#include "BooleanConstructor.h"
#include "BooleanPrototype.h"
+#include "Error.h"
#include "ExceptionHelpers.h"
#include "JSGlobalObject.h"
#include "JSFunction.h"
return trunc(toNumber(exec));
}
-JSObject* JSValue::toObjectSlowCase(ExecState* exec) const
+JSObject* JSValue::toObjectSlowCase(ExecState* exec, JSGlobalObject* globalObject) const
{
ASSERT(!isCell());
if (isInt32() || isDouble())
- return constructNumber(exec, asValue());
+ return constructNumber(exec, globalObject, asValue());
if (isTrue() || isFalse())
- return constructBooleanFromImmediateBoolean(exec, asValue());
+ return constructBooleanFromImmediateBoolean(exec, globalObject, asValue());
+
ASSERT(isUndefinedOrNull());
- JSNotAnObjectErrorStub* exception = createNotAnObjectErrorStub(exec, isNull());
- exec->setException(exception);
- return new (exec) JSNotAnObject(exec, exception);
+ throwError(exec, createNotAnObjectError(exec, *this));
+ return new (exec) JSNotAnObject(exec);
}
JSObject* JSValue::toThisObjectSlowCase(ExecState* exec) const
ASSERT(!isCell());
if (isInt32() || isDouble())
- return constructNumber(exec, asValue());
+ return constructNumber(exec, exec->lexicalGlobalObject(), asValue());
if (isTrue() || isFalse())
- return constructBooleanFromImmediateBoolean(exec, asValue());
+ return constructBooleanFromImmediateBoolean(exec, exec->lexicalGlobalObject(), asValue());
ASSERT(isUndefinedOrNull());
return exec->globalThisValue();
}
{
ASSERT(!isCell());
if (isNumber())
- return constructNumber(exec, asValue());
+ return constructNumber(exec, exec->lexicalGlobalObject(), asValue());
if (isBoolean())
- return constructBooleanFromImmediateBoolean(exec, asValue());
-
- JSNotAnObjectErrorStub* exception = createNotAnObjectErrorStub(exec, isNull());
- exec->setException(exception);
- return new (exec) JSNotAnObject(exec, exception);
+ return constructBooleanFromImmediateBoolean(exec, exec->lexicalGlobalObject(), asValue());
+
+ ASSERT(isUndefinedOrNull());
+ throwError(exec, createNotAnObjectError(exec, *this));
+ return new (exec) JSNotAnObject(exec);
}
JSObject* JSValue::synthesizePrototype(ExecState* exec) const
if (isBoolean())
return exec->lexicalGlobalObject()->booleanPrototype();
- JSNotAnObjectErrorStub* exception = createNotAnObjectErrorStub(exec, isNull());
- exec->setException(exception);
- return new (exec) JSNotAnObject(exec, exception);
+ ASSERT(isUndefinedOrNull());
+ throwError(exec, createNotAnObjectError(exec, *this));
+ return new (exec) JSNotAnObject(exec);
}
#ifndef NDEBUG
snprintf(description, size, "False");
else if (isNull())
snprintf(description, size, "Null");
- else {
- ASSERT(isUndefined());
+ else if (isUndefined())
snprintf(description, size, "Undefined");
- }
+ else
+ snprintf(description, size, "INVALID");
return description;
}
#endif
-int32_t toInt32SlowCase(double d, bool& ok)
+// This in the ToInt32 operation is defined in section 9.5 of the ECMA-262 spec.
+// Note that this operation is identical to ToUInt32 other than to interpretation
+// of the resulting bit-pattern (as such this metod is also called to implement
+// ToUInt32).
+//
+// The operation can be descibed as round towards zero, then select the 32 least
+// bits of the resulting value in 2s-complement representation.
+int32_t toInt32(double number)
{
- ok = true;
-
- if (d >= -D32 / 2 && d < D32 / 2)
- return static_cast<int32_t>(d);
-
- if (isnan(d) || isinf(d)) {
- ok = false;
+ int64_t bits = WTF::bitwise_cast<int64_t>(number);
+ int32_t exp = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
+
+ // If exponent < 0 there will be no bits to the left of the decimal point
+ // after rounding; if the exponent is > 83 then no bits of precision can be
+ // left in the low 32-bit range of the result (IEEE-754 doubles have 52 bits
+ // of fractional precision).
+ // Note this case handles 0, -0, and all infinte, NaN, & denormal value.
+ if (exp < 0 || exp > 83)
return 0;
- }
- double d32 = fmod(trunc(d), D32);
- if (d32 >= D32 / 2)
- d32 -= D32;
- else if (d32 < -D32 / 2)
- d32 += D32;
- return static_cast<int32_t>(d32);
-}
-
-uint32_t toUInt32SlowCase(double d, bool& ok)
-{
- ok = true;
-
- if (d >= 0.0 && d < D32)
- return static_cast<uint32_t>(d);
-
- if (isnan(d) || isinf(d)) {
- ok = false;
- return 0;
+ // Select the appropriate 32-bits from the floating point mantissa. If the
+ // exponent is 52 then the bits we need to select are already aligned to the
+ // lowest bits of the 64-bit integer representation of tghe number, no need
+ // to shift. If the exponent is greater than 52 we need to shift the value
+ // left by (exp - 52), if the value is less than 52 we need to shift right
+ // accordingly.
+ int32_t result = (exp > 52)
+ ? static_cast<int32_t>(bits << (exp - 52))
+ : static_cast<int32_t>(bits >> (52 - exp));
+
+ // IEEE-754 double precision values are stored omitting an implicit 1 before
+ // the decimal point; we need to reinsert this now. We may also the shifted
+ // invalid bits into the result that are not a part of the mantissa (the sign
+ // and exponent bits from the floatingpoint representation); mask these out.
+ if (exp < 32) {
+ int32_t missingOne = 1 << exp;
+ result &= missingOne - 1;
+ result += missingOne;
}
- double d32 = fmod(trunc(d), D32);
- if (d32 < 0)
- d32 += D32;
- return static_cast<uint32_t>(d32);
+ // If the input value was negative (we could test either 'number' or 'bits',
+ // but testing 'bits' is likely faster) invert the result appropriately.
+ return bits < 0 ? -result : result;
}
NEVER_INLINE double nonInlineNaN()
#endif
}
+bool JSValue::isValidCallee()
+{
+ return asObject(asObject(asCell())->getAnonymousValue(0))->isGlobalObject();
+}
+
} // namespace JSC