]> git.saurik.com Git - apple/javascriptcore.git/blobdiff - yarr/YarrJIT.cpp
JavaScriptCore-903.tar.gz
[apple/javascriptcore.git] / yarr / YarrJIT.cpp
diff --git a/yarr/YarrJIT.cpp b/yarr/YarrJIT.cpp
new file mode 100644 (file)
index 0000000..8d5344f
--- /dev/null
@@ -0,0 +1,2476 @@
+/*
+ * Copyright (C) 2009 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
+ */
+
+#include "config.h"
+#include "YarrJIT.h"
+
+#include "ASCIICType.h"
+#include "LinkBuffer.h"
+#include "Yarr.h"
+
+#if ENABLE(YARR_JIT)
+
+using namespace WTF;
+
+namespace JSC { namespace Yarr {
+
+class YarrGenerator : private MacroAssembler {
+    friend void jitCompile(JSGlobalData*, YarrCodeBlock& jitObject, const UString& pattern, unsigned& numSubpatterns, const char*& error, bool ignoreCase, bool multiline);
+
+#if CPU(ARM)
+    static const RegisterID input = ARMRegisters::r0;
+    static const RegisterID index = ARMRegisters::r1;
+    static const RegisterID length = ARMRegisters::r2;
+    static const RegisterID output = ARMRegisters::r4;
+
+    static const RegisterID regT0 = ARMRegisters::r5;
+    static const RegisterID regT1 = ARMRegisters::r6;
+
+    static const RegisterID returnRegister = ARMRegisters::r0;
+#elif CPU(MIPS)
+    static const RegisterID input = MIPSRegisters::a0;
+    static const RegisterID index = MIPSRegisters::a1;
+    static const RegisterID length = MIPSRegisters::a2;
+    static const RegisterID output = MIPSRegisters::a3;
+
+    static const RegisterID regT0 = MIPSRegisters::t4;
+    static const RegisterID regT1 = MIPSRegisters::t5;
+
+    static const RegisterID returnRegister = MIPSRegisters::v0;
+#elif CPU(SH4)
+    static const RegisterID input = SH4Registers::r4;
+    static const RegisterID index = SH4Registers::r5;
+    static const RegisterID length = SH4Registers::r6;
+    static const RegisterID output = SH4Registers::r7;
+
+    static const RegisterID regT0 = SH4Registers::r0;
+    static const RegisterID regT1 = SH4Registers::r1;
+
+    static const RegisterID returnRegister = SH4Registers::r0;
+#elif CPU(X86)
+    static const RegisterID input = X86Registers::eax;
+    static const RegisterID index = X86Registers::edx;
+    static const RegisterID length = X86Registers::ecx;
+    static const RegisterID output = X86Registers::edi;
+
+    static const RegisterID regT0 = X86Registers::ebx;
+    static const RegisterID regT1 = X86Registers::esi;
+
+    static const RegisterID returnRegister = X86Registers::eax;
+#elif CPU(X86_64)
+    static const RegisterID input = X86Registers::edi;
+    static const RegisterID index = X86Registers::esi;
+    static const RegisterID length = X86Registers::edx;
+    static const RegisterID output = X86Registers::ecx;
+
+    static const RegisterID regT0 = X86Registers::eax;
+    static const RegisterID regT1 = X86Registers::ebx;
+
+    static const RegisterID returnRegister = X86Registers::eax;
+#endif
+
+    void optimizeAlternative(PatternAlternative* alternative)
+    {
+        if (!alternative->m_terms.size())
+            return;
+
+        for (unsigned i = 0; i < alternative->m_terms.size() - 1; ++i) {
+            PatternTerm& term = alternative->m_terms[i];
+            PatternTerm& nextTerm = alternative->m_terms[i + 1];
+
+            if ((term.type == PatternTerm::TypeCharacterClass)
+                && (term.quantityType == QuantifierFixedCount)
+                && (nextTerm.type == PatternTerm::TypePatternCharacter)
+                && (nextTerm.quantityType == QuantifierFixedCount)) {
+                PatternTerm termCopy = term;
+                alternative->m_terms[i] = nextTerm;
+                alternative->m_terms[i + 1] = termCopy;
+            }
+        }
+    }
+
+    void matchCharacterClassRange(RegisterID character, JumpList& failures, JumpList& matchDest, const CharacterRange* ranges, unsigned count, unsigned* matchIndex, const UChar* matches, unsigned matchCount)
+    {
+        do {
+            // pick which range we're going to generate
+            int which = count >> 1;
+            char lo = ranges[which].begin;
+            char hi = ranges[which].end;
+
+            // check if there are any ranges or matches below lo.  If not, just jl to failure -
+            // if there is anything else to check, check that first, if it falls through jmp to failure.
+            if ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) {
+                Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo));
+
+                // generate code for all ranges before this one
+                if (which)
+                    matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount);
+
+                while ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) {
+                    matchDest.append(branch32(Equal, character, Imm32((unsigned short)matches[*matchIndex])));
+                    ++*matchIndex;
+                }
+                failures.append(jump());
+
+                loOrAbove.link(this);
+            } else if (which) {
+                Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo));
+
+                matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount);
+                failures.append(jump());
+
+                loOrAbove.link(this);
+            } else
+                failures.append(branch32(LessThan, character, Imm32((unsigned short)lo)));
+
+            while ((*matchIndex < matchCount) && (matches[*matchIndex] <= hi))
+                ++*matchIndex;
+
+            matchDest.append(branch32(LessThanOrEqual, character, Imm32((unsigned short)hi)));
+            // fall through to here, the value is above hi.
+
+            // shuffle along & loop around if there are any more matches to handle.
+            unsigned next = which + 1;
+            ranges += next;
+            count -= next;
+        } while (count);
+    }
+
+    void matchCharacterClass(RegisterID character, JumpList& matchDest, const CharacterClass* charClass)
+    {
+        if (charClass->m_table) {
+            ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(charClass->m_table->m_table));
+            matchDest.append(branchTest8(charClass->m_table->m_inverted ? Zero : NonZero, tableEntry));
+            return;
+        }
+        Jump unicodeFail;
+        if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size()) {
+            Jump isAscii = branch32(LessThanOrEqual, character, TrustedImm32(0x7f));
+
+            if (charClass->m_matchesUnicode.size()) {
+                for (unsigned i = 0; i < charClass->m_matchesUnicode.size(); ++i) {
+                    UChar ch = charClass->m_matchesUnicode[i];
+                    matchDest.append(branch32(Equal, character, Imm32(ch)));
+                }
+            }
+
+            if (charClass->m_rangesUnicode.size()) {
+                for (unsigned i = 0; i < charClass->m_rangesUnicode.size(); ++i) {
+                    UChar lo = charClass->m_rangesUnicode[i].begin;
+                    UChar hi = charClass->m_rangesUnicode[i].end;
+
+                    Jump below = branch32(LessThan, character, Imm32(lo));
+                    matchDest.append(branch32(LessThanOrEqual, character, Imm32(hi)));
+                    below.link(this);
+                }
+            }
+
+            unicodeFail = jump();
+            isAscii.link(this);
+        }
+
+        if (charClass->m_ranges.size()) {
+            unsigned matchIndex = 0;
+            JumpList failures;
+            matchCharacterClassRange(character, failures, matchDest, charClass->m_ranges.begin(), charClass->m_ranges.size(), &matchIndex, charClass->m_matches.begin(), charClass->m_matches.size());
+            while (matchIndex < charClass->m_matches.size())
+                matchDest.append(branch32(Equal, character, Imm32((unsigned short)charClass->m_matches[matchIndex++])));
+
+            failures.link(this);
+        } else if (charClass->m_matches.size()) {
+            // optimization: gather 'a','A' etc back together, can mask & test once.
+            Vector<char> matchesAZaz;
+
+            for (unsigned i = 0; i < charClass->m_matches.size(); ++i) {
+                char ch = charClass->m_matches[i];
+                if (m_pattern.m_ignoreCase) {
+                    if (isASCIILower(ch)) {
+                        matchesAZaz.append(ch);
+                        continue;
+                    }
+                    if (isASCIIUpper(ch))
+                        continue;
+                }
+                matchDest.append(branch32(Equal, character, Imm32((unsigned short)ch)));
+            }
+
+            if (unsigned countAZaz = matchesAZaz.size()) {
+                or32(TrustedImm32(32), character);
+                for (unsigned i = 0; i < countAZaz; ++i)
+                    matchDest.append(branch32(Equal, character, TrustedImm32(matchesAZaz[i])));
+            }
+        }
+
+        if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size())
+            unicodeFail.link(this);
+    }
+
+    // Jumps if input not available; will have (incorrectly) incremented already!
+    Jump jumpIfNoAvailableInput(unsigned countToCheck = 0)
+    {
+        if (countToCheck)
+            add32(Imm32(countToCheck), index);
+        return branch32(Above, index, length);
+    }
+
+    Jump jumpIfAvailableInput(unsigned countToCheck)
+    {
+        add32(Imm32(countToCheck), index);
+        return branch32(BelowOrEqual, index, length);
+    }
+
+    Jump checkInput()
+    {
+        return branch32(BelowOrEqual, index, length);
+    }
+
+    Jump atEndOfInput()
+    {
+        return branch32(Equal, index, length);
+    }
+
+    Jump notAtEndOfInput()
+    {
+        return branch32(NotEqual, index, length);
+    }
+
+    Jump jumpIfCharEquals(UChar ch, int inputPosition)
+    {
+        return branch16(Equal, BaseIndex(input, index, TimesTwo, inputPosition * sizeof(UChar)), Imm32(ch));
+    }
+
+    Jump jumpIfCharNotEquals(UChar ch, int inputPosition)
+    {
+        return branch16(NotEqual, BaseIndex(input, index, TimesTwo, inputPosition * sizeof(UChar)), Imm32(ch));
+    }
+
+    void readCharacter(int inputPosition, RegisterID reg)
+    {
+        load16(BaseIndex(input, index, TimesTwo, inputPosition * sizeof(UChar)), reg);
+    }
+
+    void storeToFrame(RegisterID reg, unsigned frameLocation)
+    {
+        poke(reg, frameLocation);
+    }
+
+    void storeToFrame(TrustedImm32 imm, unsigned frameLocation)
+    {
+        poke(imm, frameLocation);
+    }
+
+    DataLabelPtr storeToFrameWithPatch(unsigned frameLocation)
+    {
+        return storePtrWithPatch(TrustedImmPtr(0), Address(stackPointerRegister, frameLocation * sizeof(void*)));
+    }
+
+    void loadFromFrame(unsigned frameLocation, RegisterID reg)
+    {
+        peek(reg, frameLocation);
+    }
+
+    void loadFromFrameAndJump(unsigned frameLocation)
+    {
+        jump(Address(stackPointerRegister, frameLocation * sizeof(void*)));
+    }
+
+    enum YarrOpCode {
+        // These nodes wrap body alternatives - those in the main disjunction,
+        // rather than subpatterns or assertions. These are chained together in
+        // a doubly linked list, with a 'begin' node for the first alternative,
+        // a 'next' node for each subsequent alternative, and an 'end' node at
+        // the end. In the case of repeating alternatives, the 'end' node also
+        // has a reference back to 'begin'.
+        OpBodyAlternativeBegin,
+        OpBodyAlternativeNext,
+        OpBodyAlternativeEnd,
+        // Similar to the body alternatives, but used for subpatterns with two
+        // or more alternatives.
+        OpNestedAlternativeBegin,
+        OpNestedAlternativeNext,
+        OpNestedAlternativeEnd,
+        // Used for alternatives in subpatterns where there is only a single
+        // alternative (backtrackingis easier in these cases), or for alternatives
+        // which never need to be backtracked (those in parenthetical assertions,
+        // terminal subpatterns).
+        OpSimpleNestedAlternativeBegin,
+        OpSimpleNestedAlternativeNext,
+        OpSimpleNestedAlternativeEnd,
+        // Used to wrap 'Once' subpattern matches (quantityCount == 1).
+        OpParenthesesSubpatternOnceBegin,
+        OpParenthesesSubpatternOnceEnd,
+        // Used to wrap 'Terminal' subpattern matches (at the end of the regexp).
+        OpParenthesesSubpatternTerminalBegin,
+        OpParenthesesSubpatternTerminalEnd,
+        // Used to wrap parenthetical assertions.
+        OpParentheticalAssertionBegin,
+        OpParentheticalAssertionEnd,
+        // Wraps all simple terms (pattern characters, character classes).
+        OpTerm,
+        // Where an expression contains only 'once through' body alternatives
+        // and no repeating ones, this op is used to return match failure.
+        OpMatchFailed
+    };
+
+    // This structure is used to hold the compiled opcode information,
+    // including reference back to the original PatternTerm/PatternAlternatives,
+    // and JIT compilation data structures.
+    struct YarrOp {
+        explicit YarrOp(PatternTerm* term)
+            : m_op(OpTerm)
+            , m_term(term)
+            , m_isDeadCode(false)
+        {
+        }
+
+        explicit YarrOp(YarrOpCode op)
+            : m_op(op)
+            , m_isDeadCode(false)
+        {
+        }
+
+        // The operation, as a YarrOpCode, and also a reference to the PatternTerm.
+        YarrOpCode m_op;
+        PatternTerm* m_term;
+
+        // For alternatives, this holds the PatternAlternative and doubly linked
+        // references to this alternative's siblings. In the case of the
+        // OpBodyAlternativeEnd node at the end of a section of repeating nodes,
+        // m_nextOp will reference the OpBodyAlternativeBegin node of the first
+        // repeating alternative.
+        PatternAlternative* m_alternative;
+        size_t m_previousOp;
+        size_t m_nextOp;
+
+        // Used to record a set of Jumps out of the generated code, typically
+        // used for jumps out to backtracking code, and a single reentry back
+        // into the code for a node (likely where a backtrack will trigger
+        // rematching).
+        Label m_reentry;
+        JumpList m_jumps;
+
+        // This flag is used to null out the second pattern character, when
+        // two are fused to match a pair together.
+        bool m_isDeadCode;
+
+        // Currently used in the case of some of the more complex management of
+        // 'm_checked', to cache the offset used in this alternative, to avoid
+        // recalculating it.
+        int m_checkAdjust;
+
+        // Used by OpNestedAlternativeNext/End to hold the pointer to the
+        // value that will be pushed into the pattern's frame to return to,
+        // upon backtracking back into the disjunction.
+        DataLabelPtr m_returnAddress;
+    };
+
+    // BacktrackingState
+    // This class encapsulates information about the state of code generation
+    // whilst generating the code for backtracking, when a term fails to match.
+    // Upon entry to code generation of the backtracking code for a given node,
+    // the Backtracking state will hold references to all control flow sources
+    // that are outputs in need of further backtracking from the prior node
+    // generated (which is the subsequent operation in the regular expression,
+    // and in the m_ops Vector, since we generated backtracking backwards).
+    // These references to control flow take the form of:
+    //  - A jump list of jumps, to be linked to code that will backtrack them
+    //    further.
+    //  - A set of DataLabelPtr values, to be populated with values to be
+    //    treated effectively as return addresses backtracking into complex
+    //    subpatterns.
+    //  - A flag indicating that the current sequence of generated code up to
+    //    this point requires backtracking.
+    class BacktrackingState {
+    public:
+        BacktrackingState()
+            : m_pendingFallthrough(false)
+        {
+        }
+
+        // Add a jump or jumps, a return address, or set the flag indicating
+        // that the current 'fallthrough' control flow requires backtracking.
+        void append(const Jump& jump)
+        {
+            m_laterFailures.append(jump);
+        }
+        void append(JumpList& jumpList)
+        {
+            m_laterFailures.append(jumpList);
+        }
+        void append(const DataLabelPtr& returnAddress)
+        {
+            m_pendingReturns.append(returnAddress);
+        }
+        void fallthrough()
+        {
+            ASSERT(!m_pendingFallthrough);
+            m_pendingFallthrough = true;
+        }
+
+        // These methods clear the backtracking state, either linking to the
+        // current location, a provided label, or copying the backtracking out
+        // to a JumpList. All actions may require code generation to take place,
+        // and as such are passed a pointer to the assembler.
+        void link(MacroAssembler* assembler)
+        {
+            if (m_pendingReturns.size()) {
+                Label here(assembler);
+                for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
+                    m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here));
+                m_pendingReturns.clear();
+            }
+            m_laterFailures.link(assembler);
+            m_laterFailures.clear();
+            m_pendingFallthrough = false;
+        }
+        void linkTo(Label label, MacroAssembler* assembler)
+        {
+            if (m_pendingReturns.size()) {
+                for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
+                    m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], label));
+                m_pendingReturns.clear();
+            }
+            if (m_pendingFallthrough)
+                assembler->jump(label);
+            m_laterFailures.linkTo(label, assembler);
+            m_laterFailures.clear();
+            m_pendingFallthrough = false;
+        }
+        void takeBacktracksToJumpList(JumpList& jumpList, MacroAssembler* assembler)
+        {
+            if (m_pendingReturns.size()) {
+                Label here(assembler);
+                for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
+                    m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here));
+                m_pendingReturns.clear();
+                m_pendingFallthrough = true;
+            }
+            if (m_pendingFallthrough)
+                jumpList.append(assembler->jump());
+            jumpList.append(m_laterFailures);
+            m_laterFailures.clear();
+            m_pendingFallthrough = false;
+        }
+
+        bool isEmpty()
+        {
+            return m_laterFailures.empty() && m_pendingReturns.isEmpty() && !m_pendingFallthrough;
+        }
+
+        // Called at the end of code generation to link all return addresses.
+        void linkDataLabels(LinkBuffer& linkBuffer)
+        {
+            ASSERT(isEmpty());
+            for (unsigned i = 0; i < m_backtrackRecords.size(); ++i)
+                linkBuffer.patch(m_backtrackRecords[i].m_dataLabel, linkBuffer.locationOf(m_backtrackRecords[i].m_backtrackLocation));
+        }
+
+    private:
+        struct ReturnAddressRecord {
+            ReturnAddressRecord(DataLabelPtr dataLabel, Label backtrackLocation)
+                : m_dataLabel(dataLabel)
+                , m_backtrackLocation(backtrackLocation)
+            {
+            }
+
+            DataLabelPtr m_dataLabel;
+            Label m_backtrackLocation;
+        };
+
+        JumpList m_laterFailures;
+        bool m_pendingFallthrough;
+        Vector<DataLabelPtr, 4> m_pendingReturns;
+        Vector<ReturnAddressRecord, 4> m_backtrackRecords;
+    };
+
+    // Generation methods:
+    // ===================
+
+    // This method provides a default implementation of backtracking common
+    // to many terms; terms commonly jump out of the forwards  matching path
+    // on any failed conditions, and add these jumps to the m_jumps list. If
+    // no special handling is required we can often just backtrack to m_jumps.
+    void backtrackTermDefault(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        m_backtrackingState.append(op.m_jumps);
+    }
+
+    void generateAssertionBOL(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        if (m_pattern.m_multiline) {
+            const RegisterID character = regT0;
+
+            JumpList matchDest;
+            if (!term->inputPosition)
+                matchDest.append(branch32(Equal, index, Imm32(m_checked)));
+
+            readCharacter((term->inputPosition - m_checked) - 1, character);
+            matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass());
+            op.m_jumps.append(jump());
+
+            matchDest.link(this);
+        } else {
+            // Erk, really should poison out these alternatives early. :-/
+            if (term->inputPosition)
+                op.m_jumps.append(jump());
+            else
+                op.m_jumps.append(branch32(NotEqual, index, Imm32(m_checked)));
+        }
+    }
+    void backtrackAssertionBOL(size_t opIndex)
+    {
+        backtrackTermDefault(opIndex);
+    }
+
+    void generateAssertionEOL(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        if (m_pattern.m_multiline) {
+            const RegisterID character = regT0;
+
+            JumpList matchDest;
+            if (term->inputPosition == m_checked)
+                matchDest.append(atEndOfInput());
+
+            readCharacter((term->inputPosition - m_checked), character);
+            matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass());
+            op.m_jumps.append(jump());
+
+            matchDest.link(this);
+        } else {
+            if (term->inputPosition == m_checked)
+                op.m_jumps.append(notAtEndOfInput());
+            // Erk, really should poison out these alternatives early. :-/
+            else
+                op.m_jumps.append(jump());
+        }
+    }
+    void backtrackAssertionEOL(size_t opIndex)
+    {
+        backtrackTermDefault(opIndex);
+    }
+
+    // Also falls though on nextIsNotWordChar.
+    void matchAssertionWordchar(size_t opIndex, JumpList& nextIsWordChar, JumpList& nextIsNotWordChar)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID character = regT0;
+
+        if (term->inputPosition == m_checked)
+            nextIsNotWordChar.append(atEndOfInput());
+
+        readCharacter((term->inputPosition - m_checked), character);
+        matchCharacterClass(character, nextIsWordChar, m_pattern.wordcharCharacterClass());
+    }
+
+    void generateAssertionWordBoundary(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID character = regT0;
+
+        Jump atBegin;
+        JumpList matchDest;
+        if (!term->inputPosition)
+            atBegin = branch32(Equal, index, Imm32(m_checked));
+        readCharacter((term->inputPosition - m_checked) - 1, character);
+        matchCharacterClass(character, matchDest, m_pattern.wordcharCharacterClass());
+        if (!term->inputPosition)
+            atBegin.link(this);
+
+        // We fall through to here if the last character was not a wordchar.
+        JumpList nonWordCharThenWordChar;
+        JumpList nonWordCharThenNonWordChar;
+        if (term->invert()) {
+            matchAssertionWordchar(opIndex, nonWordCharThenNonWordChar, nonWordCharThenWordChar);
+            nonWordCharThenWordChar.append(jump());
+        } else {
+            matchAssertionWordchar(opIndex, nonWordCharThenWordChar, nonWordCharThenNonWordChar);
+            nonWordCharThenNonWordChar.append(jump());
+        }
+        op.m_jumps.append(nonWordCharThenNonWordChar);
+
+        // We jump here if the last character was a wordchar.
+        matchDest.link(this);
+        JumpList wordCharThenWordChar;
+        JumpList wordCharThenNonWordChar;
+        if (term->invert()) {
+            matchAssertionWordchar(opIndex, wordCharThenNonWordChar, wordCharThenWordChar);
+            wordCharThenWordChar.append(jump());
+        } else {
+            matchAssertionWordchar(opIndex, wordCharThenWordChar, wordCharThenNonWordChar);
+            // This can fall-though!
+        }
+
+        op.m_jumps.append(wordCharThenWordChar);
+
+        nonWordCharThenWordChar.link(this);
+        wordCharThenNonWordChar.link(this);
+    }
+    void backtrackAssertionWordBoundary(size_t opIndex)
+    {
+        backtrackTermDefault(opIndex);
+    }
+
+    void generatePatternCharacterOnce(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+
+        // m_ops always ends with a OpBodyAlternativeEnd or OpMatchFailed
+        // node, so there must always be at least one more node.
+        ASSERT(opIndex + 1 < m_ops.size());
+        YarrOp& nextOp = m_ops[opIndex + 1];
+
+        if (op.m_isDeadCode)
+            return;
+
+        PatternTerm* term = op.m_term;
+        UChar ch = term->patternCharacter;
+
+        const RegisterID character = regT0;
+
+        if (nextOp.m_op == OpTerm) {
+            PatternTerm* nextTerm = nextOp.m_term;
+            if (nextTerm->type == PatternTerm::TypePatternCharacter
+                && nextTerm->quantityType == QuantifierFixedCount
+                && nextTerm->quantityCount == 1
+                && nextTerm->inputPosition == (term->inputPosition + 1)) {
+
+                UChar ch2 = nextTerm->patternCharacter;
+
+                int mask = 0;
+                int chPair = ch | (ch2 << 16);
+
+                if (m_pattern.m_ignoreCase) {
+                    if (isASCIIAlpha(ch))
+                        mask |= 32;
+                    if (isASCIIAlpha(ch2))
+                        mask |= 32 << 16;
+                }
+
+                BaseIndex address(input, index, TimesTwo, (term->inputPosition - m_checked) * sizeof(UChar));
+                if (mask) {
+                    load32WithUnalignedHalfWords(address, character);
+                    or32(Imm32(mask), character);
+                    op.m_jumps.append(branch32(NotEqual, character, Imm32(chPair | mask)));
+                } else
+                    op.m_jumps.append(branch32WithUnalignedHalfWords(NotEqual, address, Imm32(chPair)));
+
+                nextOp.m_isDeadCode = true;
+                return;
+            }
+        }
+
+        if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
+            readCharacter(term->inputPosition - m_checked, character);
+            or32(TrustedImm32(32), character);
+            op.m_jumps.append(branch32(NotEqual, character, Imm32(Unicode::toLower(ch))));
+        } else {
+            ASSERT(!m_pattern.m_ignoreCase || (Unicode::toLower(ch) == Unicode::toUpper(ch)));
+            op.m_jumps.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked));
+        }
+    }
+    void backtrackPatternCharacterOnce(size_t opIndex)
+    {
+        backtrackTermDefault(opIndex);
+    }
+
+    void generatePatternCharacterFixed(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+        UChar ch = term->patternCharacter;
+
+        const RegisterID character = regT0;
+        const RegisterID countRegister = regT1;
+
+        move(index, countRegister);
+        sub32(Imm32(term->quantityCount), countRegister);
+
+        Label loop(this);
+        BaseIndex address(input, countRegister, TimesTwo, (term->inputPosition - m_checked + term->quantityCount) * sizeof(UChar));
+
+        if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
+            load16(address, character);
+            or32(TrustedImm32(32), character);
+            op.m_jumps.append(branch32(NotEqual, character, Imm32(Unicode::toLower(ch))));
+        } else {
+            ASSERT(!m_pattern.m_ignoreCase || (Unicode::toLower(ch) == Unicode::toUpper(ch)));
+            op.m_jumps.append(branch16(NotEqual, address, Imm32(ch)));
+        }
+        add32(TrustedImm32(1), countRegister);
+        branch32(NotEqual, countRegister, index).linkTo(loop, this);
+    }
+    void backtrackPatternCharacterFixed(size_t opIndex)
+    {
+        backtrackTermDefault(opIndex);
+    }
+
+    void generatePatternCharacterGreedy(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+        UChar ch = term->patternCharacter;
+
+        const RegisterID character = regT0;
+        const RegisterID countRegister = regT1;
+
+        move(TrustedImm32(0), countRegister);
+
+        JumpList failures;
+        Label loop(this);
+        failures.append(atEndOfInput());
+        if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
+            readCharacter(term->inputPosition - m_checked, character);
+            or32(TrustedImm32(32), character);
+            failures.append(branch32(NotEqual, character, Imm32(Unicode::toLower(ch))));
+        } else {
+            ASSERT(!m_pattern.m_ignoreCase || (Unicode::toLower(ch) == Unicode::toUpper(ch)));
+            failures.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked));
+        }
+
+        add32(TrustedImm32(1), countRegister);
+        add32(TrustedImm32(1), index);
+        if (term->quantityCount == quantifyInfinite)
+            jump(loop);
+        else
+            branch32(NotEqual, countRegister, Imm32(term->quantityCount)).linkTo(loop, this);
+
+        failures.link(this);
+        op.m_reentry = label();
+
+        storeToFrame(countRegister, term->frameLocation);
+
+    }
+    void backtrackPatternCharacterGreedy(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID countRegister = regT1;
+
+        m_backtrackingState.link(this);
+
+        loadFromFrame(term->frameLocation, countRegister);
+        m_backtrackingState.append(branchTest32(Zero, countRegister));
+        sub32(TrustedImm32(1), countRegister);
+        sub32(TrustedImm32(1), index);
+        jump(op.m_reentry);
+    }
+
+    void generatePatternCharacterNonGreedy(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID countRegister = regT1;
+
+        move(TrustedImm32(0), countRegister);
+        op.m_reentry = label();
+        storeToFrame(countRegister, term->frameLocation);
+    }
+    void backtrackPatternCharacterNonGreedy(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+        UChar ch = term->patternCharacter;
+
+        const RegisterID character = regT0;
+        const RegisterID countRegister = regT1;
+
+        JumpList nonGreedyFailures;
+
+        m_backtrackingState.link(this);
+
+        loadFromFrame(term->frameLocation, countRegister);
+
+        nonGreedyFailures.append(atEndOfInput());
+        if (term->quantityCount != quantifyInfinite)
+            nonGreedyFailures.append(branch32(Equal, countRegister, Imm32(term->quantityCount)));
+        if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
+            readCharacter(term->inputPosition - m_checked, character);
+            or32(TrustedImm32(32), character);
+            nonGreedyFailures.append(branch32(NotEqual, character, Imm32(Unicode::toLower(ch))));
+        } else {
+            ASSERT(!m_pattern.m_ignoreCase || (Unicode::toLower(ch) == Unicode::toUpper(ch)));
+            nonGreedyFailures.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked));
+        }
+
+        add32(TrustedImm32(1), countRegister);
+        add32(TrustedImm32(1), index);
+
+        jump(op.m_reentry);
+
+        nonGreedyFailures.link(this);
+        sub32(countRegister, index);
+        m_backtrackingState.fallthrough();
+    }
+
+    void generateCharacterClassOnce(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID character = regT0;
+
+        JumpList matchDest;
+        readCharacter((term->inputPosition - m_checked), character);
+        matchCharacterClass(character, matchDest, term->characterClass);
+
+        if (term->invert())
+            op.m_jumps.append(matchDest);
+        else {
+            op.m_jumps.append(jump());
+            matchDest.link(this);
+        }
+    }
+    void backtrackCharacterClassOnce(size_t opIndex)
+    {
+        backtrackTermDefault(opIndex);
+    }
+
+    void generateCharacterClassFixed(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID character = regT0;
+        const RegisterID countRegister = regT1;
+
+        move(index, countRegister);
+        sub32(Imm32(term->quantityCount), countRegister);
+
+        Label loop(this);
+        JumpList matchDest;
+        load16(BaseIndex(input, countRegister, TimesTwo, (term->inputPosition - m_checked + term->quantityCount) * sizeof(UChar)), character);
+        matchCharacterClass(character, matchDest, term->characterClass);
+
+        if (term->invert())
+            op.m_jumps.append(matchDest);
+        else {
+            op.m_jumps.append(jump());
+            matchDest.link(this);
+        }
+
+        add32(TrustedImm32(1), countRegister);
+        branch32(NotEqual, countRegister, index).linkTo(loop, this);
+    }
+    void backtrackCharacterClassFixed(size_t opIndex)
+    {
+        backtrackTermDefault(opIndex);
+    }
+
+    void generateCharacterClassGreedy(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID character = regT0;
+        const RegisterID countRegister = regT1;
+
+        move(TrustedImm32(0), countRegister);
+
+        JumpList failures;
+        Label loop(this);
+        failures.append(atEndOfInput());
+
+        if (term->invert()) {
+            readCharacter(term->inputPosition - m_checked, character);
+            matchCharacterClass(character, failures, term->characterClass);
+        } else {
+            JumpList matchDest;
+            readCharacter(term->inputPosition - m_checked, character);
+            matchCharacterClass(character, matchDest, term->characterClass);
+            failures.append(jump());
+            matchDest.link(this);
+        }
+
+        add32(TrustedImm32(1), countRegister);
+        add32(TrustedImm32(1), index);
+        if (term->quantityCount != quantifyInfinite) {
+            branch32(NotEqual, countRegister, Imm32(term->quantityCount)).linkTo(loop, this);
+            failures.append(jump());
+        } else
+            jump(loop);
+
+        failures.link(this);
+        op.m_reentry = label();
+
+        storeToFrame(countRegister, term->frameLocation);
+    }
+    void backtrackCharacterClassGreedy(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID countRegister = regT1;
+
+        m_backtrackingState.link(this);
+
+        loadFromFrame(term->frameLocation, countRegister);
+        m_backtrackingState.append(branchTest32(Zero, countRegister));
+        sub32(TrustedImm32(1), countRegister);
+        sub32(TrustedImm32(1), index);
+        jump(op.m_reentry);
+    }
+
+    void generateCharacterClassNonGreedy(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID countRegister = regT1;
+
+        move(TrustedImm32(0), countRegister);
+        op.m_reentry = label();
+        storeToFrame(countRegister, term->frameLocation);
+    }
+    void backtrackCharacterClassNonGreedy(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID character = regT0;
+        const RegisterID countRegister = regT1;
+
+        JumpList nonGreedyFailures;
+
+        m_backtrackingState.link(this);
+
+        Label backtrackBegin(this);
+        loadFromFrame(term->frameLocation, countRegister);
+
+        nonGreedyFailures.append(atEndOfInput());
+        nonGreedyFailures.append(branch32(Equal, countRegister, Imm32(term->quantityCount)));
+
+        JumpList matchDest;
+        readCharacter(term->inputPosition - m_checked, character);
+        matchCharacterClass(character, matchDest, term->characterClass);
+
+        if (term->invert())
+            nonGreedyFailures.append(matchDest);
+        else {
+            nonGreedyFailures.append(jump());
+            matchDest.link(this);
+        }
+
+        add32(TrustedImm32(1), countRegister);
+        add32(TrustedImm32(1), index);
+
+        jump(op.m_reentry);
+
+        nonGreedyFailures.link(this);
+        sub32(countRegister, index);
+        m_backtrackingState.fallthrough();
+    }
+
+    void generateDotStarEnclosure(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        const RegisterID character = regT0;
+        const RegisterID matchPos = regT1;
+
+        JumpList foundBeginningNewLine;
+        JumpList saveStartIndex;
+        JumpList foundEndingNewLine;
+
+        if (m_pattern.m_body->m_hasFixedSize) {
+            move(index, matchPos);
+            sub32(Imm32(m_checked), matchPos);
+        } else
+            load32(Address(output), matchPos);
+
+        saveStartIndex.append(branchTest32(Zero, matchPos));
+        Label findBOLLoop(this);
+        sub32(TrustedImm32(1), matchPos);
+        load16(BaseIndex(input, matchPos, TimesTwo, 0), character);
+        matchCharacterClass(character, foundBeginningNewLine, m_pattern.newlineCharacterClass());
+        branchTest32(NonZero, matchPos).linkTo(findBOLLoop, this);
+        saveStartIndex.append(jump());
+
+        foundBeginningNewLine.link(this);
+        add32(TrustedImm32(1), matchPos); // Advance past newline
+        saveStartIndex.link(this);
+
+        if (!m_pattern.m_multiline && term->anchors.bolAnchor)
+            op.m_jumps.append(branchTest32(NonZero, matchPos));
+
+        store32(matchPos, Address(output));
+
+        move(index, matchPos);
+
+        Label findEOLLoop(this);        
+        foundEndingNewLine.append(branch32(Equal, matchPos, length));
+        load16(BaseIndex(input, matchPos, TimesTwo, 0), character);
+        matchCharacterClass(character, foundEndingNewLine, m_pattern.newlineCharacterClass());
+        add32(TrustedImm32(1), matchPos);
+        jump(findEOLLoop);
+
+        foundEndingNewLine.link(this);
+
+        if (!m_pattern.m_multiline && term->anchors.eolAnchor)
+            op.m_jumps.append(branch32(NotEqual, matchPos, length));
+
+        move(matchPos, index);
+    }
+
+    void backtrackDotStarEnclosure(size_t opIndex)
+    {
+        backtrackTermDefault(opIndex);
+    }
+    
+    // Code generation/backtracking for simple terms
+    // (pattern characters, character classes, and assertions).
+    // These methods farm out work to the set of functions above.
+    void generateTerm(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        switch (term->type) {
+        case PatternTerm::TypePatternCharacter:
+            switch (term->quantityType) {
+            case QuantifierFixedCount:
+                if (term->quantityCount == 1)
+                    generatePatternCharacterOnce(opIndex);
+                else
+                    generatePatternCharacterFixed(opIndex);
+                break;
+            case QuantifierGreedy:
+                generatePatternCharacterGreedy(opIndex);
+                break;
+            case QuantifierNonGreedy:
+                generatePatternCharacterNonGreedy(opIndex);
+                break;
+            }
+            break;
+
+        case PatternTerm::TypeCharacterClass:
+            switch (term->quantityType) {
+            case QuantifierFixedCount:
+                if (term->quantityCount == 1)
+                    generateCharacterClassOnce(opIndex);
+                else
+                    generateCharacterClassFixed(opIndex);
+                break;
+            case QuantifierGreedy:
+                generateCharacterClassGreedy(opIndex);
+                break;
+            case QuantifierNonGreedy:
+                generateCharacterClassNonGreedy(opIndex);
+                break;
+            }
+            break;
+
+        case PatternTerm::TypeAssertionBOL:
+            generateAssertionBOL(opIndex);
+            break;
+
+        case PatternTerm::TypeAssertionEOL:
+            generateAssertionEOL(opIndex);
+            break;
+
+        case PatternTerm::TypeAssertionWordBoundary:
+            generateAssertionWordBoundary(opIndex);
+            break;
+
+        case PatternTerm::TypeForwardReference:
+            break;
+
+        case PatternTerm::TypeParenthesesSubpattern:
+        case PatternTerm::TypeParentheticalAssertion:
+            ASSERT_NOT_REACHED();
+        case PatternTerm::TypeBackReference:
+            m_shouldFallBack = true;
+            break;
+        case PatternTerm::TypeDotStarEnclosure:
+            generateDotStarEnclosure(opIndex);
+            break;
+        }
+    }
+    void backtrackTerm(size_t opIndex)
+    {
+        YarrOp& op = m_ops[opIndex];
+        PatternTerm* term = op.m_term;
+
+        switch (term->type) {
+        case PatternTerm::TypePatternCharacter:
+            switch (term->quantityType) {
+            case QuantifierFixedCount:
+                if (term->quantityCount == 1)
+                    backtrackPatternCharacterOnce(opIndex);
+                else
+                    backtrackPatternCharacterFixed(opIndex);
+                break;
+            case QuantifierGreedy:
+                backtrackPatternCharacterGreedy(opIndex);
+                break;
+            case QuantifierNonGreedy:
+                backtrackPatternCharacterNonGreedy(opIndex);
+                break;
+            }
+            break;
+
+        case PatternTerm::TypeCharacterClass:
+            switch (term->quantityType) {
+            case QuantifierFixedCount:
+                if (term->quantityCount == 1)
+                    backtrackCharacterClassOnce(opIndex);
+                else
+                    backtrackCharacterClassFixed(opIndex);
+                break;
+            case QuantifierGreedy:
+                backtrackCharacterClassGreedy(opIndex);
+                break;
+            case QuantifierNonGreedy:
+                backtrackCharacterClassNonGreedy(opIndex);
+                break;
+            }
+            break;
+
+        case PatternTerm::TypeAssertionBOL:
+            backtrackAssertionBOL(opIndex);
+            break;
+
+        case PatternTerm::TypeAssertionEOL:
+            backtrackAssertionEOL(opIndex);
+            break;
+
+        case PatternTerm::TypeAssertionWordBoundary:
+            backtrackAssertionWordBoundary(opIndex);
+            break;
+
+        case PatternTerm::TypeForwardReference:
+            break;
+
+        case PatternTerm::TypeParenthesesSubpattern:
+        case PatternTerm::TypeParentheticalAssertion:
+            ASSERT_NOT_REACHED();
+
+        case PatternTerm::TypeDotStarEnclosure:
+            backtrackDotStarEnclosure(opIndex);
+            break;
+
+        case PatternTerm::TypeBackReference:
+            m_shouldFallBack = true;
+            break;
+        }
+    }
+
+    void generate()
+    {
+        // Forwards generate the matching code.
+        ASSERT(m_ops.size());
+        size_t opIndex = 0;
+
+        do {
+            YarrOp& op = m_ops[opIndex];
+            switch (op.m_op) {
+
+            case OpTerm:
+                generateTerm(opIndex);
+                break;
+
+            // OpBodyAlternativeBegin/Next/End
+            //
+            // These nodes wrap the set of alternatives in the body of the regular expression.
+            // There may be either one or two chains of OpBodyAlternative nodes, one representing
+            // the 'once through' sequence of alternatives (if any exist), and one representing
+            // the repeating alternatives (again, if any exist).
+            //
+            // Upon normal entry to the Begin alternative, we will check that input is available.
+            // Reentry to the Begin alternative will take place after the check has taken place,
+            // and will assume that the input position has already been progressed as appropriate.
+            //
+            // Entry to subsequent Next/End alternatives occurs when the prior alternative has
+            // successfully completed a match - return a success state from JIT code.
+            //
+            // Next alternatives allow for reentry optimized to suit backtracking from its
+            // preceding alternative. It expects the input position to still be set to a position
+            // appropriate to its predecessor, and it will only perform an input check if the
+            // predecessor had a minimum size less than its own.
+            //
+            // In the case 'once through' expressions, the End node will also have a reentry
+            // point to jump to when the last alternative fails. Again, this expects the input
+            // position to still reflect that expected by the prior alternative.
+            case OpBodyAlternativeBegin: {
+                PatternAlternative* alternative = op.m_alternative;
+
+                // Upon entry at the head of the set of alternatives, check if input is available
+                // to run the first alternative. (This progresses the input position).
+                op.m_jumps.append(jumpIfNoAvailableInput(alternative->m_minimumSize));
+                // We will reenter after the check, and assume the input position to have been
+                // set as appropriate to this alternative.
+                op.m_reentry = label();
+
+                m_checked += alternative->m_minimumSize;
+                break;
+            }
+            case OpBodyAlternativeNext:
+            case OpBodyAlternativeEnd: {
+                PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative;
+                PatternAlternative* alternative = op.m_alternative;
+
+                // If we get here, the prior alternative matched - return success.
+                
+                // Adjust the stack pointer to remove the pattern's frame.
+                if (m_pattern.m_body->m_callFrameSize)
+                    addPtr(Imm32(m_pattern.m_body->m_callFrameSize * sizeof(void*)), stackPointerRegister);
+
+                // Load appropriate values into the return register and the first output
+                // slot, and return. In the case of pattern with a fixed size, we will
+                // not have yet set the value in the first 
+                ASSERT(index != returnRegister);
+                if (m_pattern.m_body->m_hasFixedSize) {
+                    move(index, returnRegister);
+                    if (priorAlternative->m_minimumSize)
+                        sub32(Imm32(priorAlternative->m_minimumSize), returnRegister);
+                    store32(returnRegister, output);
+                } else
+                    load32(Address(output), returnRegister);
+                store32(index, Address(output, 4));
+                generateReturn();
+
+                // This is the divide between the tail of the prior alternative, above, and
+                // the head of the subsequent alternative, below.
+
+                if (op.m_op == OpBodyAlternativeNext) {
+                    // This is the reentry point for the Next alternative. We expect any code
+                    // that jumps here to do so with the input position matching that of the
+                    // PRIOR alteranative, and we will only check input availability if we
+                    // need to progress it forwards.
+                    op.m_reentry = label();
+                    if (alternative->m_minimumSize > priorAlternative->m_minimumSize) {
+                        add32(Imm32(alternative->m_minimumSize - priorAlternative->m_minimumSize), index);
+                        op.m_jumps.append(jumpIfNoAvailableInput());
+                    } else if (priorAlternative->m_minimumSize > alternative->m_minimumSize)
+                        sub32(Imm32(priorAlternative->m_minimumSize - alternative->m_minimumSize), index);
+                } else if (op.m_nextOp == notFound) {
+                    // This is the reentry point for the End of 'once through' alternatives,
+                    // jumped to when the las alternative fails to match.
+                    op.m_reentry = label();
+                    sub32(Imm32(priorAlternative->m_minimumSize), index);
+                }
+
+                if (op.m_op == OpBodyAlternativeNext)
+                    m_checked += alternative->m_minimumSize;
+                m_checked -= priorAlternative->m_minimumSize;
+                break;
+            }
+
+            // OpSimpleNestedAlternativeBegin/Next/End
+            // OpNestedAlternativeBegin/Next/End
+            //
+            // These nodes are used to handle sets of alternatives that are nested within
+            // subpatterns and parenthetical assertions. The 'simple' forms are used where
+            // we do not need to be able to backtrack back into any alternative other than
+            // the last, the normal forms allow backtracking into any alternative.
+            //
+            // Each Begin/Next node is responsible for planting an input check to ensure
+            // sufficient input is available on entry. Next nodes additionally need to
+            // jump to the end - Next nodes use the End node's m_jumps list to hold this
+            // set of jumps.
+            //
+            // In the non-simple forms, successful alternative matches must store a
+            // 'return address' using a DataLabelPtr, used to store the address to jump
+            // to when backtracking, to get to the code for the appropriate alternative.
+            case OpSimpleNestedAlternativeBegin:
+            case OpNestedAlternativeBegin: {
+                PatternTerm* term = op.m_term;
+                PatternAlternative* alternative = op.m_alternative;
+                PatternDisjunction* disjunction = term->parentheses.disjunction;
+
+                // Calculate how much input we need to check for, and if non-zero check.
+                op.m_checkAdjust = alternative->m_minimumSize;
+                if ((term->quantityType == QuantifierFixedCount) && (term->type != PatternTerm::TypeParentheticalAssertion))
+                    op.m_checkAdjust -= disjunction->m_minimumSize;
+                if (op.m_checkAdjust)
+                    op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust));
+                m_checked += op.m_checkAdjust;
+                break;
+            }
+            case OpSimpleNestedAlternativeNext:
+            case OpNestedAlternativeNext: {
+                PatternTerm* term = op.m_term;
+                PatternAlternative* alternative = op.m_alternative;
+                PatternDisjunction* disjunction = term->parentheses.disjunction;
+
+                // In the non-simple case, store a 'return address' so we can backtrack correctly.
+                if (op.m_op == OpNestedAlternativeNext) {
+                    unsigned parenthesesFrameLocation = term->frameLocation;
+                    unsigned alternativeFrameLocation = parenthesesFrameLocation;
+                    if (term->quantityType != QuantifierFixedCount)
+                        alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce;
+                    op.m_returnAddress = storeToFrameWithPatch(alternativeFrameLocation);
+                }
+
+                // If we reach here then the last alternative has matched - jump to the
+                // End node, to skip over any further alternatives.
+                //
+                // FIXME: this is logically O(N^2) (though N can be expected to be very
+                // small). We could avoid this either by adding an extra jump to the JIT
+                // data structures, or by making backtracking code that jumps to Next
+                // alternatives are responsible for checking that input is available (if
+                // we didn't need to plant the input checks, then m_jumps would be free).
+                YarrOp* endOp = &m_ops[op.m_nextOp];
+                while (endOp->m_nextOp != notFound) {
+                    ASSERT(endOp->m_op == OpSimpleNestedAlternativeNext || endOp->m_op == OpNestedAlternativeNext);
+                    endOp = &m_ops[endOp->m_nextOp];
+                }
+                ASSERT(endOp->m_op == OpSimpleNestedAlternativeEnd || endOp->m_op == OpNestedAlternativeEnd);
+                endOp->m_jumps.append(jump());
+
+                // This is the entry point for the next alternative.
+                op.m_reentry = label();
+
+                // Calculate how much input we need to check for, and if non-zero check.
+                op.m_checkAdjust = alternative->m_minimumSize;
+                if ((term->quantityType == QuantifierFixedCount) && (term->type != PatternTerm::TypeParentheticalAssertion))
+                    op.m_checkAdjust -= disjunction->m_minimumSize;
+                if (op.m_checkAdjust)
+                    op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust));
+
+                YarrOp& lastOp = m_ops[op.m_previousOp];
+                m_checked -= lastOp.m_checkAdjust;
+                m_checked += op.m_checkAdjust;
+                break;
+            }
+            case OpSimpleNestedAlternativeEnd:
+            case OpNestedAlternativeEnd: {
+                PatternTerm* term = op.m_term;
+
+                // In the non-simple case, store a 'return address' so we can backtrack correctly.
+                if (op.m_op == OpNestedAlternativeEnd) {
+                    unsigned parenthesesFrameLocation = term->frameLocation;
+                    unsigned alternativeFrameLocation = parenthesesFrameLocation;
+                    if (term->quantityType != QuantifierFixedCount)
+                        alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce;
+                    op.m_returnAddress = storeToFrameWithPatch(alternativeFrameLocation);
+                }
+
+                // If this set of alternatives contains more than one alternative,
+                // then the Next nodes will have planted jumps to the End, and added
+                // them to this node's m_jumps list.
+                op.m_jumps.link(this);
+                op.m_jumps.clear();
+
+                YarrOp& lastOp = m_ops[op.m_previousOp];
+                m_checked -= lastOp.m_checkAdjust;
+                break;
+            }
+
+            // OpParenthesesSubpatternOnceBegin/End
+            //
+            // These nodes support (optionally) capturing subpatterns, that have a
+            // quantity count of 1 (this covers fixed once, and ?/?? quantifiers). 
+            case OpParenthesesSubpatternOnceBegin: {
+                PatternTerm* term = op.m_term;
+                unsigned parenthesesFrameLocation = term->frameLocation;
+                const RegisterID indexTemporary = regT0;
+                ASSERT(term->quantityCount == 1);
+
+                // Upon entry to a Greedy quantified set of parenthese store the index.
+                // We'll use this for two purposes:
+                //  - To indicate which iteration we are on of mathing the remainder of
+                //    the expression after the parentheses - the first, including the
+                //    match within the parentheses, or the second having skipped over them.
+                //  - To check for empty matches, which must be rejected.
+                //
+                // At the head of a NonGreedy set of parentheses we'll immediately set the
+                // value on the stack to -1 (indicating a match skipping the subpattern),
+                // and plant a jump to the end. We'll also plant a label to backtrack to
+                // to reenter the subpattern later, with a store to set up index on the
+                // second iteration.
+                //
+                // FIXME: for capturing parens, could use the index in the capture array?
+                if (term->quantityType == QuantifierGreedy)
+                    storeToFrame(index, parenthesesFrameLocation);
+                else if (term->quantityType == QuantifierNonGreedy) {
+                    storeToFrame(TrustedImm32(-1), parenthesesFrameLocation);
+                    op.m_jumps.append(jump());
+                    op.m_reentry = label();
+                    storeToFrame(index, parenthesesFrameLocation);
+                }
+
+                // If the parenthese are capturing, store the starting index value to the
+                // captures array, offsetting as necessary.
+                //
+                // FIXME: could avoid offsetting this value in JIT code, apply
+                // offsets only afterwards, at the point the results array is
+                // being accessed.
+                if (term->capture()) {
+                    int offsetId = term->parentheses.subpatternId << 1;
+                    int inputOffset = term->inputPosition - m_checked;
+                    if (term->quantityType == QuantifierFixedCount)
+                        inputOffset -= term->parentheses.disjunction->m_minimumSize;
+                    if (inputOffset) {
+                        move(index, indexTemporary);
+                        add32(Imm32(inputOffset), indexTemporary);
+                        store32(indexTemporary, Address(output, offsetId * sizeof(int)));
+                    } else
+                        store32(index, Address(output, offsetId * sizeof(int)));
+                }
+                break;
+            }
+            case OpParenthesesSubpatternOnceEnd: {
+                PatternTerm* term = op.m_term;
+                unsigned parenthesesFrameLocation = term->frameLocation;
+                const RegisterID indexTemporary = regT0;
+                ASSERT(term->quantityCount == 1);
+
+                // For Greedy/NonGreedy quantified parentheses, we must reject zero length
+                // matches. If the minimum size is know to be non-zero we need not check.
+                if (term->quantityType != QuantifierFixedCount && !term->parentheses.disjunction->m_minimumSize)
+                    op.m_jumps.append(branch32(Equal, index, Address(stackPointerRegister, parenthesesFrameLocation * sizeof(void*))));
+
+                // If the parenthese are capturing, store the ending index value to the
+                // captures array, offsetting as necessary.
+                //
+                // FIXME: could avoid offsetting this value in JIT code, apply
+                // offsets only afterwards, at the point the results array is
+                // being accessed.
+                if (term->capture()) {
+                    int offsetId = (term->parentheses.subpatternId << 1) + 1;
+                    int inputOffset = term->inputPosition - m_checked;
+                    if (inputOffset) {
+                        move(index, indexTemporary);
+                        add32(Imm32(inputOffset), indexTemporary);
+                        store32(indexTemporary, Address(output, offsetId * sizeof(int)));
+                    } else
+                        store32(index, Address(output, offsetId * sizeof(int)));
+                }
+
+                // If the parentheses are quantified Greedy then add a label to jump back
+                // to if get a failed match from after the parentheses. For NonGreedy
+                // parentheses, link the jump from before the subpattern to here.
+                if (term->quantityType == QuantifierGreedy)
+                    op.m_reentry = label();
+                else if (term->quantityType == QuantifierNonGreedy) {
+                    YarrOp& beginOp = m_ops[op.m_previousOp];
+                    beginOp.m_jumps.link(this);
+                }
+                break;
+            }
+
+            // OpParenthesesSubpatternTerminalBegin/End
+            case OpParenthesesSubpatternTerminalBegin: {
+                PatternTerm* term = op.m_term;
+                ASSERT(term->quantityType == QuantifierGreedy);
+                ASSERT(term->quantityCount == quantifyInfinite);
+                ASSERT(!term->capture());
+
+                // Upon entry set a label to loop back to.
+                op.m_reentry = label();
+
+                // Store the start index of the current match; we need to reject zero
+                // length matches.
+                storeToFrame(index, term->frameLocation);
+                break;
+            }
+            case OpParenthesesSubpatternTerminalEnd: {
+                PatternTerm* term = op.m_term;
+
+                // Check for zero length matches - if the match is non-zero, then we
+                // can accept it & loop back up to the head of the subpattern.
+                YarrOp& beginOp = m_ops[op.m_previousOp];
+                branch32(NotEqual, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*)), beginOp.m_reentry);
+
+                // Reject the match - backtrack back into the subpattern.
+                op.m_jumps.append(jump());
+
+                // This is the entry point to jump to when we stop matching - we will
+                // do so once the subpattern cannot match any more.
+                op.m_reentry = label();
+                break;
+            }
+
+            // OpParentheticalAssertionBegin/End
+            case OpParentheticalAssertionBegin: {
+                PatternTerm* term = op.m_term;
+
+                // Store the current index - assertions should not update index, so
+                // we will need to restore it upon a successful match.
+                unsigned parenthesesFrameLocation = term->frameLocation;
+                storeToFrame(index, parenthesesFrameLocation);
+
+                // Check 
+                op.m_checkAdjust = m_checked - term->inputPosition;
+                if (op.m_checkAdjust)
+                    sub32(Imm32(op.m_checkAdjust), index);
+
+                m_checked -= op.m_checkAdjust;
+                break;
+            }
+            case OpParentheticalAssertionEnd: {
+                PatternTerm* term = op.m_term;
+
+                // Restore the input index value.
+                unsigned parenthesesFrameLocation = term->frameLocation;
+                loadFromFrame(parenthesesFrameLocation, index);
+
+                // If inverted, a successful match of the assertion must be treated
+                // as a failure, so jump to backtracking.
+                if (term->invert()) {
+                    op.m_jumps.append(jump());
+                    op.m_reentry = label();
+                }
+
+                YarrOp& lastOp = m_ops[op.m_previousOp];
+                m_checked += lastOp.m_checkAdjust;
+                break;
+            }
+
+            case OpMatchFailed:
+                if (m_pattern.m_body->m_callFrameSize)
+                    addPtr(Imm32(m_pattern.m_body->m_callFrameSize * sizeof(void*)), stackPointerRegister);
+                move(TrustedImm32(-1), returnRegister);
+                generateReturn();
+                break;
+            }
+
+            ++opIndex;
+        } while (opIndex < m_ops.size());
+    }
+
+    void backtrack()
+    {
+        // Backwards generate the backtracking code.
+        size_t opIndex = m_ops.size();
+        ASSERT(opIndex);
+
+        do {
+            --opIndex;
+            YarrOp& op = m_ops[opIndex];
+            switch (op.m_op) {
+
+            case OpTerm:
+                backtrackTerm(opIndex);
+                break;
+
+            // OpBodyAlternativeBegin/Next/End
+            //
+            // For each Begin/Next node representing an alternative, we need to decide what to do
+            // in two circumstances:
+            //  - If we backtrack back into this node, from within the alternative.
+            //  - If the input check at the head of the alternative fails (if this exists).
+            //
+            // We treat these two cases differently since in the former case we have slightly
+            // more information - since we are backtracking out of a prior alternative we know
+            // that at least enough input was available to run it. For example, given the regular
+            // expression /a|b/, if we backtrack out of the first alternative (a failed pattern
+            // character match of 'a'), then we need not perform an additional input availability
+            // check before running the second alternative.
+            //
+            // Backtracking required differs for the last alternative, which in the case of the
+            // repeating set of alternatives must loop. The code generated for the last alternative
+            // will also be used to handle all input check failures from any prior alternatives -
+            // these require similar functionality, in seeking the next available alternative for
+            // which there is sufficient input.
+            //
+            // Since backtracking of all other alternatives simply requires us to link backtracks
+            // to the reentry point for the subsequent alternative, we will only be generating any
+            // code when backtracking the last alternative.
+            case OpBodyAlternativeBegin:
+            case OpBodyAlternativeNext: {
+                PatternAlternative* alternative = op.m_alternative;
+
+                if (op.m_op == OpBodyAlternativeNext) {
+                    PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative;
+                    m_checked += priorAlternative->m_minimumSize;
+                }
+                m_checked -= alternative->m_minimumSize;
+
+                // Is this the last alternative? If not, then if we backtrack to this point we just
+                // need to jump to try to match the next alternative.
+                if (m_ops[op.m_nextOp].m_op != OpBodyAlternativeEnd) {
+                    m_backtrackingState.linkTo(m_ops[op.m_nextOp].m_reentry, this);
+                    break;
+                }
+                YarrOp& endOp = m_ops[op.m_nextOp];
+
+                YarrOp* beginOp = &op;
+                while (beginOp->m_op != OpBodyAlternativeBegin) {
+                    ASSERT(beginOp->m_op == OpBodyAlternativeNext);
+                    beginOp = &m_ops[beginOp->m_previousOp];
+                }
+
+                bool onceThrough = endOp.m_nextOp == notFound;
+
+                // First, generate code to handle cases where we backtrack out of an attempted match
+                // of the last alternative. If this is a 'once through' set of alternatives then we
+                // have nothing to do - link this straight through to the End.
+                if (onceThrough)
+                    m_backtrackingState.linkTo(endOp.m_reentry, this);
+                else {
+                    // If we don't need to move the input poistion, and the pattern has a fixed size
+                    // (in which case we omit the store of the start index until the pattern has matched)
+                    // then we can just link the backtrack out of the last alternative straight to the
+                    // head of the first alternative.
+                    if (m_pattern.m_body->m_hasFixedSize
+                        && (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize)
+                        && (alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize == 1))
+                        m_backtrackingState.linkTo(beginOp->m_reentry, this);
+                    else {
+                        // We need to generate a trampoline of code to execute before looping back
+                        // around to the first alternative.
+                        m_backtrackingState.link(this);
+
+                        // If the pattern size is not fixed, then store the start index, for use if we match.
+                        if (!m_pattern.m_body->m_hasFixedSize) {
+                            if (alternative->m_minimumSize == 1)
+                                store32(index, Address(output));
+                            else {
+                                move(index, regT0);
+                                if (alternative->m_minimumSize)
+                                    sub32(Imm32(alternative->m_minimumSize - 1), regT0);
+                                else
+                                    add32(Imm32(1), regT0);
+                                store32(regT0, Address(output));
+                            }
+                        }
+
+                        // Generate code to loop. Check whether the last alternative is longer than the
+                        // first (e.g. /a|xy/ or /a|xyz/).
+                        if (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize) {
+                            // We want to loop, and increment input position. If the delta is 1, it is
+                            // already correctly incremented, if more than one then decrement as appropriate.
+                            unsigned delta = alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize;
+                            ASSERT(delta);
+                            if (delta != 1)
+                                sub32(Imm32(delta - 1), index);
+                            jump(beginOp->m_reentry);
+                        } else {
+                            // If the first alternative has minimum size 0xFFFFFFFFu, then there cannot
+                            // be sufficent input available to handle this, so just fall through.
+                            unsigned delta = beginOp->m_alternative->m_minimumSize - alternative->m_minimumSize;
+                            if (delta != 0xFFFFFFFFu) {
+                                // We need to check input because we are incrementing the input.
+                                add32(Imm32(delta + 1), index);
+                                checkInput().linkTo(beginOp->m_reentry, this);
+                            }
+                        }
+                    }
+                }
+
+                // We can reach this point in the code in two ways:
+                //  - Fallthrough from the code above (a repeating alternative backtracked out of its
+                //    last alternative, and did not have sufficent input to run the first).
+                //  - We will loop back up to the following label when a releating alternative loops,
+                //    following a failed input check.
+                //
+                // Either way, we have just failed the input check for the first alternative.
+                Label firstInputCheckFailed(this);
+
+                // Generate code to handle input check failures from alternatives except the last.
+                // prevOp is the alternative we're handling a bail out from (initially Begin), and
+                // nextOp is the alternative we will be attempting to reenter into.
+                // 
+                // We will link input check failures from the forwards matching path back to the code
+                // that can handle them.
+                YarrOp* prevOp = beginOp;
+                YarrOp* nextOp = &m_ops[beginOp->m_nextOp];
+                while (nextOp->m_op != OpBodyAlternativeEnd) {
+                    prevOp->m_jumps.link(this);
+
+                    // We only get here if an input check fails, it is only worth checking again
+                    // if the next alternative has a minimum size less than the last.
+                    if (prevOp->m_alternative->m_minimumSize > nextOp->m_alternative->m_minimumSize) {
+                        // FIXME: if we added an extra label to YarrOp, we could avoid needing to
+                        // subtract delta back out, and reduce this code. Should performance test
+                        // the benefit of this.
+                        unsigned delta = prevOp->m_alternative->m_minimumSize - nextOp->m_alternative->m_minimumSize;
+                        sub32(Imm32(delta), index);
+                        Jump fail = jumpIfNoAvailableInput();
+                        add32(Imm32(delta), index);
+                        jump(nextOp->m_reentry);
+                        fail.link(this);
+                    } else if (prevOp->m_alternative->m_minimumSize < nextOp->m_alternative->m_minimumSize)
+                        add32(Imm32(nextOp->m_alternative->m_minimumSize - prevOp->m_alternative->m_minimumSize), index);
+                    prevOp = nextOp;
+                    nextOp = &m_ops[nextOp->m_nextOp];
+                }
+
+                // We fall through to here if there is insufficient input to run the last alternative.
+
+                // If there is insufficient input to run the last alternative, then for 'once through'
+                // alternatives we are done - just jump back up into the forwards matching path at the End.
+                if (onceThrough) {
+                    op.m_jumps.linkTo(endOp.m_reentry, this);
+                    jump(endOp.m_reentry);
+                    break;
+                }
+
+                // For repeating alternatives, link any input check failure from the last alternative to
+                // this point.
+                op.m_jumps.link(this);
+
+                bool needsToUpdateMatchStart = !m_pattern.m_body->m_hasFixedSize;
+
+                // Check for cases where input position is already incremented by 1 for the last
+                // alternative (this is particularly useful where the minimum size of the body
+                // disjunction is 0, e.g. /a*|b/).
+                if (needsToUpdateMatchStart && alternative->m_minimumSize == 1) {
+                    // index is already incremented by 1, so just store it now!
+                    store32(index, Address(output));
+                    needsToUpdateMatchStart = false;
+                }
+
+                // Check whether there is sufficient input to loop. Increment the input position by
+                // one, and check. Also add in the minimum disjunction size before checking - there
+                // is no point in looping if we're just going to fail all the input checks around
+                // the next iteration.
+                ASSERT(alternative->m_minimumSize >= m_pattern.m_body->m_minimumSize);
+                if (alternative->m_minimumSize == m_pattern.m_body->m_minimumSize) {
+                    // If the last alternative had the same minimum size as the disjunction,
+                    // just simply increment input pos by 1, no adjustment based on minimum size.
+                    add32(Imm32(1), index);
+                } else {
+                    // If the minumum for the last alternative was one greater than than that
+                    // for the disjunction, we're already progressed by 1, nothing to do!
+                    unsigned delta = (alternative->m_minimumSize - m_pattern.m_body->m_minimumSize) - 1;
+                    if (delta)
+                        sub32(Imm32(delta), index);
+                }
+                Jump matchFailed = jumpIfNoAvailableInput();
+
+                if (needsToUpdateMatchStart) {
+                    if (!m_pattern.m_body->m_minimumSize)
+                        store32(index, Address(output));
+                    else {
+                        move(index, regT0);
+                        sub32(Imm32(m_pattern.m_body->m_minimumSize), regT0);
+                        store32(regT0, Address(output));
+                    }
+                }
+
+                // Calculate how much more input the first alternative requires than the minimum
+                // for the body as a whole. If no more is needed then we dont need an additional
+                // input check here - jump straight back up to the start of the first alternative.
+                if (beginOp->m_alternative->m_minimumSize == m_pattern.m_body->m_minimumSize)
+                    jump(beginOp->m_reentry);
+                else {
+                    if (beginOp->m_alternative->m_minimumSize > m_pattern.m_body->m_minimumSize)
+                        add32(Imm32(beginOp->m_alternative->m_minimumSize - m_pattern.m_body->m_minimumSize), index);
+                    else
+                        sub32(Imm32(m_pattern.m_body->m_minimumSize - beginOp->m_alternative->m_minimumSize), index);
+                    checkInput().linkTo(beginOp->m_reentry, this);
+                    jump(firstInputCheckFailed);
+                }
+
+                // We jump to here if we iterate to the point that there is insufficient input to
+                // run any matches, and need to return a failure state from JIT code.
+                matchFailed.link(this);
+
+                if (m_pattern.m_body->m_callFrameSize)
+                    addPtr(Imm32(m_pattern.m_body->m_callFrameSize * sizeof(void*)), stackPointerRegister);
+                move(TrustedImm32(-1), returnRegister);
+                generateReturn();
+                break;
+            }
+            case OpBodyAlternativeEnd: {
+                // We should never backtrack back into a body disjunction.
+                ASSERT(m_backtrackingState.isEmpty());
+
+                PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative;
+                m_checked += priorAlternative->m_minimumSize;
+                break;
+            }
+
+            // OpSimpleNestedAlternativeBegin/Next/End
+            // OpNestedAlternativeBegin/Next/End
+            //
+            // Generate code for when we backtrack back out of an alternative into
+            // a Begin or Next node, or when the entry input count check fails. If
+            // there are more alternatives we need to jump to the next alternative,
+            // if not we backtrack back out of the current set of parentheses.
+            //
+            // In the case of non-simple nested assertions we need to also link the
+            // 'return address' appropriately to backtrack back out into the correct
+            // alternative.
+            case OpSimpleNestedAlternativeBegin:
+            case OpSimpleNestedAlternativeNext:
+            case OpNestedAlternativeBegin:
+            case OpNestedAlternativeNext: {
+                YarrOp& nextOp = m_ops[op.m_nextOp];
+                bool isBegin = op.m_previousOp == notFound;
+                bool isLastAlternative = nextOp.m_nextOp == notFound;
+                ASSERT(isBegin == (op.m_op == OpSimpleNestedAlternativeBegin || op.m_op == OpNestedAlternativeBegin));
+                ASSERT(isLastAlternative == (nextOp.m_op == OpSimpleNestedAlternativeEnd || nextOp.m_op == OpNestedAlternativeEnd));
+
+                // Treat an input check failure the same as a failed match.
+                m_backtrackingState.append(op.m_jumps);
+
+                // Set the backtracks to jump to the appropriate place. We may need
+                // to link the backtracks in one of three different way depending on
+                // the type of alternative we are dealing with:
+                //  - A single alternative, with no simplings.
+                //  - The last alternative of a set of two or more.
+                //  - An alternative other than the last of a set of two or more.
+                //
+                // In the case of a single alternative on its own, we don't need to
+                // jump anywhere - if the alternative fails to match we can just
+                // continue to backtrack out of the parentheses without jumping.
+                //
+                // In the case of the last alternative in a set of more than one, we
+                // need to jump to return back out to the beginning. We'll do so by
+                // adding a jump to the End node's m_jumps list, and linking this
+                // when we come to generate the Begin node. For alternatives other
+                // than the last, we need to jump to the next alternative.
+                //
+                // If the alternative had adjusted the input position we must link
+                // backtracking to here, correct, and then jump on. If not we can
+                // link the backtracks directly to their destination.
+                if (op.m_checkAdjust) {
+                    // Handle the cases where we need to link the backtracks here.
+                    m_backtrackingState.link(this);
+                    sub32(Imm32(op.m_checkAdjust), index);
+                    if (!isLastAlternative) {
+                        // An alternative that is not the last should jump to its successor.
+                        jump(nextOp.m_reentry);
+                    } else if (!isBegin) {
+                        // The last of more than one alternatives must jump back to the begnning.
+                        nextOp.m_jumps.append(jump());
+                    } else {
+                        // A single alternative on its own can fall through.
+                        m_backtrackingState.fallthrough();
+                    }
+                } else {
+                    // Handle the cases where we can link the backtracks directly to their destinations.
+                    if (!isLastAlternative) {
+                        // An alternative that is not the last should jump to its successor.
+                        m_backtrackingState.linkTo(nextOp.m_reentry, this);
+                    } else if (!isBegin) {
+                        // The last of more than one alternatives must jump back to the begnning.
+                        m_backtrackingState.takeBacktracksToJumpList(nextOp.m_jumps, this);
+                    }
+                    // In the case of a single alternative on its own do nothing - it can fall through.
+                }
+
+                // At this point we've handled the backtracking back into this node.
+                // Now link any backtracks that need to jump to here.
+
+                // For non-simple alternatives, link the alternative's 'return address'
+                // so that we backtrack back out into the previous alternative.
+                if (op.m_op == OpNestedAlternativeNext)
+                    m_backtrackingState.append(op.m_returnAddress);
+
+                // If there is more than one alternative, then the last alternative will
+                // have planted a jump to be linked to the end. This jump was added to the
+                // End node's m_jumps list. If we are back at the beginning, link it here.
+                if (isBegin) {
+                    YarrOp* endOp = &m_ops[op.m_nextOp];
+                    while (endOp->m_nextOp != notFound) {
+                        ASSERT(endOp->m_op == OpSimpleNestedAlternativeNext || endOp->m_op == OpNestedAlternativeNext);
+                        endOp = &m_ops[endOp->m_nextOp];
+                    }
+                    ASSERT(endOp->m_op == OpSimpleNestedAlternativeEnd || endOp->m_op == OpNestedAlternativeEnd);
+                    m_backtrackingState.append(endOp->m_jumps);
+                }
+
+                if (!isBegin) {
+                    YarrOp& lastOp = m_ops[op.m_previousOp];
+                    m_checked += lastOp.m_checkAdjust;
+                }
+                m_checked -= op.m_checkAdjust;
+                break;
+            }
+            case OpSimpleNestedAlternativeEnd:
+            case OpNestedAlternativeEnd: {
+                PatternTerm* term = op.m_term;
+
+                // If we backtrack into the end of a simple subpattern do nothing;
+                // just continue through into the last alternative. If we backtrack
+                // into the end of a non-simple set of alterntives we need to jump
+                // to the backtracking return address set up during generation.
+                if (op.m_op == OpNestedAlternativeEnd) {
+                    m_backtrackingState.link(this);
+
+                    // Plant a jump to the return address.
+                    unsigned parenthesesFrameLocation = term->frameLocation;
+                    unsigned alternativeFrameLocation = parenthesesFrameLocation;
+                    if (term->quantityType != QuantifierFixedCount)
+                        alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce;
+                    loadFromFrameAndJump(alternativeFrameLocation);
+
+                    // Link the DataLabelPtr associated with the end of the last
+                    // alternative to this point.
+                    m_backtrackingState.append(op.m_returnAddress);
+                }
+
+                YarrOp& lastOp = m_ops[op.m_previousOp];
+                m_checked += lastOp.m_checkAdjust;
+                break;
+            }
+
+            // OpParenthesesSubpatternOnceBegin/End
+            //
+            // When we are backtracking back out of a capturing subpattern we need
+            // to clear the start index in the matches output array, to record that
+            // this subpattern has not been captured.
+            //
+            // When backtracking back out of a Greedy quantified subpattern we need
+            // to catch this, and try running the remainder of the alternative after
+            // the subpattern again, skipping the parentheses.
+            //
+            // Upon backtracking back into a quantified set of parentheses we need to
+            // check whether we were currently skipping the subpattern. If not, we
+            // can backtrack into them, if we were we need to either backtrack back
+            // out of the start of the parentheses, or jump back to the forwards
+            // matching start, depending of whether the match is Greedy or NonGreedy.
+            case OpParenthesesSubpatternOnceBegin: {
+                PatternTerm* term = op.m_term;
+                ASSERT(term->quantityCount == 1);
+
+                // We only need to backtrack to thispoint if capturing or greedy.
+                if (term->capture() || term->quantityType == QuantifierGreedy) {
+                    m_backtrackingState.link(this);
+
+                    // If capturing, clear the capture (we only need to reset start).
+                    if (term->capture())
+                        store32(TrustedImm32(-1), Address(output, (term->parentheses.subpatternId << 1) * sizeof(int)));
+
+                    // If Greedy, jump to the end.
+                    if (term->quantityType == QuantifierGreedy) {
+                        // Clear the flag in the stackframe indicating we ran through the subpattern.
+                        unsigned parenthesesFrameLocation = term->frameLocation;
+                        storeToFrame(TrustedImm32(-1), parenthesesFrameLocation);
+                        // Jump to after the parentheses, skipping the subpattern.
+                        jump(m_ops[op.m_nextOp].m_reentry);
+                        // A backtrack from after the parentheses, when skipping the subpattern,
+                        // will jump back to here.
+                        op.m_jumps.link(this);
+                    }
+
+                    m_backtrackingState.fallthrough();
+                }
+                break;
+            }
+            case OpParenthesesSubpatternOnceEnd: {
+                PatternTerm* term = op.m_term;
+
+                if (term->quantityType != QuantifierFixedCount) {
+                    m_backtrackingState.link(this);
+
+                    // Check whether we should backtrack back into the parentheses, or if we
+                    // are currently in a state where we had skipped over the subpattern
+                    // (in which case the flag value on the stack will be -1).
+                    unsigned parenthesesFrameLocation = term->frameLocation;
+                    Jump hadSkipped = branch32(Equal, Address(stackPointerRegister, parenthesesFrameLocation * sizeof(void*)), TrustedImm32(-1));
+
+                    if (term->quantityType == QuantifierGreedy) {
+                        // For Greedy parentheses, we skip after having already tried going
+                        // through the subpattern, so if we get here we're done.
+                        YarrOp& beginOp = m_ops[op.m_previousOp];
+                        beginOp.m_jumps.append(hadSkipped);
+                    } else {
+                        // For NonGreedy parentheses, we try skipping the subpattern first,
+                        // so if we get here we need to try running through the subpattern
+                        // next. Jump back to the start of the parentheses in the forwards
+                        // matching path.
+                        ASSERT(term->quantityType == QuantifierNonGreedy);
+                        YarrOp& beginOp = m_ops[op.m_previousOp];
+                        hadSkipped.linkTo(beginOp.m_reentry, this);
+                    }
+
+                    m_backtrackingState.fallthrough();
+                }
+
+                m_backtrackingState.append(op.m_jumps);
+                break;
+            }
+
+            // OpParenthesesSubpatternTerminalBegin/End
+            //
+            // Terminal subpatterns will always match - there is nothing after them to
+            // force a backtrack, and they have a minimum count of 0, and as such will
+            // always produce an acceptable result.
+            case OpParenthesesSubpatternTerminalBegin: {
+                // We will backtrack to this point once the subpattern cannot match any
+                // more. Since no match is accepted as a successful match (we are Greedy
+                // quantified with a minimum of zero) jump back to the forwards matching
+                // path at the end.
+                YarrOp& endOp = m_ops[op.m_nextOp];
+                m_backtrackingState.linkTo(endOp.m_reentry, this);
+                break;
+            }
+            case OpParenthesesSubpatternTerminalEnd:
+                // We should never be backtracking to here (hence the 'terminal' in the name).
+                ASSERT(m_backtrackingState.isEmpty());
+                m_backtrackingState.append(op.m_jumps);
+                break;
+
+            // OpParentheticalAssertionBegin/End
+            case OpParentheticalAssertionBegin: {
+                PatternTerm* term = op.m_term;
+                YarrOp& endOp = m_ops[op.m_nextOp];
+
+                // We need to handle the backtracks upon backtracking back out
+                // of a parenthetical assertion if either we need to correct
+                // the input index, or the assertion was inverted.
+                if (op.m_checkAdjust || term->invert()) {
+                     m_backtrackingState.link(this);
+
+                    if (op.m_checkAdjust)
+                        add32(Imm32(op.m_checkAdjust), index);
+
+                    // In an inverted assertion failure to match the subpattern
+                    // is treated as a successful match - jump to the end of the
+                    // subpattern. We already have adjusted the input position
+                    // back to that before the assertion, which is correct.
+                    if (term->invert())
+                        jump(endOp.m_reentry);
+
+                    m_backtrackingState.fallthrough();
+                }
+
+                // The End node's jump list will contain any backtracks into
+                // the end of the assertion. Also, if inverted, we will have
+                // added the failure caused by a successful match to this.
+                m_backtrackingState.append(endOp.m_jumps);
+
+                m_checked += op.m_checkAdjust;
+                break;
+            }
+            case OpParentheticalAssertionEnd: {
+                // FIXME: We should really be clearing any nested subpattern
+                // matches on bailing out from after the pattern. Firefox has
+                // this bug too (presumably because they use YARR!)
+
+                // Never backtrack into an assertion; later failures bail to before the begin.
+                m_backtrackingState.takeBacktracksToJumpList(op.m_jumps, this);
+
+                YarrOp& lastOp = m_ops[op.m_previousOp];
+                m_checked -= lastOp.m_checkAdjust;
+                break;
+            }
+
+            case OpMatchFailed:
+                break;
+            }
+
+        } while (opIndex);
+    }
+
+    // Compilation methods:
+    // ====================
+
+    // opCompileParenthesesSubpattern
+    // Emits ops for a subpattern (set of parentheses). These consist
+    // of a set of alternatives wrapped in an outer set of nodes for
+    // the parentheses.
+    // Supported types of parentheses are 'Once' (quantityCount == 1)
+    // and 'Terminal' (non-capturing parentheses quantified as greedy
+    // and infinite).
+    // Alternatives will use the 'Simple' set of ops if either the
+    // subpattern is terminal (in which case we will never need to
+    // backtrack), or if the subpattern only contains one alternative.
+    void opCompileParenthesesSubpattern(PatternTerm* term)
+    {
+        YarrOpCode parenthesesBeginOpCode;
+        YarrOpCode parenthesesEndOpCode;
+        YarrOpCode alternativeBeginOpCode = OpSimpleNestedAlternativeBegin;
+        YarrOpCode alternativeNextOpCode = OpSimpleNestedAlternativeNext;
+        YarrOpCode alternativeEndOpCode = OpSimpleNestedAlternativeEnd;
+
+        // We can currently only compile quantity 1 subpatterns that are
+        // not copies. We generate a copy in the case of a range quantifier,
+        // e.g. /(?:x){3,9}/, or /(?:x)+/ (These are effectively expanded to
+        // /(?:x){3,3}(?:x){0,6}/ and /(?:x)(?:x)*/ repectively). The problem
+        // comes where the subpattern is capturing, in which case we would
+        // need to restore the capture from the first subpattern upon a
+        // failure in the second.
+        if (term->quantityCount == 1 && !term->parentheses.isCopy) {
+            // Select the 'Once' nodes.
+            parenthesesBeginOpCode = OpParenthesesSubpatternOnceBegin;
+            parenthesesEndOpCode = OpParenthesesSubpatternOnceEnd;
+
+            // If there is more than one alternative we cannot use the 'simple' nodes.
+            if (term->parentheses.disjunction->m_alternatives.size() != 1) {
+                alternativeBeginOpCode = OpNestedAlternativeBegin;
+                alternativeNextOpCode = OpNestedAlternativeNext;
+                alternativeEndOpCode = OpNestedAlternativeEnd;
+            }
+        } else if (term->parentheses.isTerminal) {
+            // Select the 'Terminal' nodes.
+            parenthesesBeginOpCode = OpParenthesesSubpatternTerminalBegin;
+            parenthesesEndOpCode = OpParenthesesSubpatternTerminalEnd;
+        } else {
+            // This subpattern is not supported by the JIT.
+            m_shouldFallBack = true;
+            return;
+        }
+
+        size_t parenBegin = m_ops.size();
+        m_ops.append(parenthesesBeginOpCode);
+
+        m_ops.append(alternativeBeginOpCode);
+        m_ops.last().m_previousOp = notFound;
+        m_ops.last().m_term = term;
+        Vector<PatternAlternative*>& alternatives =  term->parentheses.disjunction->m_alternatives;
+        for (unsigned i = 0; i < alternatives.size(); ++i) {
+            size_t lastOpIndex = m_ops.size() - 1;
+
+            PatternAlternative* nestedAlternative = alternatives[i];
+            opCompileAlternative(nestedAlternative);
+
+            size_t thisOpIndex = m_ops.size();
+            m_ops.append(YarrOp(alternativeNextOpCode));
+
+            YarrOp& lastOp = m_ops[lastOpIndex];
+            YarrOp& thisOp = m_ops[thisOpIndex];
+
+            lastOp.m_alternative = nestedAlternative;
+            lastOp.m_nextOp = thisOpIndex;
+            thisOp.m_previousOp = lastOpIndex;
+            thisOp.m_term = term;
+        }
+        YarrOp& lastOp = m_ops.last();
+        ASSERT(lastOp.m_op == alternativeNextOpCode);
+        lastOp.m_op = alternativeEndOpCode;
+        lastOp.m_alternative = 0;
+        lastOp.m_nextOp = notFound;
+
+        size_t parenEnd = m_ops.size();
+        m_ops.append(parenthesesEndOpCode);
+
+        m_ops[parenBegin].m_term = term;
+        m_ops[parenBegin].m_previousOp = notFound;
+        m_ops[parenBegin].m_nextOp = parenEnd;
+        m_ops[parenEnd].m_term = term;
+        m_ops[parenEnd].m_previousOp = parenBegin;
+        m_ops[parenEnd].m_nextOp = notFound;
+    }
+
+    // opCompileParentheticalAssertion
+    // Emits ops for a parenthetical assertion. These consist of an
+    // OpSimpleNestedAlternativeBegin/Next/End set of nodes wrapping
+    // the alternatives, with these wrapped by an outer pair of
+    // OpParentheticalAssertionBegin/End nodes.
+    // We can always use the OpSimpleNestedAlternative nodes in the
+    // case of parenthetical assertions since these only ever match
+    // once, and will never backtrack back into the assertion.
+    void opCompileParentheticalAssertion(PatternTerm* term)
+    {
+        size_t parenBegin = m_ops.size();
+        m_ops.append(OpParentheticalAssertionBegin);
+
+        m_ops.append(OpSimpleNestedAlternativeBegin);
+        m_ops.last().m_previousOp = notFound;
+        m_ops.last().m_term = term;
+        Vector<PatternAlternative*>& alternatives =  term->parentheses.disjunction->m_alternatives;
+        for (unsigned i = 0; i < alternatives.size(); ++i) {
+            size_t lastOpIndex = m_ops.size() - 1;
+
+            PatternAlternative* nestedAlternative = alternatives[i];
+            opCompileAlternative(nestedAlternative);
+
+            size_t thisOpIndex = m_ops.size();
+            m_ops.append(YarrOp(OpSimpleNestedAlternativeNext));
+
+            YarrOp& lastOp = m_ops[lastOpIndex];
+            YarrOp& thisOp = m_ops[thisOpIndex];
+
+            lastOp.m_alternative = nestedAlternative;
+            lastOp.m_nextOp = thisOpIndex;
+            thisOp.m_previousOp = lastOpIndex;
+            thisOp.m_term = term;
+        }
+        YarrOp& lastOp = m_ops.last();
+        ASSERT(lastOp.m_op == OpSimpleNestedAlternativeNext);
+        lastOp.m_op = OpSimpleNestedAlternativeEnd;
+        lastOp.m_alternative = 0;
+        lastOp.m_nextOp = notFound;
+
+        size_t parenEnd = m_ops.size();
+        m_ops.append(OpParentheticalAssertionEnd);
+
+        m_ops[parenBegin].m_term = term;
+        m_ops[parenBegin].m_previousOp = notFound;
+        m_ops[parenBegin].m_nextOp = parenEnd;
+        m_ops[parenEnd].m_term = term;
+        m_ops[parenEnd].m_previousOp = parenBegin;
+        m_ops[parenEnd].m_nextOp = notFound;
+    }
+
+    // opCompileAlternative
+    // Called to emit nodes for all terms in an alternative.
+    void opCompileAlternative(PatternAlternative* alternative)
+    {
+        optimizeAlternative(alternative);
+
+        for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
+            PatternTerm* term = &alternative->m_terms[i];
+
+            switch (term->type) {
+            case PatternTerm::TypeParenthesesSubpattern:
+                opCompileParenthesesSubpattern(term);
+                break;
+
+            case PatternTerm::TypeParentheticalAssertion:
+                opCompileParentheticalAssertion(term);
+                break;
+
+            default:
+                m_ops.append(term);
+            }
+        }
+    }
+
+    // opCompileBody
+    // This method compiles the body disjunction of the regular expression.
+    // The body consists of two sets of alternatives - zero or more 'once
+    // through' (BOL anchored) alternatives, followed by zero or more
+    // repeated alternatives.
+    // For each of these two sets of alteratives, if not empty they will be
+    // wrapped in a set of OpBodyAlternativeBegin/Next/End nodes (with the
+    // 'begin' node referencing the first alternative, and 'next' nodes
+    // referencing any further alternatives. The begin/next/end nodes are
+    // linked together in a doubly linked list. In the case of repeating
+    // alternatives, the end node is also linked back to the beginning.
+    // If no repeating alternatives exist, then a OpMatchFailed node exists
+    // to return the failing result.
+    void opCompileBody(PatternDisjunction* disjunction)
+    {
+        Vector<PatternAlternative*>& alternatives =  disjunction->m_alternatives;
+        size_t currentAlternativeIndex = 0;
+
+        // Emit the 'once through' alternatives.
+        if (alternatives.size() && alternatives[0]->onceThrough()) {
+            m_ops.append(YarrOp(OpBodyAlternativeBegin));
+            m_ops.last().m_previousOp = notFound;
+
+            do {
+                size_t lastOpIndex = m_ops.size() - 1;
+                PatternAlternative* alternative = alternatives[currentAlternativeIndex];
+                opCompileAlternative(alternative);
+
+                size_t thisOpIndex = m_ops.size();
+                m_ops.append(YarrOp(OpBodyAlternativeNext));
+
+                YarrOp& lastOp = m_ops[lastOpIndex];
+                YarrOp& thisOp = m_ops[thisOpIndex];
+
+                lastOp.m_alternative = alternative;
+                lastOp.m_nextOp = thisOpIndex;
+                thisOp.m_previousOp = lastOpIndex;
+                
+                ++currentAlternativeIndex;
+            } while (currentAlternativeIndex < alternatives.size() && alternatives[currentAlternativeIndex]->onceThrough());
+
+            YarrOp& lastOp = m_ops.last();
+
+            ASSERT(lastOp.m_op == OpBodyAlternativeNext);
+            lastOp.m_op = OpBodyAlternativeEnd;
+            lastOp.m_alternative = 0;
+            lastOp.m_nextOp = notFound;
+        }
+
+        if (currentAlternativeIndex == alternatives.size()) {
+            m_ops.append(YarrOp(OpMatchFailed));
+            return;
+        }
+
+        // Emit the repeated alternatives.
+        size_t repeatLoop = m_ops.size();
+        m_ops.append(YarrOp(OpBodyAlternativeBegin));
+        m_ops.last().m_previousOp = notFound;
+        do {
+            size_t lastOpIndex = m_ops.size() - 1;
+            PatternAlternative* alternative = alternatives[currentAlternativeIndex];
+            ASSERT(!alternative->onceThrough());
+            opCompileAlternative(alternative);
+
+            size_t thisOpIndex = m_ops.size();
+            m_ops.append(YarrOp(OpBodyAlternativeNext));
+
+            YarrOp& lastOp = m_ops[lastOpIndex];
+            YarrOp& thisOp = m_ops[thisOpIndex];
+
+            lastOp.m_alternative = alternative;
+            lastOp.m_nextOp = thisOpIndex;
+            thisOp.m_previousOp = lastOpIndex;
+            
+            ++currentAlternativeIndex;
+        } while (currentAlternativeIndex < alternatives.size());
+        YarrOp& lastOp = m_ops.last();
+        ASSERT(lastOp.m_op == OpBodyAlternativeNext);
+        lastOp.m_op = OpBodyAlternativeEnd;
+        lastOp.m_alternative = 0;
+        lastOp.m_nextOp = repeatLoop;
+    }
+
+    void generateEnter()
+    {
+#if CPU(X86_64)
+        push(X86Registers::ebp);
+        move(stackPointerRegister, X86Registers::ebp);
+        push(X86Registers::ebx);
+#elif CPU(X86)
+        push(X86Registers::ebp);
+        move(stackPointerRegister, X86Registers::ebp);
+        // TODO: do we need spill registers to fill the output pointer if there are no sub captures?
+        push(X86Registers::ebx);
+        push(X86Registers::edi);
+        push(X86Registers::esi);
+        // load output into edi (2 = saved ebp + return address).
+    #if COMPILER(MSVC)
+        loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), input);
+        loadPtr(Address(X86Registers::ebp, 3 * sizeof(void*)), index);
+        loadPtr(Address(X86Registers::ebp, 4 * sizeof(void*)), length);
+        loadPtr(Address(X86Registers::ebp, 5 * sizeof(void*)), output);
+    #else
+        loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), output);
+    #endif
+#elif CPU(ARM)
+        push(ARMRegisters::r4);
+        push(ARMRegisters::r5);
+        push(ARMRegisters::r6);
+#if CPU(ARM_TRADITIONAL)
+        push(ARMRegisters::r8); // scratch register
+#endif
+        move(ARMRegisters::r3, output);
+#elif CPU(SH4)
+        push(SH4Registers::r11);
+        push(SH4Registers::r13);
+#elif CPU(MIPS)
+        // Do nothing.
+#endif
+    }
+
+    void generateReturn()
+    {
+#if CPU(X86_64)
+        pop(X86Registers::ebx);
+        pop(X86Registers::ebp);
+#elif CPU(X86)
+        pop(X86Registers::esi);
+        pop(X86Registers::edi);
+        pop(X86Registers::ebx);
+        pop(X86Registers::ebp);
+#elif CPU(ARM)
+#if CPU(ARM_TRADITIONAL)
+        pop(ARMRegisters::r8); // scratch register
+#endif
+        pop(ARMRegisters::r6);
+        pop(ARMRegisters::r5);
+        pop(ARMRegisters::r4);
+#elif CPU(SH4)
+        pop(SH4Registers::r13);
+        pop(SH4Registers::r11);
+#elif CPU(MIPS)
+        // Do nothing
+#endif
+        ret();
+    }
+
+public:
+    YarrGenerator(YarrPattern& pattern)
+        : m_pattern(pattern)
+        , m_shouldFallBack(false)
+        , m_checked(0)
+    {
+    }
+
+    void compile(JSGlobalData* globalData, YarrCodeBlock& jitObject)
+    {
+        generateEnter();
+
+        if (!m_pattern.m_body->m_hasFixedSize)
+            store32(index, Address(output));
+
+        if (m_pattern.m_body->m_callFrameSize)
+            subPtr(Imm32(m_pattern.m_body->m_callFrameSize * sizeof(void*)), stackPointerRegister);
+
+        // Compile the pattern to the internal 'YarrOp' representation.
+        opCompileBody(m_pattern.m_body);
+
+        // If we encountered anything we can't handle in the JIT code
+        // (e.g. backreferences) then return early.
+        if (m_shouldFallBack) {
+            jitObject.setFallBack(true);
+            return;
+        }
+
+        generate();
+        backtrack();
+
+        // Link & finalize the code.
+        LinkBuffer linkBuffer(*globalData, this, globalData->regexAllocator);
+        m_backtrackingState.linkDataLabels(linkBuffer);
+        jitObject.set(linkBuffer.finalizeCode());
+        jitObject.setFallBack(m_shouldFallBack);
+    }
+
+private:
+    YarrPattern& m_pattern;
+
+    // Used to detect regular expression constructs that are not currently
+    // supported in the JIT; fall back to the interpreter when this is detected.
+    bool m_shouldFallBack;
+
+    // The regular expression expressed as a linear sequence of operations.
+    Vector<YarrOp, 128> m_ops;
+
+    // This records the current input offset being applied due to the current
+    // set of alternatives we are nested within. E.g. when matching the
+    // character 'b' within the regular expression /abc/, we will know that
+    // the minimum size for the alternative is 3, checked upon entry to the
+    // alternative, and that 'b' is at offset 1 from the start, and as such
+    // when matching 'b' we need to apply an offset of -2 to the load.
+    //
+    // FIXME: This should go away. Rather than tracking this value throughout
+    // code generation, we should gather this information up front & store it
+    // on the YarrOp structure.
+    int m_checked;
+
+    // This class records state whilst generating the backtracking path of code.
+    BacktrackingState m_backtrackingState;
+};
+
+void jitCompile(YarrPattern& pattern, JSGlobalData* globalData, YarrCodeBlock& jitObject)
+{
+    YarrGenerator(pattern).compile(globalData, jitObject);
+}
+
+int execute(YarrCodeBlock& jitObject, const UChar* input, unsigned start, unsigned length, int* output)
+{
+    return jitObject.execute(input, start, length, output);
+}
+
+}}
+
+#endif