap(this)->popTempSortVector(&values);
return;
+ }
// FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
// than O(N log N).
qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#endif
- // FIXME: If the toString function changed the length of the array, this might be
- // modifying the vector incorrectly.
+ // If the toString function changed the length of the array or vector storage,
+ // increase the length to handle the orignal number of actual values.
+ if (m_vectorLength < lengthNotIncludingUndefined)
+ increaseVectorLength(lengthNotIncludingUndefined);
+ if (storage->m_length < lengthNotIncludingUndefined)
+ storage->m_length = lengthNotIncludingUndefined;
+ JSGlobalData& globalData = exec->globalData();
for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
- m_storage->m_vector[i] = values[i].first;
+ storage->m_vector[i].set(globalData, this, values[i].first);
+ Heap::heap(this)->popTempSortVector(&values);
+
checkConsistency(SortConsistencyCheck);
}
m_cachedCall->setThis(m_globalThisValue);
m_cachedCall->setArgument(0, va);
m_cachedCall->setArgument(1, vb);
- compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame());
+ compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
} else {
MarkedArgumentBuffer arguments;
arguments.append(va);
{
checkConsistency();
+ ArrayStorage* storage = m_storage;
+
// FIXME: This ignores exceptions raised in the compare function or in toNumber.
// The maximum tree depth is compiled in - but the caller is clearly up to no good
// if a larger array is passed.
- ASSERT(m_storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
- if (m_storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
+ ASSERT(storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
+ if (storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
return;
- if (!m_storage->m_length)
- return;
+ unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
+ unsigned nodeCount = usedVectorLength + (storage->m_sparseValueMap ? storage->m_sparseValueMap->size() : 0);
- unsigned usedVectorLength = min(m_storage->m_length, m_storage->m_vectorLength);
+ if (!nodeCount)
+ return;
AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
tree.abstractor().m_exec = exec;
tree.abstractor().m_compareCallType = callType;
tree.abstractor().m_compareCallData = &callData;
tree.abstractor().m_globalThisValue = exec->globalThisValue();
- tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0));
+ tree.abstractor().m_nodes.grow(nodeCount);
if (callType == CallTypeJS)
- tree.abstractor().m_cachedCall.set(new CachedCall(exec, asFunction(compareFunction), 2, exec->exceptionSlot()));
+ tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, asFunction(compareFunction), 2));
if (!tree.abstractor().m_nodes.begin()) {
throwOutOfMemoryError(exec);
// Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
for (; numDefined < usedVectorLength; ++numDefined) {
- JSValue v = m_storage->m_vector[numDefined];
+ JSValue v = storage->m_vector[numDefined].get();
if (!v || v.isUndefined())
break;
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
- JSValue v = m_storage->m_vector[i];
+ JSValue v = storage->m_vector[i].get();
if (v) {
if (v.isUndefined())
++numUndefined;
unsigned newUsedVectorLength = numDefined + numUndefined;
- if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
newUsedVectorLength += map->size();
- if (newUsedVectorLength > m_storage->m_vectorLength) {
+ if (newUsedVectorLength > m_vectorLength) {
// Check that it is possible to allocate an array large enough to hold all the entries.
if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
throwOutOfMemoryError(exec);
return;
}
}
+
+ storage = m_storage;
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
- tree.abstractor().m_nodes[numDefined].value = it->second;
+ tree.abstractor().m_nodes[numDefined].value = it->second.get();
tree.insert(numDefined);
++numDefined;
}
delete map;
- m_storage->m_sparseValueMap = 0;
+ storage->m_sparseValueMap = 0;
}
ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
// Copy the values back into m_storage.
AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
iter.start_iter_least(tree);
+ JSGlobalData& globalData = exec->globalData();
for (unsigned i = 0; i < numDefined; ++i) {
- m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value;
+ storage->m_vector[i].set(globalData, this, tree.abstractor().m_nodes[*iter].value);
++iter;
}
// Put undefined values back in.
for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
- m_storage->m_vector[i] = jsUndefined();
+ storage->m_vector[i].setUndefined();
// Ensure that unused values in the vector are zeroed out.
for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
- m_storage->m_vector[i] = JSValue();
+ storage->m_vector[i].clear();
- m_fastAccessCutoff = newUsedVectorLength;
- m_storage->m_numValuesInVector = newUsedVectorLength;
+ storage->m_numValuesInVector = newUsedVectorLength;
checkConsistency(SortConsistencyCheck);
}
void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
{
- unsigned fastAccessLength = min(m_storage->m_length, m_fastAccessCutoff);
+ ArrayStorage* storage = m_storage;
+
+ WriteBarrier<Unknown>* vector = storage->m_vector;
+ unsigned vectorEnd = min(storage->m_length, m_vectorLength);
unsigned i = 0;
- for (; i < fastAccessLength; ++i)
- args.append(getIndex(i));
- for (; i < m_storage->m_length; ++i)
+ for (; i < vectorEnd; ++i) {
+ WriteBarrier<Unknown>& v = vector[i];
+ if (!v)
+ break;
+ args.append(v.get());
+ }
+
+ for (; i < storage->m_length; ++i)
args.append(get(exec, i));
}
void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize)
{
- ASSERT(m_storage->m_length == maxSize);
+ ASSERT(m_storage->m_length >= maxSize);
UNUSED_PARAM(maxSize);
- unsigned fastAccessLength = min(m_storage->m_length, m_fastAccessCutoff);
+ WriteBarrier<Unknown>* vector = m_storage->m_vector;
+ unsigned vectorEnd = min(maxSize, m_vectorLength);
unsigned i = 0;
- for (; i < fastAccessLength; ++i)
- buffer[i] = getIndex(i);
- uint32_t size = m_storage->m_length;
- for (; i < size; ++i)
+ for (; i < vectorEnd; ++i) {
+ WriteBarrier<Unknown>& v = vector[i];
+ if (!v)
+ break;
+ buffer[i] = v.get();
+ }
+
+ for (; i < maxSize; ++i)
buffer[i] = get(exec, i);
}
ArrayStorage* storage = m_storage;
- unsigned usedVectorLength = min(m_storage->m_length, storage->m_vectorLength);
+ unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
unsigned numDefined = 0;
unsigned numUndefined = 0;
for (; numDefined < usedVectorLength; ++numDefined) {
- JSValue v = storage->m_vector[numDefined];
+ JSValue v = storage->m_vector[numDefined].get();
if (!v || v.isUndefined())
break;
}
+
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
- JSValue v = storage->m_vector[i];
+ JSValue v = storage->m_vector[i].get();
if (v) {
if (v.isUndefined())
++numUndefined;
else
- storage->m_vector[numDefined++] = v;
+ storage->m_vector[numDefined++].setWithoutWriteBarrier(v);
}
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
newUsedVectorLength += map->size();
- if (newUsedVectorLength > storage->m_vectorLength) {
+ if (newUsedVectorLength > m_vectorLength) {
// Check that it is possible to allocate an array large enough to hold all the entries - if not,
// exception is thrown by caller.
if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
return 0;
+
storage = m_storage;
}
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
- storage->m_vector[numDefined++] = it->second;
+ storage->m_vector[numDefined++].setWithoutWriteBarrier(it->second.get());
delete map;
storage->m_sparseValueMap = 0;
}
for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
- storage->m_vector[i] = jsUndefined();
+ storage->m_vector[i].setUndefined();
for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
- storage->m_vector[i] = JSValue();
+ storage->m_vector[i].clear();
- m_fastAccessCutoff = newUsedVectorLength;
storage->m_numValuesInVector = newUsedVectorLength;
checkConsistency(SortConsistencyCheck);
return numDefined;
}
-void* JSArray::lazyCreationData()
+void* JSArray::subclassData() const
{
- return m_storage->lazyCreationData;
+ return m_storage->subclassData;
}
-void JSArray::setLazyCreationData(void* d)
+void JSArray::setSubclassData(void* d)
{
- m_storage->lazyCreationData = d;
+ m_storage->subclassData = d;
}
#if CHECK_ARRAY_CONSISTENCY
void JSArray::checkConsistency(ConsistencyCheckType type)
{
- ASSERT(m_storage);
- if (type == SortConsistencyCheck)
- ASSERT(!m_storage->m_sparseValueMap);
+ ArrayStorage* storage = m_storage;
- ASSERT(m_fastAccessCutoff <= m_storage->m_length);
- ASSERT(m_fastAccessCutoff <= m_storage->m_numValuesInVector);
+ ASSERT(storage);
+ if (type == SortConsistencyCheck)
+ ASSERT(!storage->m_sparseValueMap);
unsigned numValuesInVector = 0;
- for (unsigned i = 0; i < m_storage->m_vectorLength; ++i) {
- if (JSValue value = m_storage->m_vector[i]) {
- ASSERT(i < m_storage->m_length);
+ for (unsigned i = 0; i < m_vectorLength; ++i) {
+ if (JSValue value = storage->m_vector[i]) {
+ ASSERT(i < storage->m_length);
if (type != DestructorConsistencyCheck)
- value->type(); // Likely to crash if the object was deallocated.
+ value.isUndefined(); // Likely to crash if the object was deallocated.
++numValuesInVector;
} else {
- ASSERT(i >= m_fastAccessCutoff);
if (type == SortConsistencyCheck)
- ASSERT(i >= m_storage->m_numValuesInVector);
+ ASSERT(i >= storage->m_numValuesInVector);
}
}
- ASSERT(numValuesInVector == m_storage->m_numValuesInVector);
+ ASSERT(numValuesInVector == storage->m_numValuesInVector);
+ ASSERT(numValuesInVector <= storage->m_length);
- if (m_storage->m_sparseValueMap) {
- SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end();
- for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) {
+ if (storage->m_sparseValueMap) {
+ SparseArrayValueMap::iterator end = storage->m_sparseValueMap->end();
+ for (SparseArrayValueMap::iterator it = storage->m_sparseValueMap->begin(); it != end; ++it) {
unsigned index = it->first;
- ASSERT(index < m_storage->m_length);
- ASSERT(index >= m_storage->m_vectorLength);
+ ASSERT(index < storage->m_length);
+ ASSERT(index >= storage->m_vectorLength);
ASSERT(index <= MAX_ARRAY_INDEX);
ASSERT(it->second);
if (type != DestructorConsistencyCheck)
- it->second->type(); // Likely to crash if the object was deallocated.
+ it->second.isUndefined(); // Likely to crash if the object was deallocated.
}
}
}
#endif
-JSArray* constructEmptyArray(ExecState* exec)
-{
- return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure());
-}
-
-JSArray* constructEmptyArray(ExecState* exec, unsigned initialLength)
-{
- return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure(), initialLength);
-}
-
-JSArray* constructArray(ExecState* exec, JSValue singleItemValue)
-{
- MarkedArgumentBuffer values;
- values.append(singleItemValue);
- return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure(), values);
-}
-
-JSArray* constructArray(ExecState* exec, const ArgList& values)
-{
- return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure(), values);
-}
-
} // namespace JSC