/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
- * Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved.
+ * Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2003 Peter Kelly (pmk@post.com)
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
#include "JSArray.h"
#include "ArrayPrototype.h"
+#include "CachedCall.h"
+#include "Error.h"
+#include "Executable.h"
#include "PropertyNameArray.h"
#include <wtf/AVLTree.h>
#include <wtf/Assertions.h>
+#include <wtf/OwnPtr.h>
#include <Operations.h>
#define CHECK_ARRAY_CONSISTENCY 0
// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
-// size calculation cannot overflow. (sizeof(ArrayStorage) - sizeof(JSValuePtr)) +
-// (vectorLength * sizeof(JSValuePtr)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
-#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValuePtr))) / sizeof(JSValuePtr))
+// size calculation cannot overflow. (sizeof(ArrayStorage) - sizeof(JSValue)) +
+// (vectorLength * sizeof(JSValue)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
+#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue))
// These values have to be macros to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
// MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
// - as asserted above - the following calculation cannot overflow.
- size_t size = (sizeof(ArrayStorage) - sizeof(JSValuePtr)) + (vectorLength * sizeof(JSValuePtr));
+ size_t size = (sizeof(ArrayStorage) - sizeof(JSValue)) + (vectorLength * sizeof(JSValue));
// Assertion to detect integer overflow in previous calculation (should not be possible, provided that
// MAX_STORAGE_VECTOR_LENGTH is correctly defined).
- ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValuePtr))) / sizeof(JSValuePtr) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValuePtr))));
+ ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue))));
return size;
}
#endif
-JSArray::JSArray(PassRefPtr<Structure> structure)
+JSArray::JSArray(NonNullPassRefPtr<Structure> structure)
: JSObject(structure)
{
unsigned initialCapacity = 0;
m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
- m_fastAccessCutoff = 0;
- m_storage->m_vectorLength = initialCapacity;
- m_storage->m_length = 0;
+ m_vectorLength = initialCapacity;
checkConsistency();
}
-JSArray::JSArray(PassRefPtr<Structure> structure, unsigned initialLength)
+JSArray::JSArray(NonNullPassRefPtr<Structure> structure, unsigned initialLength)
: JSObject(structure)
{
unsigned initialCapacity = min(initialLength, MIN_SPARSE_ARRAY_INDEX);
- m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
- m_fastAccessCutoff = 0;
- m_storage->m_vectorLength = initialCapacity;
+ m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
m_storage->m_length = initialLength;
+ m_vectorLength = initialCapacity;
+ m_storage->m_numValuesInVector = 0;
+ m_storage->m_sparseValueMap = 0;
+ m_storage->lazyCreationData = 0;
+ m_storage->reportedMapCapacity = 0;
- Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValuePtr));
+ JSValue* vector = m_storage->m_vector;
+ for (size_t i = 0; i < initialCapacity; ++i)
+ vector[i] = JSValue();
checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValue));
}
-JSArray::JSArray(ExecState* exec, PassRefPtr<Structure> structure, const ArgList& list)
+JSArray::JSArray(NonNullPassRefPtr<Structure> structure, const ArgList& list)
: JSObject(structure)
{
- unsigned length = list.size();
-
- m_fastAccessCutoff = length;
+ unsigned initialCapacity = list.size();
- ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(length)));
-
- storage->m_vectorLength = length;
- storage->m_numValuesInVector = length;
- storage->m_sparseValueMap = 0;
- storage->m_length = length;
+ m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
+ m_storage->m_length = initialCapacity;
+ m_vectorLength = initialCapacity;
+ m_storage->m_numValuesInVector = initialCapacity;
+ m_storage->m_sparseValueMap = 0;
+ m_storage->lazyCreationData = 0;
+ m_storage->reportedMapCapacity = 0;
size_t i = 0;
ArgList::const_iterator end = list.end();
for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
- storage->m_vector[i] = (*it).jsValue(exec);
-
- m_storage = storage;
-
- Heap::heap(this)->reportExtraMemoryCost(storageSize(length));
+ m_storage->m_vector[i] = *it;
checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
}
JSArray::~JSArray()
{
+ ASSERT(vptr() == JSGlobalData::jsArrayVPtr);
checkConsistency(DestructorConsistencyCheck);
delete m_storage->m_sparseValueMap;
return false;
}
- if (i < storage->m_vectorLength) {
- JSValuePtr& valueSlot = storage->m_vector[i];
+ if (i < m_vectorLength) {
+ JSValue& valueSlot = storage->m_vector[i];
if (valueSlot) {
slot.setValueSlot(&valueSlot);
return true;
}
}
- return false;
+ return JSObject::getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
}
bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}
+bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
+{
+ if (propertyName == exec->propertyNames().length) {
+ descriptor.setDescriptor(jsNumber(exec, length()), DontDelete | DontEnum);
+ return true;
+ }
+
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(&isArrayIndex);
+ if (isArrayIndex) {
+ if (i >= m_storage->m_length)
+ return false;
+ if (i < m_vectorLength) {
+ JSValue& value = m_storage->m_vector[i];
+ if (value) {
+ descriptor.setDescriptor(value, 0);
+ return true;
+ }
+ } else if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
+ if (i >= MIN_SPARSE_ARRAY_INDEX) {
+ SparseArrayValueMap::iterator it = map->find(i);
+ if (it != map->end()) {
+ descriptor.setDescriptor(it->second, 0);
+ return true;
+ }
+ }
+ }
+ }
+ return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor);
+}
+
// ECMA 15.4.5.1
-void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValuePtr value, PutPropertySlot& slot)
+void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
{
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
JSObject::put(exec, propertyName, value, slot);
}
-void JSArray::put(ExecState* exec, unsigned i, JSValuePtr value)
+void JSArray::put(ExecState* exec, unsigned i, JSValue value)
{
checkConsistency();
m_storage->m_length = length;
}
- if (i < m_storage->m_vectorLength) {
- JSValuePtr& valueSlot = m_storage->m_vector[i];
+ if (i < m_vectorLength) {
+ JSValue& valueSlot = m_storage->m_vector[i];
if (valueSlot) {
valueSlot = value;
checkConsistency();
return;
}
valueSlot = value;
- if (++m_storage->m_numValuesInVector == m_storage->m_length)
- m_fastAccessCutoff = m_storage->m_length;
+ ++m_storage->m_numValuesInVector;
checkConsistency();
return;
}
putSlowCase(exec, i, value);
}
-NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValuePtr value)
+NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value)
{
ArrayStorage* storage = m_storage;
SparseArrayValueMap* map = storage->m_sparseValueMap;
}
// We miss some cases where we could compact the storage, such as a large array that is being filled from the end
- // (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster.
+ // (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster.
if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
if (!map) {
map = new SparseArrayValueMap;
storage->m_sparseValueMap = map;
}
- map->set(i, value);
+
+ pair<SparseArrayValueMap::iterator, bool> result = map->add(i, value);
+ if (!result.second) { // pre-existing entry
+ result.first->second = value;
+ return;
+ }
+
+ size_t capacity = map->capacity();
+ if (capacity != storage->reportedMapCapacity) {
+ Heap::heap(this)->reportExtraMemoryCost((capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue)));
+ storage->reportedMapCapacity = capacity;
+ }
return;
}
}
if (increaseVectorLength(i + 1)) {
storage = m_storage;
storage->m_vector[i] = value;
- if (++storage->m_numValuesInVector == storage->m_length)
- m_fastAccessCutoff = storage->m_length;
+ ++storage->m_numValuesInVector;
checkConsistency();
} else
throwOutOfMemoryError(exec);
// Decide how many values it would be best to move from the map.
unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
unsigned newVectorLength = increasedVectorLength(i + 1);
- for (unsigned j = max(storage->m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
+ for (unsigned j = max(m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
newNumValuesInVector += map->contains(j);
if (i >= MIN_SPARSE_ARRAY_INDEX)
newNumValuesInVector -= map->contains(i);
}
}
- storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength)));
- if (!storage) {
+ if (!tryFastRealloc(storage, storageSize(newVectorLength)).getValue(storage)) {
throwOutOfMemoryError(exec);
return;
}
- unsigned vectorLength = storage->m_vectorLength;
-
- Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+ unsigned vectorLength = m_vectorLength;
if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
for (unsigned j = vectorLength; j < newVectorLength; ++j)
- storage->m_vector[j] = noValue();
+ storage->m_vector[j] = JSValue();
if (i > MIN_SPARSE_ARRAY_INDEX)
map->remove(i);
} else {
for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
- storage->m_vector[j] = noValue();
+ storage->m_vector[j] = JSValue();
for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
storage->m_vector[j] = map->take(j);
}
storage->m_vector[i] = value;
- storage->m_vectorLength = newVectorLength;
+ m_vectorLength = newVectorLength;
storage->m_numValuesInVector = newNumValuesInVector;
m_storage = storage;
checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
}
bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
ArrayStorage* storage = m_storage;
- if (i < storage->m_vectorLength) {
- JSValuePtr& valueSlot = storage->m_vector[i];
+ if (i < m_vectorLength) {
+ JSValue& valueSlot = storage->m_vector[i];
if (!valueSlot) {
checkConsistency();
return false;
}
- valueSlot = noValue();
+ valueSlot = JSValue();
--storage->m_numValuesInVector;
- if (m_fastAccessCutoff > i)
- m_fastAccessCutoff = i;
checkConsistency();
return true;
}
return false;
}
-void JSArray::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames)
+void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
{
// FIXME: Filling PropertyNameArray with an identifier for every integer
// is incredibly inefficient for large arrays. We need a different approach,
ArrayStorage* storage = m_storage;
- unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength);
+ unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
for (unsigned i = 0; i < usedVectorLength; ++i) {
if (storage->m_vector[i])
propertyNames.add(Identifier::from(exec, i));
propertyNames.add(Identifier::from(exec, it->first));
}
- JSObject::getPropertyNames(exec, propertyNames);
+ if (mode == IncludeDontEnumProperties)
+ propertyNames.add(exec->propertyNames().length);
+
+ JSObject::getOwnPropertyNames(exec, propertyNames, mode);
}
bool JSArray::increaseVectorLength(unsigned newLength)
ArrayStorage* storage = m_storage;
- unsigned vectorLength = storage->m_vectorLength;
+ unsigned vectorLength = m_vectorLength;
ASSERT(newLength > vectorLength);
ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
unsigned newVectorLength = increasedVectorLength(newLength);
- storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength)));
- if (!storage)
+ if (!tryFastRealloc(storage, storageSize(newVectorLength)).getValue(storage))
return false;
- Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
- storage->m_vectorLength = newVectorLength;
+ m_vectorLength = newVectorLength;
for (unsigned i = vectorLength; i < newVectorLength; ++i)
- storage->m_vector[i] = noValue();
+ storage->m_vector[i] = JSValue();
m_storage = storage;
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+
return true;
}
unsigned length = m_storage->m_length;
if (newLength < length) {
- if (m_fastAccessCutoff > newLength)
- m_fastAccessCutoff = newLength;
-
- unsigned usedVectorLength = min(length, storage->m_vectorLength);
+ unsigned usedVectorLength = min(length, m_vectorLength);
for (unsigned i = newLength; i < usedVectorLength; ++i) {
- JSValuePtr& valueSlot = storage->m_vector[i];
+ JSValue& valueSlot = storage->m_vector[i];
bool hadValue = valueSlot;
- valueSlot = noValue();
+ valueSlot = JSValue();
storage->m_numValuesInVector -= hadValue;
}
checkConsistency();
}
-JSValuePtr JSArray::pop()
+JSValue JSArray::pop()
{
checkConsistency();
--length;
- JSValuePtr result;
-
- if (m_fastAccessCutoff > length) {
- JSValuePtr& valueSlot = m_storage->m_vector[length];
- result = valueSlot;
- ASSERT(result);
- valueSlot = noValue();
- --m_storage->m_numValuesInVector;
- m_fastAccessCutoff = length;
- } else if (length < m_storage->m_vectorLength) {
- JSValuePtr& valueSlot = m_storage->m_vector[length];
- result = valueSlot;
- valueSlot = noValue();
- if (result)
+ JSValue result;
+
+ if (length < m_vectorLength) {
+ JSValue& valueSlot = m_storage->m_vector[length];
+ if (valueSlot) {
--m_storage->m_numValuesInVector;
- else
+ result = valueSlot;
+ valueSlot = JSValue();
+ } else
result = jsUndefined();
} else {
result = jsUndefined();
return result;
}
-void JSArray::push(ExecState* exec, JSValuePtr value)
+void JSArray::push(ExecState* exec, JSValue value)
{
checkConsistency();
- if (m_storage->m_length < m_storage->m_vectorLength) {
- ASSERT(!m_storage->m_vector[m_storage->m_length]);
+ if (m_storage->m_length < m_vectorLength) {
m_storage->m_vector[m_storage->m_length] = value;
- if (++m_storage->m_numValuesInVector == ++m_storage->m_length)
- m_fastAccessCutoff = m_storage->m_length;
+ ++m_storage->m_numValuesInVector;
+ ++m_storage->m_length;
checkConsistency();
return;
}
if (!map || map->isEmpty()) {
if (increaseVectorLength(m_storage->m_length + 1)) {
m_storage->m_vector[m_storage->m_length] = value;
- if (++m_storage->m_numValuesInVector == ++m_storage->m_length)
- m_fastAccessCutoff = m_storage->m_length;
+ ++m_storage->m_numValuesInVector;
+ ++m_storage->m_length;
checkConsistency();
return;
}
putSlowCase(exec, m_storage->m_length++, value);
}
-void JSArray::mark()
+void JSArray::markChildren(MarkStack& markStack)
{
- JSObject::mark();
-
- ArrayStorage* storage = m_storage;
-
- unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength);
- for (unsigned i = 0; i < usedVectorLength; ++i) {
- JSValuePtr value = storage->m_vector[i];
- if (value && !value.marked())
- value.mark();
- }
-
- if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
- SparseArrayValueMap::iterator end = map->end();
- for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
- JSValuePtr value = it->second;
- if (!value.marked())
- value.mark();
- }
- }
+ markChildrenDirect(markStack);
}
static int compareNumbersForQSort(const void* a, const void* b)
{
- double da = static_cast<const JSValuePtr*>(a)->uncheckedGetNumber();
- double db = static_cast<const JSValuePtr*>(b)->uncheckedGetNumber();
+ double da = static_cast<const JSValue*>(a)->uncheckedGetNumber();
+ double db = static_cast<const JSValue*>(b)->uncheckedGetNumber();
return (da > db) - (da < db);
}
-typedef std::pair<JSValuePtr, UString> ValueStringPair;
+typedef std::pair<JSValue, UString> ValueStringPair;
static int compareByStringPairForQSort(const void* a, const void* b)
{
return compare(va->second, vb->second);
}
-void JSArray::sortNumeric(ExecState* exec, JSValuePtr compareFunction, CallType callType, const CallData& callData)
+void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
unsigned lengthNotIncludingUndefined = compactForSorting();
if (m_storage->m_sparseValueMap) {
// For numeric comparison, which is fast, qsort is faster than mergesort. We
// also don't require mergesort's stability, since there's no user visible
// side-effect from swapping the order of equal primitive values.
- qsort(m_storage->m_vector, size, sizeof(JSValuePtr), compareNumbersForQSort);
+ qsort(m_storage->m_vector, size, sizeof(JSValue), compareNumbersForQSort);
checkConsistency(SortConsistencyCheck);
}
}
for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
- JSValuePtr value = m_storage->m_vector[i];
+ JSValue value = m_storage->m_vector[i];
ASSERT(!value.isUndefined());
values[i].first = value;
}
}
struct AVLTreeNodeForArrayCompare {
- JSValuePtr value;
+ JSValue value;
// Child pointers. The high bit of gt is robbed and used as the
// balance factor sign. The high bit of lt is robbed and used as
struct AVLTreeAbstractorForArrayCompare {
typedef int32_t handle; // Handle is an index into m_nodes vector.
- typedef JSValuePtr key;
+ typedef JSValue key;
typedef int32_t size;
Vector<AVLTreeNodeForArrayCompare> m_nodes;
ExecState* m_exec;
- JSValuePtr m_compareFunction;
+ JSValue m_compareFunction;
CallType m_compareCallType;
const CallData* m_compareCallData;
- JSValuePtr m_globalThisValue;
+ JSValue m_globalThisValue;
+ OwnPtr<CachedCall> m_cachedCall;
handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
if (m_exec->hadException())
return 1;
- ArgList arguments;
- arguments.append(va);
- arguments.append(vb);
- double compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec);
+ double compareResult;
+ if (m_cachedCall) {
+ m_cachedCall->setThis(m_globalThisValue);
+ m_cachedCall->setArgument(0, va);
+ m_cachedCall->setArgument(1, vb);
+ compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
+ } else {
+ MarkedArgumentBuffer arguments;
+ arguments.append(va);
+ arguments.append(vb);
+ compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec);
+ }
return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
}
static handle null() { return 0x7FFFFFFF; }
};
-void JSArray::sort(ExecState* exec, JSValuePtr compareFunction, CallType callType, const CallData& callData)
+void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
checkConsistency();
if (!m_storage->m_length)
return;
- unsigned usedVectorLength = min(m_storage->m_length, m_storage->m_vectorLength);
+ unsigned usedVectorLength = min(m_storage->m_length, m_vectorLength);
AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
tree.abstractor().m_exec = exec;
tree.abstractor().m_globalThisValue = exec->globalThisValue();
tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0));
+ if (callType == CallTypeJS)
+ tree.abstractor().m_cachedCall.set(new CachedCall(exec, asFunction(compareFunction), 2, exec->exceptionSlot()));
+
if (!tree.abstractor().m_nodes.begin()) {
throwOutOfMemoryError(exec);
return;
// Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
for (; numDefined < usedVectorLength; ++numDefined) {
- JSValuePtr v = m_storage->m_vector[numDefined];
+ JSValue v = m_storage->m_vector[numDefined];
if (!v || v.isUndefined())
break;
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
- JSValuePtr v = m_storage->m_vector[i];
+ JSValue v = m_storage->m_vector[i];
if (v) {
if (v.isUndefined())
++numUndefined;
if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
newUsedVectorLength += map->size();
- if (newUsedVectorLength > m_storage->m_vectorLength) {
+ if (newUsedVectorLength > m_vectorLength) {
// Check that it is possible to allocate an array large enough to hold all the entries.
if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
throwOutOfMemoryError(exec);
// Ensure that unused values in the vector are zeroed out.
for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
- m_storage->m_vector[i] = noValue();
+ m_storage->m_vector[i] = JSValue();
- m_fastAccessCutoff = newUsedVectorLength;
m_storage->m_numValuesInVector = newUsedVectorLength;
checkConsistency(SortConsistencyCheck);
}
-void JSArray::fillArgList(ExecState* exec, ArgList& args)
+void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
{
- unsigned fastAccessLength = min(m_storage->m_length, m_fastAccessCutoff);
+ JSValue* vector = m_storage->m_vector;
+ unsigned vectorEnd = min(m_storage->m_length, m_vectorLength);
unsigned i = 0;
- for (; i < fastAccessLength; ++i)
- args.append(getIndex(i));
+ for (; i < vectorEnd; ++i) {
+ JSValue& v = vector[i];
+ if (!v)
+ break;
+ args.append(v);
+ }
+
for (; i < m_storage->m_length; ++i)
args.append(get(exec, i));
}
+void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize)
+{
+ ASSERT(m_storage->m_length == maxSize);
+ UNUSED_PARAM(maxSize);
+ JSValue* vector = m_storage->m_vector;
+ unsigned vectorEnd = min(m_storage->m_length, m_vectorLength);
+ unsigned i = 0;
+ for (; i < vectorEnd; ++i) {
+ JSValue& v = vector[i];
+ if (!v)
+ break;
+ buffer[i] = v;
+ }
+
+ for (; i < m_storage->m_length; ++i)
+ buffer[i] = get(exec, i);
+}
+
unsigned JSArray::compactForSorting()
{
checkConsistency();
ArrayStorage* storage = m_storage;
- unsigned usedVectorLength = min(m_storage->m_length, storage->m_vectorLength);
+ unsigned usedVectorLength = min(m_storage->m_length, m_vectorLength);
unsigned numDefined = 0;
unsigned numUndefined = 0;
for (; numDefined < usedVectorLength; ++numDefined) {
- JSValuePtr v = storage->m_vector[numDefined];
+ JSValue v = storage->m_vector[numDefined];
if (!v || v.isUndefined())
break;
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
- JSValuePtr v = storage->m_vector[i];
+ JSValue v = storage->m_vector[i];
if (v) {
if (v.isUndefined())
++numUndefined;
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
newUsedVectorLength += map->size();
- if (newUsedVectorLength > storage->m_vectorLength) {
+ if (newUsedVectorLength > m_vectorLength) {
// Check that it is possible to allocate an array large enough to hold all the entries - if not,
// exception is thrown by caller.
if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
storage->m_vector[i] = jsUndefined();
for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
- storage->m_vector[i] = noValue();
+ storage->m_vector[i] = JSValue();
- m_fastAccessCutoff = newUsedVectorLength;
storage->m_numValuesInVector = newUsedVectorLength;
checkConsistency(SortConsistencyCheck);
if (type == SortConsistencyCheck)
ASSERT(!m_storage->m_sparseValueMap);
- ASSERT(m_fastAccessCutoff <= m_storage->m_length);
- ASSERT(m_fastAccessCutoff <= m_storage->m_numValuesInVector);
-
unsigned numValuesInVector = 0;
- for (unsigned i = 0; i < m_storage->m_vectorLength; ++i) {
- if (JSValuePtr value = m_storage->m_vector[i]) {
+ for (unsigned i = 0; i < m_vectorLength; ++i) {
+ if (JSValue value = m_storage->m_vector[i]) {
ASSERT(i < m_storage->m_length);
if (type != DestructorConsistencyCheck)
value->type(); // Likely to crash if the object was deallocated.
++numValuesInVector;
} else {
- ASSERT(i >= m_fastAccessCutoff);
if (type == SortConsistencyCheck)
ASSERT(i >= m_storage->m_numValuesInVector);
}
}
ASSERT(numValuesInVector == m_storage->m_numValuesInVector);
+ ASSERT(numValuesInVector <= m_storage->m_length);
if (m_storage->m_sparseValueMap) {
SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end();
for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) {
unsigned index = it->first;
ASSERT(index < m_storage->m_length);
- ASSERT(index >= m_storage->m_vectorLength);
+ ASSERT(index >= m_vectorLength);
ASSERT(index <= MAX_ARRAY_INDEX);
ASSERT(it->second);
if (type != DestructorConsistencyCheck)
#endif
-JSArray* constructEmptyArray(ExecState* exec)
-{
- return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure());
-}
-
-JSArray* constructEmptyArray(ExecState* exec, unsigned initialLength)
-{
- return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure(), initialLength);
-}
-
-JSArray* constructArray(ExecState* exec, JSValuePtr singleItemValue)
-{
- ArgList values;
- values.append(singleItemValue);
- return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values);
-}
-
-JSArray* constructArray(ExecState* exec, const ArgList& values)
-{
- return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values);
-}
-
} // namespace JSC