/*
- * Copyright (C) 2008, 2009 Apple Inc. All rights reserved.
+ * Copyright (C) 2008, 2009, 2010, 2012, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
#include "config.h"
#include "CodeBlock.h"
-#include "JIT.h"
-#include "JSValue.h"
-#include "Interpreter.h"
-#include "Debugger.h"
#include "BytecodeGenerator.h"
+#include "CallLinkStatus.h"
+#include "DFGCapabilities.h"
+#include "DFGCommon.h"
+#include "DFGNode.h"
+#include "DFGRepatch.h"
+#include "Debugger.h"
+#include "Interpreter.h"
+#include "JIT.h"
+#include "JITStubs.h"
+#include "JSActivation.h"
+#include "JSCJSValue.h"
+#include "JSFunction.h"
+#include "JSNameScope.h"
+#include "LowLevelInterpreter.h"
+#include "Operations.h"
+#include "ReduceWhitespace.h"
+#include "RepatchBuffer.h"
+#include "SlotVisitorInlines.h"
#include <stdio.h>
+#include <wtf/CommaPrinter.h>
#include <wtf/StringExtras.h>
+#include <wtf/StringPrintStream.h>
+
+#if ENABLE(DFG_JIT)
+#include "DFGOperations.h"
+#endif
#define DUMP_CODE_BLOCK_STATISTICS 0
namespace JSC {
-#if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING)
+#if ENABLE(DFG_JIT)
+using namespace DFG;
+#endif
-static UString escapeQuotes(const UString& str)
+String CodeBlock::inferredName() const
{
- UString result = str;
- int pos = 0;
- while ((pos = result.find('\"', pos)) >= 0) {
- result = result.substr(0, pos) + "\"\\\"\"" + result.substr(pos + 1);
- pos += 4;
+ switch (codeType()) {
+ case GlobalCode:
+ return "<global>";
+ case EvalCode:
+ return "<eval>";
+ case FunctionCode:
+ return jsCast<FunctionExecutable*>(ownerExecutable())->inferredName().string();
+ default:
+ CRASH();
+ return String();
}
- return result;
}
-static UString valueToSourceString(ExecState* exec, JSValuePtr val)
+CodeBlockHash CodeBlock::hash() const
{
- if (val.isString()) {
- UString result("\"");
- result += escapeQuotes(val.toString(exec)) + "\"";
- return result;
- }
+ return CodeBlockHash(ownerExecutable()->source(), specializationKind());
+}
+
+String CodeBlock::sourceCodeForTools() const
+{
+ if (codeType() != FunctionCode)
+ return ownerExecutable()->source().toString();
+
+ SourceProvider* provider = source();
+ FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable());
+ UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable();
+ unsigned unlinkedStartOffset = unlinked->startOffset();
+ unsigned linkedStartOffset = executable->source().startOffset();
+ int delta = linkedStartOffset - unlinkedStartOffset;
+ StringBuilder builder;
+ builder.append("function ");
+ builder.append(provider->getRange(
+ delta + unlinked->functionStartOffset(),
+ delta + unlinked->startOffset() + unlinked->sourceLength()));
+ return builder.toString();
+}
- return val.toString(exec);
+String CodeBlock::sourceCodeOnOneLine() const
+{
+ return reduceWhitespace(sourceCodeForTools());
}
-static CString registerName(int r)
+void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const
{
- if (r == missingThisObjectMarker())
- return "<null>";
+ out.print(inferredName(), "#", hash(), ":[", RawPointer(this), "->", RawPointer(ownerExecutable()), ", ", jitType, codeType());
+ if (codeType() == FunctionCode)
+ out.print(specializationKind());
+ out.print("]");
+}
+
+void CodeBlock::dump(PrintStream& out) const
+{
+ dumpAssumingJITType(out, getJITType());
+}
+
+static String escapeQuotes(const String& str)
+{
+ String result = str;
+ size_t pos = 0;
+ while ((pos = result.find('\"', pos)) != notFound) {
+ result = makeString(result.substringSharingImpl(0, pos), "\"\\\"\"", result.substringSharingImpl(pos + 1));
+ pos += 4;
+ }
+ return result;
+}
+
+static String valueToSourceString(ExecState* exec, JSValue val)
+{
+ if (!val)
+ return ASCIILiteral("0");
+
+ if (val.isString())
+ return makeString("\"", escapeQuotes(val.toString(exec)->value(exec)), "\"");
- return (UString("r") + UString::from(r)).UTF8String();
+ return toString(val);
}
-static CString constantName(ExecState* exec, int k, JSValuePtr value)
+static CString constantName(ExecState* exec, int k, JSValue value)
{
- return (valueToSourceString(exec, value) + "(@k" + UString::from(k) + ")").UTF8String();
+ return makeString(valueToSourceString(exec, value), "(@k", String::number(k - FirstConstantRegisterIndex), ")").utf8();
}
static CString idName(int id0, const Identifier& ident)
{
- return (ident.ustring() + "(@id" + UString::from(id0) +")").UTF8String();
+ return makeString(ident.string(), "(@id", String::number(id0), ")").utf8();
+}
+
+CString CodeBlock::registerName(ExecState* exec, int r) const
+{
+ if (r == missingThisObjectMarker())
+ return "<null>";
+
+ if (isConstantRegisterIndex(r))
+ return constantName(exec, r, getConstant(r));
+
+ return makeString("r", String::number(r)).utf8();
}
-static UString regexpToSourceString(RegExp* regExp)
+static String regexpToSourceString(RegExp* regExp)
{
- UString pattern = UString("/") + regExp->pattern() + "/";
+ char postfix[5] = { '/', 0, 0, 0, 0 };
+ int index = 1;
if (regExp->global())
- pattern += "g";
+ postfix[index++] = 'g';
if (regExp->ignoreCase())
- pattern += "i";
+ postfix[index++] = 'i';
if (regExp->multiline())
- pattern += "m";
+ postfix[index] = 'm';
- return pattern;
+ return makeString("/", regExp->pattern(), postfix);
}
static CString regexpName(int re, RegExp* regexp)
{
- return (regexpToSourceString(regexp) + "(@re" + UString::from(re) + ")").UTF8String();
+ return makeString(regexpToSourceString(regexp), "(@re", String::number(re), ")").utf8();
}
-static UString pointerToSourceString(void* p)
+static String pointerToSourceString(void* p)
{
char buffer[2 + 2 * sizeof(void*) + 1]; // 0x [two characters per byte] \0
snprintf(buffer, sizeof(buffer), "%p", p);
return "didReachBreakpoint";
}
- ASSERT_NOT_REACHED();
+ RELEASE_ASSERT_NOT_REACHED();
return "";
}
-static int locationForOffset(const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator& it, int offset)
-{
- return it - begin + offset;
-}
-
-static void printUnaryOp(int location, Vector<Instruction>::const_iterator& it, const char* op)
+void CodeBlock::printUnaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
- printf("[%4d] %s\t\t %s, %s\n", location, op, registerName(r0).c_str(), registerName(r1).c_str());
+ out.printf("[%4d] %s\t\t %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data());
}
-static void printBinaryOp(int location, Vector<Instruction>::const_iterator& it, const char* op)
+void CodeBlock::printBinaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
- printf("[%4d] %s\t\t %s, %s, %s\n", location, op, registerName(r0).c_str(), registerName(r1).c_str(), registerName(r2).c_str());
+ out.printf("[%4d] %s\t\t %s, %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
}
-static void printConditionalJump(const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator& it, int location, const char* op)
+void CodeBlock::printConditionalJump(PrintStream& out, ExecState* exec, const Instruction*, const Instruction*& it, int location, const char* op)
{
int r0 = (++it)->u.operand;
int offset = (++it)->u.operand;
- printf("[%4d] %s\t\t %s, %d(->%d)\n", location, op, registerName(r0).c_str(), offset, locationForOffset(begin, it, offset));
+ out.printf("[%4d] %s\t\t %s, %d(->%d)", location, op, registerName(exec, r0).data(), offset, location + offset);
}
-static void printGetByIdOp(int location, Vector<Instruction>::const_iterator& it, const Vector<Identifier>& m_identifiers, const char* op)
+void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it)
{
+ const char* op;
+ switch (exec->interpreter()->getOpcodeID(it->u.opcode)) {
+ case op_get_by_id:
+ op = "get_by_id";
+ break;
+ case op_get_by_id_out_of_line:
+ op = "get_by_id_out_of_line";
+ break;
+ case op_get_by_id_self:
+ op = "get_by_id_self";
+ break;
+ case op_get_by_id_proto:
+ op = "get_by_id_proto";
+ break;
+ case op_get_by_id_chain:
+ op = "get_by_id_chain";
+ break;
+ case op_get_by_id_getter_self:
+ op = "get_by_id_getter_self";
+ break;
+ case op_get_by_id_getter_proto:
+ op = "get_by_id_getter_proto";
+ break;
+ case op_get_by_id_getter_chain:
+ op = "get_by_id_getter_chain";
+ break;
+ case op_get_by_id_custom_self:
+ op = "get_by_id_custom_self";
+ break;
+ case op_get_by_id_custom_proto:
+ op = "get_by_id_custom_proto";
+ break;
+ case op_get_by_id_custom_chain:
+ op = "get_by_id_custom_chain";
+ break;
+ case op_get_by_id_generic:
+ op = "get_by_id_generic";
+ break;
+ case op_get_array_length:
+ op = "array_length";
+ break;
+ case op_get_string_length:
+ op = "string_length";
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ op = 0;
+ }
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
- printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(r0).c_str(), registerName(r1).c_str(), idName(id0, m_identifiers[id0]).c_str());
- it += 4;
+ out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data());
+ it += 4; // Increment up to the value profiler.
}
-static void printPutByIdOp(int location, Vector<Instruction>::const_iterator& it, const Vector<Identifier>& m_identifiers, const char* op)
+#if ENABLE(JIT) || ENABLE(LLINT) // unused in some configurations
+static void dumpStructure(PrintStream& out, const char* name, ExecState* exec, Structure* structure, Identifier& ident)
{
- int r0 = (++it)->u.operand;
- int id0 = (++it)->u.operand;
- int r1 = (++it)->u.operand;
- printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(r0).c_str(), idName(id0, m_identifiers[id0]).c_str(), registerName(r1).c_str());
- it += 4;
+ if (!structure)
+ return;
+
+ out.printf("%s = %p", name, structure);
+
+ PropertyOffset offset = structure->get(exec->vm(), ident);
+ if (offset != invalidOffset)
+ out.printf(" (offset = %d)", offset);
}
+#endif
-#if ENABLE(JIT)
-static bool isGlobalResolve(OpcodeID opcodeID)
+#if ENABLE(JIT) // unused when not ENABLE(JIT), leading to silly warnings
+static void dumpChain(PrintStream& out, ExecState* exec, StructureChain* chain, Identifier& ident)
{
- return opcodeID == op_resolve_global;
+ out.printf("chain = %p: [", chain);
+ bool first = true;
+ for (WriteBarrier<Structure>* currentStructure = chain->head();
+ *currentStructure;
+ ++currentStructure) {
+ if (first)
+ first = false;
+ else
+ out.printf(", ");
+ dumpStructure(out, "struct", exec, currentStructure->get(), ident);
+ }
+ out.printf("]");
}
+#endif
-static bool isPropertyAccess(OpcodeID opcodeID)
+void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location)
{
- switch (opcodeID) {
- case op_get_by_id_self:
- case op_get_by_id_proto:
- case op_get_by_id_chain:
- case op_get_by_id_self_list:
- case op_get_by_id_proto_list:
- case op_put_by_id_transition:
- case op_put_by_id_replace:
- case op_get_by_id:
- case op_put_by_id:
- case op_get_by_id_generic:
- case op_put_by_id_generic:
- case op_get_array_length:
- case op_get_string_length:
- return true;
- default:
- return false;
+ Instruction* instruction = instructions().begin() + location;
+
+ Identifier& ident = identifier(instruction[3].u.operand);
+
+ UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations.
+
+#if ENABLE(LLINT)
+ if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length)
+ out.printf(" llint(array_length)");
+ else if (Structure* structure = instruction[4].u.structure.get()) {
+ out.printf(" llint(");
+ dumpStructure(out, "struct", exec, structure, ident);
+ out.printf(")");
}
-}
+#endif
-static unsigned instructionOffsetForNth(ExecState* exec, const Vector<Instruction>& instructions, int nth, bool (*predicate)(OpcodeID))
-{
- size_t i = 0;
- while (i < instructions.size()) {
- OpcodeID currentOpcode = exec->interpreter()->getOpcodeID(instructions[i].u.opcode);
- if (predicate(currentOpcode)) {
- if (!--nth)
- return i;
+#if ENABLE(JIT)
+ if (numberOfStructureStubInfos()) {
+ StructureStubInfo& stubInfo = getStubInfo(location);
+ if (stubInfo.seen) {
+ out.printf(" jit(");
+
+ Structure* baseStructure = 0;
+ Structure* prototypeStructure = 0;
+ StructureChain* chain = 0;
+ PolymorphicAccessStructureList* structureList = 0;
+ int listSize = 0;
+
+ switch (stubInfo.accessType) {
+ case access_get_by_id_self:
+ out.printf("self");
+ baseStructure = stubInfo.u.getByIdSelf.baseObjectStructure.get();
+ break;
+ case access_get_by_id_proto:
+ out.printf("proto");
+ baseStructure = stubInfo.u.getByIdProto.baseObjectStructure.get();
+ prototypeStructure = stubInfo.u.getByIdProto.prototypeStructure.get();
+ break;
+ case access_get_by_id_chain:
+ out.printf("chain");
+ baseStructure = stubInfo.u.getByIdChain.baseObjectStructure.get();
+ chain = stubInfo.u.getByIdChain.chain.get();
+ break;
+ case access_get_by_id_self_list:
+ out.printf("self_list");
+ structureList = stubInfo.u.getByIdSelfList.structureList;
+ listSize = stubInfo.u.getByIdSelfList.listSize;
+ break;
+ case access_get_by_id_proto_list:
+ out.printf("proto_list");
+ structureList = stubInfo.u.getByIdProtoList.structureList;
+ listSize = stubInfo.u.getByIdProtoList.listSize;
+ break;
+ case access_unset:
+ out.printf("unset");
+ break;
+ case access_get_by_id_generic:
+ out.printf("generic");
+ break;
+ case access_get_array_length:
+ out.printf("array_length");
+ break;
+ case access_get_string_length:
+ out.printf("string_length");
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
+
+ if (baseStructure) {
+ out.printf(", ");
+ dumpStructure(out, "struct", exec, baseStructure, ident);
+ }
+
+ if (prototypeStructure) {
+ out.printf(", ");
+ dumpStructure(out, "prototypeStruct", exec, baseStructure, ident);
+ }
+
+ if (chain) {
+ out.printf(", ");
+ dumpChain(out, exec, chain, ident);
+ }
+
+ if (structureList) {
+ out.printf(", list = %p: [", structureList);
+ for (int i = 0; i < listSize; ++i) {
+ if (i)
+ out.printf(", ");
+ out.printf("(");
+ dumpStructure(out, "base", exec, structureList->list[i].base.get(), ident);
+ if (structureList->list[i].isChain) {
+ if (structureList->list[i].u.chain.get()) {
+ out.printf(", ");
+ dumpChain(out, exec, structureList->list[i].u.chain.get(), ident);
+ }
+ } else {
+ if (structureList->list[i].u.proto.get()) {
+ out.printf(", ");
+ dumpStructure(out, "proto", exec, structureList->list[i].u.proto.get(), ident);
+ }
+ }
+ out.printf(")");
+ }
+ out.printf("]");
+ }
+ out.printf(")");
}
- i += opcodeLengths[currentOpcode];
}
-
- ASSERT_NOT_REACHED();
- return 0;
+#endif
}
-static void printGlobalResolveInfo(const GlobalResolveInfo& resolveInfo, unsigned instructionOffset)
+void CodeBlock::printCallOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode)
{
- printf(" [%4d] %s: %s\n", instructionOffset, "resolve_global", pointerToSourceString(resolveInfo.structure).UTF8String().c_str());
+ int func = (++it)->u.operand;
+ int argCount = (++it)->u.operand;
+ int registerOffset = (++it)->u.operand;
+ out.printf("[%4d] %s\t %s, %d, %d", location, op, registerName(exec, func).data(), argCount, registerOffset);
+ if (cacheDumpMode == DumpCaches) {
+#if ENABLE(LLINT)
+ LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo;
+ if (callLinkInfo->lastSeenCallee) {
+ out.printf(
+ " llint(%p, exec %p)",
+ callLinkInfo->lastSeenCallee.get(),
+ callLinkInfo->lastSeenCallee->executable());
+ }
+#endif
+#if ENABLE(JIT)
+ if (numberOfCallLinkInfos()) {
+ JSFunction* target = getCallLinkInfo(location).lastSeenCallee.get();
+ if (target)
+ out.printf(" jit(%p, exec %p)", target, target->executable());
+ }
+#endif
+ out.print(" status(", CallLinkStatus::computeFor(this, location), ")");
+ }
+ it += 2;
}
-static void printStructureStubInfo(const StructureStubInfo& stubInfo, unsigned instructionOffset)
+void CodeBlock::printPutByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op)
{
- switch (stubInfo.opcodeID) {
- case op_get_by_id_self:
- printf(" [%4d] %s: %s\n", instructionOffset, "get_by_id_self", pointerToSourceString(stubInfo.u.getByIdSelf.baseObjectStructure).UTF8String().c_str());
- return;
- case op_get_by_id_proto:
- printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(stubInfo.u.getByIdProto.baseObjectStructure).UTF8String().c_str(), pointerToSourceString(stubInfo.u.getByIdProto.prototypeStructure).UTF8String().c_str());
- return;
- case op_get_by_id_chain:
- printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(stubInfo.u.getByIdChain.baseObjectStructure).UTF8String().c_str(), pointerToSourceString(stubInfo.u.getByIdChain.chain).UTF8String().c_str());
- return;
- case op_get_by_id_self_list:
- printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_self_list", pointerToSourceString(stubInfo.u.getByIdSelfList.structureList).UTF8String().c_str(), stubInfo.u.getByIdSelfList.listSize);
- return;
- case op_get_by_id_proto_list:
- printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_proto_list", pointerToSourceString(stubInfo.u.getByIdProtoList.structureList).UTF8String().c_str(), stubInfo.u.getByIdProtoList.listSize);
- return;
- case op_put_by_id_transition:
- printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(stubInfo.u.putByIdTransition.previousStructure).UTF8String().c_str(), pointerToSourceString(stubInfo.u.putByIdTransition.structure).UTF8String().c_str(), pointerToSourceString(stubInfo.u.putByIdTransition.chain).UTF8String().c_str());
- return;
- case op_put_by_id_replace:
- printf(" [%4d] %s: %s\n", instructionOffset, "put_by_id_replace", pointerToSourceString(stubInfo.u.putByIdReplace.baseObjectStructure).UTF8String().c_str());
- return;
- case op_get_by_id:
- printf(" [%4d] %s\n", instructionOffset, "get_by_id");
- return;
- case op_put_by_id:
- printf(" [%4d] %s\n", instructionOffset, "put_by_id");
- return;
- case op_get_by_id_generic:
- printf(" [%4d] %s\n", instructionOffset, "op_get_by_id_generic");
- return;
- case op_put_by_id_generic:
- printf(" [%4d] %s\n", instructionOffset, "op_put_by_id_generic");
- return;
- case op_get_array_length:
- printf(" [%4d] %s\n", instructionOffset, "op_get_array_length");
- return;
- case op_get_string_length:
- printf(" [%4d] %s\n", instructionOffset, "op_get_string_length");
- return;
- default:
- ASSERT_NOT_REACHED();
- }
+ int r0 = (++it)->u.operand;
+ int id0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data());
+ it += 5;
}
-#endif
-void CodeBlock::printStructure(const char* name, const Instruction* vPC, int operand) const
+void CodeBlock::printStructure(PrintStream& out, const char* name, const Instruction* vPC, int operand)
{
- unsigned instructionOffset = vPC - m_instructions.begin();
- printf(" [%4d] %s: %s\n", instructionOffset, name, pointerToSourceString(vPC[operand].u.structure).UTF8String().c_str());
+ unsigned instructionOffset = vPC - instructions().begin();
+ out.printf(" [%4d] %s: %s\n", instructionOffset, name, pointerToSourceString(vPC[operand].u.structure).utf8().data());
}
-void CodeBlock::printStructures(const Instruction* vPC) const
+void CodeBlock::printStructures(PrintStream& out, const Instruction* vPC)
{
- Interpreter* interpreter = m_globalData->interpreter;
- unsigned instructionOffset = vPC - m_instructions.begin();
+ Interpreter* interpreter = m_vm->interpreter;
+ unsigned instructionOffset = vPC - instructions().begin();
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id)) {
- printStructure("get_by_id", vPC, 4);
+ printStructure(out, "get_by_id", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) {
- printStructure("get_by_id_self", vPC, 4);
+ printStructure(out, "get_by_id_self", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) {
- printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(vPC[4].u.structure).UTF8String().c_str(), pointerToSourceString(vPC[5].u.structure).UTF8String().c_str());
+ out.printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data());
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) {
- printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(vPC[4].u.structure).UTF8String().c_str(), pointerToSourceString(vPC[5].u.structure).UTF8String().c_str(), pointerToSourceString(vPC[6].u.structureChain).UTF8String().c_str());
+ out.printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data(), pointerToSourceString(vPC[6].u.structureChain).utf8().data());
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) {
- printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(vPC[4].u.structure).UTF8String().c_str(), pointerToSourceString(vPC[5].u.structureChain).UTF8String().c_str());
+ out.printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structureChain).utf8().data());
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id)) {
- printStructure("put_by_id", vPC, 4);
+ printStructure(out, "put_by_id", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) {
- printStructure("put_by_id_replace", vPC, 4);
- return;
- }
- if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global)) {
- printStructure("resolve_global", vPC, 4);
+ printStructure(out, "put_by_id_replace", vPC, 4);
return;
}
ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_call) || vPC[0].u.opcode == interpreter->getOpcode(op_call_eval) || vPC[0].u.opcode == interpreter->getOpcode(op_construct));
}
-void CodeBlock::dump(ExecState* exec) const
+void CodeBlock::dumpBytecode(PrintStream& out)
{
- if (m_instructions.isEmpty()) {
- printf("No instructions available.\n");
- return;
- }
-
+ // We only use the ExecState* for things that don't actually lead to JS execution,
+ // like converting a JSString to a String. Hence the globalExec is appropriate.
+ ExecState* exec = m_globalObject->globalExec();
+
size_t instructionCount = 0;
- for (size_t i = 0; i < m_instructions.size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(m_instructions[i].u.opcode)])
+ for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)])
++instructionCount;
- printf("%lu m_instructions; %lu bytes at %p; %d parameter(s); %d callee register(s)\n\n",
- static_cast<unsigned long>(instructionCount),
- static_cast<unsigned long>(m_instructions.size() * sizeof(Instruction)),
- this, m_numParameters, m_numCalleeRegisters);
+ out.print(*this);
+ out.printf(
+ ": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)",
+ static_cast<unsigned long>(instructions().size()),
+ static_cast<unsigned long>(instructions().size() * sizeof(Instruction)),
+ m_numParameters, m_numCalleeRegisters, m_numVars);
+ if (symbolTable() && symbolTable()->captureCount()) {
+ out.printf(
+ "; %d captured var(s) (from r%d to r%d, inclusive)",
+ symbolTable()->captureCount(), symbolTable()->captureStart(), symbolTable()->captureEnd() - 1);
+ }
+ if (usesArguments()) {
+ out.printf(
+ "; uses arguments, in r%d, r%d",
+ argumentsRegister(),
+ unmodifiedArgumentsRegister(argumentsRegister()));
+ }
+ if (needsFullScopeChain() && codeType() == FunctionCode)
+ out.printf("; activation in r%d", activationRegister());
+ out.print("\n\nSource: ", sourceCodeOnOneLine(), "\n\n");
- Vector<Instruction>::const_iterator begin = m_instructions.begin();
- Vector<Instruction>::const_iterator end = m_instructions.end();
- for (Vector<Instruction>::const_iterator it = begin; it != end; ++it)
- dump(exec, begin, it);
+ const Instruction* begin = instructions().begin();
+ const Instruction* end = instructions().end();
+ for (const Instruction* it = begin; it != end; ++it)
+ dumpBytecode(out, exec, begin, it);
if (!m_identifiers.isEmpty()) {
- printf("\nIdentifiers:\n");
+ out.printf("\nIdentifiers:\n");
size_t i = 0;
do {
- printf(" id%u = %s\n", static_cast<unsigned>(i), m_identifiers[i].ascii());
+ out.printf(" id%u = %s\n", static_cast<unsigned>(i), m_identifiers[i].string().utf8().data());
++i;
} while (i != m_identifiers.size());
}
if (!m_constantRegisters.isEmpty()) {
- printf("\nConstants:\n");
- unsigned registerIndex = m_numVars;
+ out.printf("\nConstants:\n");
size_t i = 0;
do {
- printf(" r%u = %s\n", registerIndex, valueToSourceString(exec, m_constantRegisters[i].jsValue(exec)).ascii());
+ out.printf(" k%u = %s\n", static_cast<unsigned>(i), valueToSourceString(exec, m_constantRegisters[i].get()).utf8().data());
++i;
- ++registerIndex;
} while (i < m_constantRegisters.size());
}
- if (m_rareData && !m_rareData->m_unexpectedConstants.isEmpty()) {
- printf("\nUnexpected Constants:\n");
- size_t i = 0;
- do {
- printf(" k%u = %s\n", static_cast<unsigned>(i), valueToSourceString(exec, m_rareData->m_unexpectedConstants[i]).ascii());
- ++i;
- } while (i < m_rareData->m_unexpectedConstants.size());
- }
-
- if (m_rareData && !m_rareData->m_regexps.isEmpty()) {
- printf("\nm_regexps:\n");
+ if (size_t count = m_unlinkedCode->numberOfRegExps()) {
+ out.printf("\nm_regexps:\n");
size_t i = 0;
do {
- printf(" re%u = %s\n", static_cast<unsigned>(i), regexpToSourceString(m_rareData->m_regexps[i].get()).ascii());
+ out.printf(" re%u = %s\n", static_cast<unsigned>(i), regexpToSourceString(m_unlinkedCode->regexp(i)).utf8().data());
++i;
- } while (i < m_rareData->m_regexps.size());
+ } while (i < count);
}
#if ENABLE(JIT)
- if (!m_globalResolveInfos.isEmpty() || !m_structureStubInfos.isEmpty())
- printf("\nStructures:\n");
-
- if (!m_globalResolveInfos.isEmpty()) {
- size_t i = 0;
- do {
- printGlobalResolveInfo(m_globalResolveInfos[i], instructionOffsetForNth(exec, m_instructions, i + 1, isGlobalResolve));
- ++i;
- } while (i < m_globalResolveInfos.size());
- }
- if (!m_structureStubInfos.isEmpty()) {
- size_t i = 0;
- do {
- printStructureStubInfo(m_structureStubInfos[i], instructionOffsetForNth(exec, m_instructions, i + 1, isPropertyAccess));
- ++i;
- } while (i < m_structureStubInfos.size());
- }
-#else
- if (!m_globalResolveInstructions.isEmpty() || !m_propertyAccessInstructions.isEmpty())
- printf("\nStructures:\n");
-
- if (!m_globalResolveInstructions.isEmpty()) {
- size_t i = 0;
- do {
- printStructures(&m_instructions[m_globalResolveInstructions[i]]);
- ++i;
- } while (i < m_globalResolveInstructions.size());
- }
- if (!m_propertyAccessInstructions.isEmpty()) {
- size_t i = 0;
- do {
- printStructures(&m_instructions[m_propertyAccessInstructions[i]]);
- ++i;
- } while (i < m_propertyAccessInstructions.size());
- }
+ if (!m_structureStubInfos.isEmpty())
+ out.printf("\nStructures:\n");
#endif
if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) {
- printf("\nException Handlers:\n");
+ out.printf("\nException Handlers:\n");
unsigned i = 0;
do {
- printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target);
+ out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] depth: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target, m_rareData->m_exceptionHandlers[i].scopeDepth);
++i;
} while (i < m_rareData->m_exceptionHandlers.size());
}
if (m_rareData && !m_rareData->m_immediateSwitchJumpTables.isEmpty()) {
- printf("Immediate Switch Jump Tables:\n");
+ out.printf("Immediate Switch Jump Tables:\n");
unsigned i = 0;
do {
- printf(" %1d = {\n", i);
+ out.printf(" %1d = {\n", i);
int entry = 0;
Vector<int32_t>::const_iterator end = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.end();
for (Vector<int32_t>::const_iterator iter = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) {
if (!*iter)
continue;
- printf("\t\t%4d => %04d\n", entry + m_rareData->m_immediateSwitchJumpTables[i].min, *iter);
+ out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_immediateSwitchJumpTables[i].min, *iter);
}
- printf(" }\n");
+ out.printf(" }\n");
++i;
} while (i < m_rareData->m_immediateSwitchJumpTables.size());
}
if (m_rareData && !m_rareData->m_characterSwitchJumpTables.isEmpty()) {
- printf("\nCharacter Switch Jump Tables:\n");
+ out.printf("\nCharacter Switch Jump Tables:\n");
unsigned i = 0;
do {
- printf(" %1d = {\n", i);
+ out.printf(" %1d = {\n", i);
int entry = 0;
Vector<int32_t>::const_iterator end = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.end();
for (Vector<int32_t>::const_iterator iter = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) {
continue;
ASSERT(!((i + m_rareData->m_characterSwitchJumpTables[i].min) & ~0xFFFF));
UChar ch = static_cast<UChar>(entry + m_rareData->m_characterSwitchJumpTables[i].min);
- printf("\t\t\"%s\" => %04d\n", UString(&ch, 1).ascii(), *iter);
- }
- printf(" }\n");
+ out.printf("\t\t\"%s\" => %04d\n", String(&ch, 1).utf8().data(), *iter);
+ }
+ out.printf(" }\n");
++i;
} while (i < m_rareData->m_characterSwitchJumpTables.size());
}
if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) {
- printf("\nString Switch Jump Tables:\n");
+ out.printf("\nString Switch Jump Tables:\n");
unsigned i = 0;
do {
- printf(" %1d = {\n", i);
+ out.printf(" %1d = {\n", i);
StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end();
for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter)
- printf("\t\t\"%s\" => %04d\n", UString(iter->first).ascii(), iter->second.branchOffset);
- printf(" }\n");
+ out.printf("\t\t\"%s\" => %04d\n", String(iter->key).utf8().data(), iter->value.branchOffset);
+ out.printf(" }\n");
++i;
} while (i < m_rareData->m_stringSwitchJumpTables.size());
}
- printf("\n");
+ out.printf("\n");
+}
+
+void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling)
+{
+ if (hasPrintedProfiling) {
+ out.print("; ");
+ return;
+ }
+
+ out.print(" ");
+ hasPrintedProfiling = true;
+}
+
+void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling)
+{
+ ++it;
+#if ENABLE(VALUE_PROFILER)
+ CString description = it->u.profile->briefDescription();
+ if (!description.length())
+ return;
+ beginDumpProfiling(out, hasPrintedProfiling);
+ out.print(description);
+#else
+ UNUSED_PARAM(out);
+ UNUSED_PARAM(hasPrintedProfiling);
+#endif
+}
+
+void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling)
+{
+ ++it;
+#if ENABLE(VALUE_PROFILER)
+ CString description = it->u.arrayProfile->briefDescription(this);
+ if (!description.length())
+ return;
+ beginDumpProfiling(out, hasPrintedProfiling);
+ out.print(description);
+#else
+ UNUSED_PARAM(out);
+ UNUSED_PARAM(hasPrintedProfiling);
+#endif
+}
+
+#if ENABLE(VALUE_PROFILER)
+void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling)
+{
+ if (!profile || !profile->m_counter)
+ return;
+
+ beginDumpProfiling(out, hasPrintedProfiling);
+ out.print(name, profile->m_counter);
}
+#endif
-void CodeBlock::dump(ExecState* exec, const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator& it) const
+void CodeBlock::dumpBytecode(PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it)
{
int location = it - begin;
+ bool hasPrintedProfiling = false;
switch (exec->interpreter()->getOpcodeID(it->u.opcode)) {
case op_enter: {
- printf("[%4d] enter\n", location);
+ out.printf("[%4d] enter", location);
break;
}
- case op_enter_with_activation: {
+ case op_create_activation: {
int r0 = (++it)->u.operand;
- printf("[%4d] enter_with_activation %s\n", location, registerName(r0).c_str());
+ out.printf("[%4d] create_activation %s", location, registerName(exec, r0).data());
break;
}
case op_create_arguments: {
- printf("[%4d] create_arguments\n", location);
+ int r0 = (++it)->u.operand;
+ out.printf("[%4d] create_arguments\t %s", location, registerName(exec, r0).data());
break;
}
- case op_convert_this: {
+ case op_init_lazy_reg: {
int r0 = (++it)->u.operand;
- printf("[%4d] convert_this %s\n", location, registerName(r0).c_str());
+ out.printf("[%4d] init_lazy_reg\t %s", location, registerName(exec, r0).data());
break;
}
- case op_unexpected_load: {
+ case op_get_callee: {
int r0 = (++it)->u.operand;
- int k0 = (++it)->u.operand;
- printf("[%4d] unexpected_load\t %s, %s\n", location, registerName(r0).c_str(), constantName(exec, k0, unexpectedConstant(k0)).c_str());
+ out.printf("[%4d] op_get_callee %s\n", location, registerName(exec, r0).data());
+ ++it;
+ break;
+ }
+ case op_create_this: {
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ unsigned inferredInlineCapacity = (++it)->u.operand;
+ out.printf("[%4d] create_this %s, %s, %u", location, registerName(exec, r0).data(), registerName(exec, r1).data(), inferredInlineCapacity);
+ break;
+ }
+ case op_convert_this: {
+ int r0 = (++it)->u.operand;
+ out.printf("[%4d] convert_this\t %s", location, registerName(exec, r0).data());
+ ++it; // Skip value profile.
break;
}
case op_new_object: {
int r0 = (++it)->u.operand;
- printf("[%4d] new_object\t %s\n", location, registerName(r0).c_str());
+ unsigned inferredInlineCapacity = (++it)->u.operand;
+ out.printf("[%4d] new_object\t %s, %u", location, registerName(exec, r0).data(), inferredInlineCapacity);
+ ++it; // Skip object allocation profile.
break;
}
case op_new_array: {
int dst = (++it)->u.operand;
int argv = (++it)->u.operand;
int argc = (++it)->u.operand;
- printf("[%4d] new_array\t %s, %s, %d\n", location, registerName(dst).c_str(), registerName(argv).c_str(), argc);
+ out.printf("[%4d] new_array\t %s, %s, %d", location, registerName(exec, dst).data(), registerName(exec, argv).data(), argc);
+ ++it; // Skip array allocation profile.
+ break;
+ }
+ case op_new_array_with_size: {
+ int dst = (++it)->u.operand;
+ int length = (++it)->u.operand;
+ out.printf("[%4d] new_array_with_size\t %s, %s", location, registerName(exec, dst).data(), registerName(exec, length).data());
+ ++it; // Skip array allocation profile.
+ break;
+ }
+ case op_new_array_buffer: {
+ int dst = (++it)->u.operand;
+ int argv = (++it)->u.operand;
+ int argc = (++it)->u.operand;
+ out.printf("[%4d] new_array_buffer\t %s, %d, %d", location, registerName(exec, dst).data(), argv, argc);
+ ++it; // Skip array allocation profile.
break;
}
case op_new_regexp: {
int r0 = (++it)->u.operand;
int re0 = (++it)->u.operand;
- printf("[%4d] new_regexp\t %s, %s\n", location, registerName(r0).c_str(), regexpName(re0, regexp(re0)).c_str());
+ out.printf("[%4d] new_regexp\t %s, ", location, registerName(exec, r0).data());
+ if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps())
+ out.printf("%s", regexpName(re0, regexp(re0)).data());
+ else
+ out.printf("bad_regexp(%d)", re0);
break;
}
case op_mov: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
- printf("[%4d] mov\t\t %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str());
+ out.printf("[%4d] mov\t\t %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_not: {
- printUnaryOp(location, it, "not");
+ printUnaryOp(out, exec, location, it, "not");
break;
}
case op_eq: {
- printBinaryOp(location, it, "eq");
+ printBinaryOp(out, exec, location, it, "eq");
break;
}
case op_eq_null: {
- printUnaryOp(location, it, "eq_null");
+ printUnaryOp(out, exec, location, it, "eq_null");
break;
}
case op_neq: {
- printBinaryOp(location, it, "neq");
+ printBinaryOp(out, exec, location, it, "neq");
break;
}
case op_neq_null: {
- printUnaryOp(location, it, "neq_null");
+ printUnaryOp(out, exec, location, it, "neq_null");
break;
}
case op_stricteq: {
- printBinaryOp(location, it, "stricteq");
+ printBinaryOp(out, exec, location, it, "stricteq");
break;
}
case op_nstricteq: {
- printBinaryOp(location, it, "nstricteq");
+ printBinaryOp(out, exec, location, it, "nstricteq");
break;
}
case op_less: {
- printBinaryOp(location, it, "less");
+ printBinaryOp(out, exec, location, it, "less");
break;
}
case op_lesseq: {
- printBinaryOp(location, it, "lesseq");
+ printBinaryOp(out, exec, location, it, "lesseq");
break;
}
- case op_pre_inc: {
- int r0 = (++it)->u.operand;
- printf("[%4d] pre_inc\t\t %s\n", location, registerName(r0).c_str());
+ case op_greater: {
+ printBinaryOp(out, exec, location, it, "greater");
break;
}
- case op_pre_dec: {
- int r0 = (++it)->u.operand;
- printf("[%4d] pre_dec\t\t %s\n", location, registerName(r0).c_str());
+ case op_greatereq: {
+ printBinaryOp(out, exec, location, it, "greatereq");
break;
}
- case op_post_inc: {
- printUnaryOp(location, it, "post_inc");
+ case op_inc: {
+ int r0 = (++it)->u.operand;
+ out.printf("[%4d] pre_inc\t\t %s", location, registerName(exec, r0).data());
break;
}
- case op_post_dec: {
- printUnaryOp(location, it, "post_dec");
+ case op_dec: {
+ int r0 = (++it)->u.operand;
+ out.printf("[%4d] pre_dec\t\t %s", location, registerName(exec, r0).data());
break;
}
- case op_to_jsnumber: {
- printUnaryOp(location, it, "to_jsnumber");
+ case op_to_number: {
+ printUnaryOp(out, exec, location, it, "to_number");
break;
}
case op_negate: {
- printUnaryOp(location, it, "negate");
+ printUnaryOp(out, exec, location, it, "negate");
break;
}
case op_add: {
- printBinaryOp(location, it, "add");
+ printBinaryOp(out, exec, location, it, "add");
++it;
break;
}
case op_mul: {
- printBinaryOp(location, it, "mul");
+ printBinaryOp(out, exec, location, it, "mul");
++it;
break;
}
case op_div: {
- printBinaryOp(location, it, "div");
+ printBinaryOp(out, exec, location, it, "div");
+ ++it;
break;
}
case op_mod: {
- printBinaryOp(location, it, "mod");
+ printBinaryOp(out, exec, location, it, "mod");
break;
}
case op_sub: {
- printBinaryOp(location, it, "sub");
+ printBinaryOp(out, exec, location, it, "sub");
++it;
break;
}
case op_lshift: {
- printBinaryOp(location, it, "lshift");
+ printBinaryOp(out, exec, location, it, "lshift");
break;
}
case op_rshift: {
- printBinaryOp(location, it, "rshift");
+ printBinaryOp(out, exec, location, it, "rshift");
break;
}
case op_urshift: {
- printBinaryOp(location, it, "urshift");
+ printBinaryOp(out, exec, location, it, "urshift");
break;
}
case op_bitand: {
- printBinaryOp(location, it, "bitand");
+ printBinaryOp(out, exec, location, it, "bitand");
++it;
break;
}
case op_bitxor: {
- printBinaryOp(location, it, "bitxor");
+ printBinaryOp(out, exec, location, it, "bitxor");
++it;
break;
}
case op_bitor: {
- printBinaryOp(location, it, "bitor");
+ printBinaryOp(out, exec, location, it, "bitor");
++it;
break;
}
- case op_bitnot: {
- printUnaryOp(location, it, "bitnot");
+ case op_check_has_instance: {
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ int r2 = (++it)->u.operand;
+ int offset = (++it)->u.operand;
+ out.printf("[%4d] check_has_instance\t\t %s, %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), offset, location + offset);
break;
}
case op_instanceof: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
- int r3 = (++it)->u.operand;
- printf("[%4d] instanceof\t\t %s, %s, %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str(), registerName(r2).c_str(), registerName(r3).c_str());
+ out.printf("[%4d] instanceof\t\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
case op_typeof: {
- printUnaryOp(location, it, "typeof");
+ printUnaryOp(out, exec, location, it, "typeof");
break;
}
case op_is_undefined: {
- printUnaryOp(location, it, "is_undefined");
+ printUnaryOp(out, exec, location, it, "is_undefined");
break;
}
case op_is_boolean: {
- printUnaryOp(location, it, "is_boolean");
+ printUnaryOp(out, exec, location, it, "is_boolean");
break;
}
case op_is_number: {
- printUnaryOp(location, it, "is_number");
+ printUnaryOp(out, exec, location, it, "is_number");
break;
}
case op_is_string: {
- printUnaryOp(location, it, "is_string");
+ printUnaryOp(out, exec, location, it, "is_string");
break;
}
case op_is_object: {
- printUnaryOp(location, it, "is_object");
+ printUnaryOp(out, exec, location, it, "is_object");
break;
}
case op_is_function: {
- printUnaryOp(location, it, "is_function");
+ printUnaryOp(out, exec, location, it, "is_function");
break;
}
case op_in: {
- printBinaryOp(location, it, "in");
- break;
- }
- case op_resolve: {
- int r0 = (++it)->u.operand;
- int id0 = (++it)->u.operand;
- printf("[%4d] resolve\t\t %s, %s\n", location, registerName(r0).c_str(), idName(id0, m_identifiers[id0]).c_str());
+ printBinaryOp(out, exec, location, it, "in");
break;
}
- case op_resolve_skip: {
- int r0 = (++it)->u.operand;
+ case op_put_to_base_variable:
+ case op_put_to_base: {
+ int base = (++it)->u.operand;
int id0 = (++it)->u.operand;
- int skipLevels = (++it)->u.operand;
- printf("[%4d] resolve_skip\t %s, %s, %d\n", location, registerName(r0).c_str(), idName(id0, m_identifiers[id0]).c_str(), skipLevels);
+ int value = (++it)->u.operand;
+ int resolveInfo = (++it)->u.operand;
+ out.printf("[%4d] put_to_base\t %s, %s, %s, %d", location, registerName(exec, base).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, value).data(), resolveInfo);
break;
}
- case op_resolve_global: {
+ case op_resolve:
+ case op_resolve_global_property:
+ case op_resolve_global_var:
+ case op_resolve_scoped_var:
+ case op_resolve_scoped_var_on_top_scope:
+ case op_resolve_scoped_var_with_top_scope_check: {
int r0 = (++it)->u.operand;
- JSValuePtr scope = JSValuePtr((++it)->u.jsCell);
int id0 = (++it)->u.operand;
- printf("[%4d] resolve_global\t %s, %s, %s\n", location, registerName(r0).c_str(), valueToSourceString(exec, scope).ascii(), idName(id0, m_identifiers[id0]).c_str());
- it += 2;
+ int resolveInfo = (++it)->u.operand;
+ out.printf("[%4d] resolve\t\t %s, %s, %d", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo);
+ dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_get_scoped_var: {
int r0 = (++it)->u.operand;
int index = (++it)->u.operand;
int skipLevels = (++it)->u.operand;
- printf("[%4d] get_scoped_var\t %s, %d, %d\n", location, registerName(r0).c_str(), index, skipLevels);
+ out.printf("[%4d] get_scoped_var\t %s, %d, %d", location, registerName(exec, r0).data(), index, skipLevels);
+ dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_put_scoped_var: {
int index = (++it)->u.operand;
int skipLevels = (++it)->u.operand;
int r0 = (++it)->u.operand;
- printf("[%4d] put_scoped_var\t %d, %d, %s\n", location, index, skipLevels, registerName(r0).c_str());
+ out.printf("[%4d] put_scoped_var\t %d, %d, %s", location, index, skipLevels, registerName(exec, r0).data());
+ break;
+ }
+ case op_init_global_const_nop: {
+ out.printf("[%4d] init_global_const_nop\t", location);
+ it++;
+ it++;
+ it++;
+ it++;
break;
}
- case op_get_global_var: {
+ case op_init_global_const: {
+ WriteBarrier<Unknown>* registerPointer = (++it)->u.registerPointer;
int r0 = (++it)->u.operand;
- JSValuePtr scope = JSValuePtr((++it)->u.jsCell);
- int index = (++it)->u.operand;
- printf("[%4d] get_global_var\t %s, %s, %d\n", location, registerName(r0).c_str(), valueToSourceString(exec, scope).ascii(), index);
+ out.printf("[%4d] init_global_const\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(exec, r0).data());
+ it++;
+ it++;
break;
}
- case op_put_global_var: {
- JSValuePtr scope = JSValuePtr((++it)->u.jsCell);
- int index = (++it)->u.operand;
+ case op_init_global_const_check: {
+ WriteBarrier<Unknown>* registerPointer = (++it)->u.registerPointer;
int r0 = (++it)->u.operand;
- printf("[%4d] put_global_var\t %s, %d, %s\n", location, valueToSourceString(exec, scope).ascii(), index, registerName(r0).c_str());
+ out.printf("[%4d] init_global_const_check\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(exec, r0).data());
+ it++;
+ it++;
break;
}
+ case op_resolve_base_to_global:
+ case op_resolve_base_to_global_dynamic:
+ case op_resolve_base_to_scope:
+ case op_resolve_base_to_scope_with_top_scope_check:
case op_resolve_base: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
- printf("[%4d] resolve_base\t %s, %s\n", location, registerName(r0).c_str(), idName(id0, m_identifiers[id0]).c_str());
+ int isStrict = (++it)->u.operand;
+ int resolveInfo = (++it)->u.operand;
+ int putToBaseInfo = (++it)->u.operand;
+ out.printf("[%4d] resolve_base%s\t %s, %s, %d, %d", location, isStrict ? "_strict" : "", registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo, putToBaseInfo);
+ dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_resolve_with_base: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
- printf("[%4d] resolve_with_base %s, %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str(), idName(id0, m_identifiers[id0]).c_str());
+ int resolveInfo = (++it)->u.operand;
+ int putToBaseInfo = (++it)->u.operand;
+ out.printf("[%4d] resolve_with_base %s, %s, %s, %d, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo, putToBaseInfo);
+ dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
- case op_resolve_func: {
+ case op_resolve_with_this: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
- printf("[%4d] resolve_func\t %s, %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str(), idName(id0, m_identifiers[id0]).c_str());
- break;
- }
- case op_get_by_id: {
- printGetByIdOp(location, it, m_identifiers, "get_by_id");
+ int resolveInfo = (++it)->u.operand;
+ out.printf("[%4d] resolve_with_this %s, %s, %s, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo);
+ dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
- case op_get_by_id_self: {
- printGetByIdOp(location, it, m_identifiers, "get_by_id_self");
- break;
- }
- case op_get_by_id_self_list: {
- printGetByIdOp(location, it, m_identifiers, "get_by_id_self_list");
+ case op_get_by_id:
+ case op_get_by_id_out_of_line:
+ case op_get_by_id_self:
+ case op_get_by_id_proto:
+ case op_get_by_id_chain:
+ case op_get_by_id_getter_self:
+ case op_get_by_id_getter_proto:
+ case op_get_by_id_getter_chain:
+ case op_get_by_id_custom_self:
+ case op_get_by_id_custom_proto:
+ case op_get_by_id_custom_chain:
+ case op_get_by_id_generic:
+ case op_get_array_length:
+ case op_get_string_length: {
+ printGetByIdOp(out, exec, location, it);
+ printGetByIdCacheStatus(out, exec, location);
+ dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
- case op_get_by_id_proto: {
- printGetByIdOp(location, it, m_identifiers, "get_by_id_proto");
+ case op_get_arguments_length: {
+ printUnaryOp(out, exec, location, it, "get_arguments_length");
+ it++;
break;
}
- case op_get_by_id_proto_list: {
- printGetByIdOp(location, it, m_identifiers, "op_get_by_id_proto_list");
+ case op_put_by_id: {
+ printPutByIdOp(out, exec, location, it, "put_by_id");
break;
}
- case op_get_by_id_chain: {
- printGetByIdOp(location, it, m_identifiers, "get_by_id_chain");
+ case op_put_by_id_out_of_line: {
+ printPutByIdOp(out, exec, location, it, "put_by_id_out_of_line");
break;
}
- case op_get_by_id_generic: {
- printGetByIdOp(location, it, m_identifiers, "get_by_id_generic");
+ case op_put_by_id_replace: {
+ printPutByIdOp(out, exec, location, it, "put_by_id_replace");
break;
}
- case op_get_array_length: {
- printGetByIdOp(location, it, m_identifiers, "get_array_length");
+ case op_put_by_id_transition: {
+ printPutByIdOp(out, exec, location, it, "put_by_id_transition");
break;
}
- case op_get_string_length: {
- printGetByIdOp(location, it, m_identifiers, "get_string_length");
+ case op_put_by_id_transition_direct: {
+ printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct");
break;
}
- case op_put_by_id: {
- printPutByIdOp(location, it, m_identifiers, "put_by_id");
+ case op_put_by_id_transition_direct_out_of_line: {
+ printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct_out_of_line");
break;
}
- case op_put_by_id_replace: {
- printPutByIdOp(location, it, m_identifiers, "put_by_id_replace");
+ case op_put_by_id_transition_normal: {
+ printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal");
break;
}
- case op_put_by_id_transition: {
- printPutByIdOp(location, it, m_identifiers, "put_by_id_transition");
+ case op_put_by_id_transition_normal_out_of_line: {
+ printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal_out_of_line");
break;
}
case op_put_by_id_generic: {
- printPutByIdOp(location, it, m_identifiers, "put_by_id_generic");
- break;
- }
- case op_put_getter: {
- int r0 = (++it)->u.operand;
- int id0 = (++it)->u.operand;
- int r1 = (++it)->u.operand;
- printf("[%4d] put_getter\t %s, %s, %s\n", location, registerName(r0).c_str(), idName(id0, m_identifiers[id0]).c_str(), registerName(r1).c_str());
+ printPutByIdOp(out, exec, location, it, "put_by_id_generic");
break;
}
- case op_put_setter: {
+ case op_put_getter_setter: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
- printf("[%4d] put_setter\t %s, %s, %s\n", location, registerName(r0).c_str(), idName(id0, m_identifiers[id0]).c_str(), registerName(r1).c_str());
+ int r2 = (++it)->u.operand;
+ out.printf("[%4d] put_getter_setter\t %s, %s, %s, %s", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
case op_del_by_id: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
- printf("[%4d] del_by_id\t %s, %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str(), idName(id0, m_identifiers[id0]).c_str());
+ out.printf("[%4d] del_by_id\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data());
break;
}
case op_get_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
- printf("[%4d] get_by_val\t %s, %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str(), registerName(r2).c_str());
+ out.printf("[%4d] get_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
+ dumpArrayProfiling(out, it, hasPrintedProfiling);
+ dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
- case op_put_by_val: {
+ case op_get_argument_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
- printf("[%4d] put_by_val\t %s, %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str(), registerName(r2).c_str());
+ out.printf("[%4d] get_argument_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
+ ++it;
+ dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
- case op_del_by_val: {
+ case op_get_by_pname: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
- printf("[%4d] del_by_val\t %s, %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str(), registerName(r2).c_str());
+ int r3 = (++it)->u.operand;
+ int r4 = (++it)->u.operand;
+ int r5 = (++it)->u.operand;
+ out.printf("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), registerName(exec, r4).data(), registerName(exec, r5).data());
break;
}
- case op_put_by_index: {
+ case op_put_by_val: {
int r0 = (++it)->u.operand;
- unsigned n0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
- printf("[%4d] put_by_index\t %s, %u, %s\n", location, registerName(r0).c_str(), n0, registerName(r1).c_str());
+ int r2 = (++it)->u.operand;
+ out.printf("[%4d] put_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
+ dumpArrayProfiling(out, it, hasPrintedProfiling);
break;
}
- case op_jmp: {
- int offset = (++it)->u.operand;
- printf("[%4d] jmp\t\t %d(->%d)\n", location, offset, locationForOffset(begin, it, offset));
+ case op_del_by_val: {
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ int r2 = (++it)->u.operand;
+ out.printf("[%4d] del_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
- case op_loop: {
- int offset = (++it)->u.operand;
- printf("[%4d] loop\t\t %d(->%d)\n", location, offset, locationForOffset(begin, it, offset));
+ case op_put_by_index: {
+ int r0 = (++it)->u.operand;
+ unsigned n0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ out.printf("[%4d] put_by_index\t %s, %u, %s", location, registerName(exec, r0).data(), n0, registerName(exec, r1).data());
break;
}
- case op_jtrue: {
- printConditionalJump(begin, it, location, "jtrue");
+ case op_jmp: {
+ int offset = (++it)->u.operand;
+ out.printf("[%4d] jmp\t\t %d(->%d)", location, offset, location + offset);
break;
}
- case op_loop_if_true: {
- printConditionalJump(begin, it, location, "loop_if_true");
+ case op_jtrue: {
+ printConditionalJump(out, exec, begin, it, location, "jtrue");
break;
}
case op_jfalse: {
- printConditionalJump(begin, it, location, "jfalse");
+ printConditionalJump(out, exec, begin, it, location, "jfalse");
break;
}
case op_jeq_null: {
- printConditionalJump(begin, it, location, "jeq_null");
+ printConditionalJump(out, exec, begin, it, location, "jeq_null");
break;
}
case op_jneq_null: {
- printConditionalJump(begin, it, location, "jneq_null");
+ printConditionalJump(out, exec, begin, it, location, "jneq_null");
+ break;
+ }
+ case op_jneq_ptr: {
+ int r0 = (++it)->u.operand;
+ Special::Pointer pointer = (++it)->u.specialPointer;
+ int offset = (++it)->u.operand;
+ out.printf("[%4d] jneq_ptr\t\t %s, %d (%p), %d(->%d)", location, registerName(exec, r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset);
+ break;
+ }
+ case op_jless: {
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ int offset = (++it)->u.operand;
+ out.printf("[%4d] jless\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
+ break;
+ }
+ case op_jlesseq: {
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ int offset = (++it)->u.operand;
+ out.printf("[%4d] jlesseq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
+ break;
+ }
+ case op_jgreater: {
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ int offset = (++it)->u.operand;
+ out.printf("[%4d] jgreater\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
+ break;
+ }
+ case op_jgreatereq: {
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ int offset = (++it)->u.operand;
+ out.printf("[%4d] jgreatereq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jnless: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
- printf("[%4d] jnless\t\t %s, %s, %d(->%d)\n", location, registerName(r0).c_str(), registerName(r1).c_str(), offset, locationForOffset(begin, it, offset));
+ out.printf("[%4d] jnless\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
+ break;
+ }
+ case op_jnlesseq: {
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ int offset = (++it)->u.operand;
+ out.printf("[%4d] jnlesseq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
- case op_loop_if_less: {
+ case op_jngreater: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
- printf("[%4d] loop_if_less\t %s, %s, %d(->%d)\n", location, registerName(r0).c_str(), registerName(r1).c_str(), offset, locationForOffset(begin, it, offset));
+ out.printf("[%4d] jngreater\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
- case op_loop_if_lesseq: {
+ case op_jngreatereq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
- printf("[%4d] loop_if_lesseq\t %s, %s, %d(->%d)\n", location, registerName(r0).c_str(), registerName(r1).c_str(), offset, locationForOffset(begin, it, offset));
+ out.printf("[%4d] jngreatereq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
+ break;
+ }
+ case op_loop_hint: {
+ out.printf("[%4d] loop_hint", location);
break;
}
case op_switch_imm: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
- printf("[%4d] switch_imm\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, locationForOffset(begin, it, defaultTarget), registerName(scrutineeRegister).c_str());
+ out.printf("[%4d] switch_imm\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data());
break;
}
case op_switch_char: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
- printf("[%4d] switch_char\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, locationForOffset(begin, it, defaultTarget), registerName(scrutineeRegister).c_str());
+ out.printf("[%4d] switch_char\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data());
break;
}
case op_switch_string: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
- printf("[%4d] switch_string\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, locationForOffset(begin, it, defaultTarget), registerName(scrutineeRegister).c_str());
+ out.printf("[%4d] switch_string\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data());
break;
}
case op_new_func: {
int r0 = (++it)->u.operand;
int f0 = (++it)->u.operand;
- printf("[%4d] new_func\t\t %s, f%d\n", location, registerName(r0).c_str(), f0);
+ int shouldCheck = (++it)->u.operand;
+ out.printf("[%4d] new_func\t\t %s, f%d, %s", location, registerName(exec, r0).data(), f0, shouldCheck ? "<Checked>" : "<Unchecked>");
break;
}
case op_new_func_exp: {
int r0 = (++it)->u.operand;
int f0 = (++it)->u.operand;
- printf("[%4d] new_func_exp\t %s, f%d\n", location, registerName(r0).c_str(), f0);
+ out.printf("[%4d] new_func_exp\t %s, f%d", location, registerName(exec, r0).data(), f0);
break;
}
case op_call: {
- int dst = (++it)->u.operand;
- int func = (++it)->u.operand;
- int argCount = (++it)->u.operand;
- int registerOffset = (++it)->u.operand;
- printf("[%4d] call\t\t %s, %s, %d, %d\n", location, registerName(dst).c_str(), registerName(func).c_str(), argCount, registerOffset);
+ printCallOp(out, exec, location, it, "call", DumpCaches);
break;
}
case op_call_eval: {
- int dst = (++it)->u.operand;
- int func = (++it)->u.operand;
- int argCount = (++it)->u.operand;
- int registerOffset = (++it)->u.operand;
- printf("[%4d] call_eval\t %s, %s, %d, %d\n", location, registerName(dst).c_str(), registerName(func).c_str(), argCount, registerOffset);
+ printCallOp(out, exec, location, it, "call_eval", DontDumpCaches);
+ break;
+ }
+ case op_call_varargs: {
+ int callee = (++it)->u.operand;
+ int thisValue = (++it)->u.operand;
+ int arguments = (++it)->u.operand;
+ int firstFreeRegister = (++it)->u.operand;
+ out.printf("[%4d] call_varargs\t %s, %s, %s, %d", location, registerName(exec, callee).data(), registerName(exec, thisValue).data(), registerName(exec, arguments).data(), firstFreeRegister);
break;
}
case op_tear_off_activation: {
int r0 = (++it)->u.operand;
- printf("[%4d] tear_off_activation\t %s\n", location, registerName(r0).c_str());
+ out.printf("[%4d] tear_off_activation\t %s", location, registerName(exec, r0).data());
break;
}
case op_tear_off_arguments: {
- printf("[%4d] tear_off_arguments\n", location);
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ out.printf("[%4d] tear_off_arguments %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_ret: {
int r0 = (++it)->u.operand;
- printf("[%4d] ret\t\t %s\n", location, registerName(r0).c_str());
+ out.printf("[%4d] ret\t\t %s", location, registerName(exec, r0).data());
+ break;
+ }
+ case op_call_put_result: {
+ int r0 = (++it)->u.operand;
+ out.printf("[%4d] call_put_result\t\t %s", location, registerName(exec, r0).data());
+ dumpValueProfiling(out, it, hasPrintedProfiling);
+ break;
+ }
+ case op_ret_object_or_this: {
+ int r0 = (++it)->u.operand;
+ int r1 = (++it)->u.operand;
+ out.printf("[%4d] constructor_ret\t\t %s %s", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_construct: {
- int dst = (++it)->u.operand;
- int func = (++it)->u.operand;
- int argCount = (++it)->u.operand;
- int registerOffset = (++it)->u.operand;
- int proto = (++it)->u.operand;
- int thisRegister = (++it)->u.operand;
- printf("[%4d] construct\t %s, %s, %d, %d, %s, %s\n", location, registerName(dst).c_str(), registerName(func).c_str(), argCount, registerOffset, registerName(proto).c_str(), registerName(thisRegister).c_str());
+ printCallOp(out, exec, location, it, "construct", DumpCaches);
break;
}
- case op_construct_verify: {
+ case op_strcat: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
- printf("[%4d] construct_verify\t %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str());
+ int count = (++it)->u.operand;
+ out.printf("[%4d] strcat\t\t %s, %s, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), count);
break;
}
- case op_get_pnames: {
+ case op_to_primitive: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
- printf("[%4d] get_pnames\t %s, %s\n", location, registerName(r0).c_str(), registerName(r1).c_str());
+ out.printf("[%4d] to_primitive\t %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data());
+ break;
+ }
+ case op_get_pnames: {
+ int r0 = it[1].u.operand;
+ int r1 = it[2].u.operand;
+ int r2 = it[3].u.operand;
+ int r3 = it[4].u.operand;
+ int offset = it[5].u.operand;
+ out.printf("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), offset, location + offset);
+ it += OPCODE_LENGTH(op_get_pnames) - 1;
break;
}
case op_next_pname: {
- int dest = (++it)->u.operand;
- int iter = (++it)->u.operand;
- int offset = (++it)->u.operand;
- printf("[%4d] next_pname\t %s, %s, %d(->%d)\n", location, registerName(dest).c_str(), registerName(iter).c_str(), offset, locationForOffset(begin, it, offset));
+ int dest = it[1].u.operand;
+ int base = it[2].u.operand;
+ int i = it[3].u.operand;
+ int size = it[4].u.operand;
+ int iter = it[5].u.operand;
+ int offset = it[6].u.operand;
+ out.printf("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)", location, registerName(exec, dest).data(), registerName(exec, base).data(), registerName(exec, i).data(), registerName(exec, size).data(), registerName(exec, iter).data(), offset, location + offset);
+ it += OPCODE_LENGTH(op_next_pname) - 1;
break;
}
- case op_push_scope: {
+ case op_push_with_scope: {
int r0 = (++it)->u.operand;
- printf("[%4d] push_scope\t %s\n", location, registerName(r0).c_str());
+ out.printf("[%4d] push_with_scope\t %s", location, registerName(exec, r0).data());
break;
}
case op_pop_scope: {
- printf("[%4d] pop_scope\n", location);
+ out.printf("[%4d] pop_scope", location);
break;
}
- case op_push_new_scope: {
- int r0 = (++it)->u.operand;
+ case op_push_name_scope: {
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
- printf("[%4d] push_new_scope \t%s, %s, %s\n", location, registerName(r0).c_str(), idName(id0, m_identifiers[id0]).c_str(), registerName(r1).c_str());
- break;
- }
- case op_jmp_scopes: {
- int scopeDelta = (++it)->u.operand;
- int offset = (++it)->u.operand;
- printf("[%4d] jmp_scopes\t^%d, %d(->%d)\n", location, scopeDelta, offset, locationForOffset(begin, it, offset));
+ unsigned attributes = (++it)->u.operand;
+ out.printf("[%4d] push_name_scope \t%s, %s, %u", location, idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data(), attributes);
break;
}
case op_catch: {
int r0 = (++it)->u.operand;
- printf("[%4d] catch\t\t %s\n", location, registerName(r0).c_str());
+ out.printf("[%4d] catch\t\t %s", location, registerName(exec, r0).data());
break;
}
case op_throw: {
int r0 = (++it)->u.operand;
- printf("[%4d] throw\t\t %s\n", location, registerName(r0).c_str());
+ out.printf("[%4d] throw\t\t %s", location, registerName(exec, r0).data());
break;
}
- case op_new_error: {
- int r0 = (++it)->u.operand;
- int errorType = (++it)->u.operand;
+ case op_throw_static_error: {
int k0 = (++it)->u.operand;
- printf("[%4d] new_error\t %s, %d, %s\n", location, registerName(r0).c_str(), errorType, constantName(exec, k0, unexpectedConstant(k0)).c_str());
- break;
- }
- case op_jsr: {
- int retAddrDst = (++it)->u.operand;
- int offset = (++it)->u.operand;
- printf("[%4d] jsr\t\t %s, %d(->%d)\n", location, registerName(retAddrDst).c_str(), offset, locationForOffset(begin, it, offset));
- break;
- }
- case op_sret: {
- int retAddrSrc = (++it)->u.operand;
- printf("[%4d] sret\t\t %s\n", location, registerName(retAddrSrc).c_str());
+ int k1 = (++it)->u.operand;
+ out.printf("[%4d] throw_static_error\t %s, %s", location, constantName(exec, k0, getConstant(k0)).data(), k1 ? "true" : "false");
break;
}
case op_debug: {
int debugHookID = (++it)->u.operand;
int firstLine = (++it)->u.operand;
int lastLine = (++it)->u.operand;
- printf("[%4d] debug\t\t %s, %d, %d\n", location, debugHookName(debugHookID), firstLine, lastLine);
+ int column = (++it)->u.operand;
+ out.printf("[%4d] debug\t\t %s, %d, %d, %d", location, debugHookName(debugHookID), firstLine, lastLine, column);
break;
}
case op_profile_will_call: {
int function = (++it)->u.operand;
- printf("[%4d] profile_will_call %s\n", location, registerName(function).c_str());
+ out.printf("[%4d] profile_will_call %s", location, registerName(exec, function).data());
break;
}
case op_profile_did_call: {
int function = (++it)->u.operand;
- printf("[%4d] profile_did_call\t %s\n", location, registerName(function).c_str());
+ out.printf("[%4d] profile_did_call\t %s", location, registerName(exec, function).data());
break;
}
case op_end: {
int r0 = (++it)->u.operand;
- printf("[%4d] end\t\t %s\n", location, registerName(r0).c_str());
+ out.printf("[%4d] end\t\t %s", location, registerName(exec, r0).data());
break;
}
+#if ENABLE(LLINT_C_LOOP)
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+#endif
+ }
+
+#if ENABLE(VALUE_PROFILER)
+ dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling);
+ dumpRareCaseProfile(out, "special fast case: ", specialFastCaseProfileForBytecodeOffset(location), hasPrintedProfiling);
+#endif
+
+#if ENABLE(DFG_JIT)
+ Vector<FrequentExitSite> exitSites = exitProfile().exitSitesFor(location);
+ if (!exitSites.isEmpty()) {
+ out.print(" !! frequent exits: ");
+ CommaPrinter comma;
+ for (unsigned i = 0; i < exitSites.size(); ++i)
+ out.print(comma, exitSites[i].kind());
}
+#else // ENABLE(DFG_JIT)
+ UNUSED_PARAM(location);
+#endif // ENABLE(DFG_JIT)
+ out.print("\n");
}
-#endif // !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING)
+void CodeBlock::dumpBytecode(PrintStream& out, unsigned bytecodeOffset)
+{
+ ExecState* exec = m_globalObject->globalExec();
+ const Instruction* it = instructions().begin() + bytecodeOffset;
+ dumpBytecode(out, exec, instructions().begin(), it);
+}
#if DUMP_CODE_BLOCK_STATISTICS
static HashSet<CodeBlock*> liveCodeBlockSet;
#define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \
macro(regexps) \
macro(functions) \
- macro(unexpectedConstants) \
macro(exceptionHandlers) \
macro(immediateSwitchJumpTables) \
macro(characterSwitchJumpTables) \
macro(stringSwitchJumpTables) \
- macro(functionRegisterInfos)
-
-#define FOR_EACH_MEMBER_VECTOR_EXCEPTION_INFO(macro) \
+ macro(evalCodeCache) \
macro(expressionInfo) \
macro(lineInfo) \
- macro(getByIdExceptionInfo) \
- macro(pcVector)
+ macro(callReturnIndexVector)
template<typename T>
static size_t sizeInBytes(const Vector<T>& vector)
#define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0;
FOR_EACH_MEMBER_VECTOR(DEFINE_VARS)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS)
- FOR_EACH_MEMBER_VECTOR_EXCEPTION_INFO(DEFINE_VARS)
#undef DEFINE_VARS
// Non-vector data members
size_t symbolTableIsNotEmpty = 0;
size_t symbolTableTotalSize = 0;
- size_t hasExceptionInfo = 0;
size_t hasRareData = 0;
size_t isFunctionCode = 0;
FOR_EACH_MEMBER_VECTOR(GET_STATS)
#undef GET_STATS
- if (!codeBlock->m_symbolTable.isEmpty()) {
+ if (codeBlock->symbolTable() && !codeBlock->symbolTable()->isEmpty()) {
symbolTableIsNotEmpty++;
- symbolTableTotalSize += (codeBlock->m_symbolTable.capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType)));
- }
-
- if (codeBlock->m_exceptionInfo) {
- hasExceptionInfo++;
- #define GET_STATS(name) if (!codeBlock->m_exceptionInfo->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_exceptionInfo->m_##name); }
- FOR_EACH_MEMBER_VECTOR_EXCEPTION_INFO(GET_STATS)
- #undef GET_STATS
+ symbolTableTotalSize += (codeBlock->symbolTable()->capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType)));
}
if (codeBlock->m_rareData) {
#define GET_TOTAL_SIZE(name) totalSize += name##TotalSize;
FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE)
- FOR_EACH_MEMBER_VECTOR_EXCEPTION_INFO(GET_TOTAL_SIZE)
#undef GET_TOTAL_SIZE
totalSize += symbolTableTotalSize;
totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock));
- printf("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size());
- printf("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock));
- printf("Size of all CodeBlocks: %zu\n", totalSize);
- printf("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size());
+ dataLogF("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size());
+ dataLogF("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock));
+ dataLogF("Size of all CodeBlocks: %zu\n", totalSize);
+ dataLogF("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size());
- printf("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast<double>(isFunctionCode) * 100.0 / liveCodeBlockSet.size());
- printf("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast<double>(isGlobalCode) * 100.0 / liveCodeBlockSet.size());
- printf("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast<double>(isEvalCode) * 100.0 / liveCodeBlockSet.size());
+ dataLogF("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast<double>(isFunctionCode) * 100.0 / liveCodeBlockSet.size());
+ dataLogF("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast<double>(isGlobalCode) * 100.0 / liveCodeBlockSet.size());
+ dataLogF("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast<double>(isEvalCode) * 100.0 / liveCodeBlockSet.size());
- printf("Number of CodeBlocks with exception info: %zu (%.3f%%)\n", hasExceptionInfo, static_cast<double>(hasExceptionInfo) * 100.0 / liveCodeBlockSet.size());
- printf("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast<double>(hasRareData) * 100.0 / liveCodeBlockSet.size());
+ dataLogF("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast<double>(hasRareData) * 100.0 / liveCodeBlockSet.size());
- #define PRINT_STATS(name) printf("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); printf("Size of all " #name ": %zu\n", name##TotalSize);
+ #define PRINT_STATS(name) dataLogF("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); dataLogF("Size of all " #name ": %zu\n", name##TotalSize);
FOR_EACH_MEMBER_VECTOR(PRINT_STATS)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS)
- FOR_EACH_MEMBER_VECTOR_EXCEPTION_INFO(PRINT_STATS)
#undef PRINT_STATS
- printf("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty);
- printf("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty);
+ dataLogF("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty);
+ dataLogF("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty);
- printf("Size of all symbolTables: %zu\n", symbolTableTotalSize);
+ dataLogF("Size of all symbolTables: %zu\n", symbolTableTotalSize);
#else
- printf("Dumping CodeBlock statistics is not enabled.\n");
+ dataLogF("Dumping CodeBlock statistics is not enabled.\n");
#endif
}
-
-CodeBlock::CodeBlock(ScopeNode* ownerNode, CodeType codeType, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset)
- : m_numCalleeRegisters(0)
- , m_numConstants(0)
- , m_numVars(0)
- , m_numParameters(0)
- , m_ownerNode(ownerNode)
- , m_globalData(0)
-#ifndef NDEBUG
- , m_instructionCount(0)
+CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other)
+ : m_globalObject(other.m_globalObject)
+ , m_heap(other.m_heap)
+ , m_numCalleeRegisters(other.m_numCalleeRegisters)
+ , m_numVars(other.m_numVars)
+ , m_isConstructor(other.m_isConstructor)
+ , m_unlinkedCode(*other.m_vm, other.m_ownerExecutable.get(), other.m_unlinkedCode.get())
+ , m_ownerExecutable(*other.m_vm, other.m_ownerExecutable.get(), other.m_ownerExecutable.get())
+ , m_vm(other.m_vm)
+ , m_instructions(other.m_instructions)
+ , m_thisRegister(other.m_thisRegister)
+ , m_argumentsRegister(other.m_argumentsRegister)
+ , m_activationRegister(other.m_activationRegister)
+ , m_isStrictMode(other.m_isStrictMode)
+ , m_needsActivation(other.m_needsActivation)
+ , m_source(other.m_source)
+ , m_sourceOffset(other.m_sourceOffset)
+ , m_firstLineColumnOffset(other.m_firstLineColumnOffset)
+ , m_codeType(other.m_codeType)
+ , m_identifiers(other.m_identifiers)
+ , m_constantRegisters(other.m_constantRegisters)
+ , m_functionDecls(other.m_functionDecls)
+ , m_functionExprs(other.m_functionExprs)
+ , m_osrExitCounter(0)
+ , m_optimizationDelayCounter(0)
+ , m_reoptimizationRetryCounter(0)
+ , m_resolveOperations(other.m_resolveOperations)
+ , m_putToBaseOperations(other.m_putToBaseOperations)
+#if ENABLE(JIT)
+ , m_canCompileWithDFGState(DFG::CapabilityLevelNotSet)
#endif
- , m_needsFullScopeChain(ownerNode->needsActivation())
- , m_usesEval(ownerNode->usesEval())
- , m_isNumericCompareFunction(false)
- , m_codeType(codeType)
+{
+ setNumParameters(other.numParameters());
+ optimizeAfterWarmUp();
+ jitAfterWarmUp();
+
+ if (other.m_rareData) {
+ createRareDataIfNecessary();
+
+ m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers;
+ m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers;
+ m_rareData->m_immediateSwitchJumpTables = other.m_rareData->m_immediateSwitchJumpTables;
+ m_rareData->m_characterSwitchJumpTables = other.m_rareData->m_characterSwitchJumpTables;
+ m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables;
+ }
+}
+
+CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSGlobalObject* globalObject, unsigned baseScopeDepth, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset, PassOwnPtr<CodeBlock> alternative)
+ : m_globalObject(globalObject->vm(), ownerExecutable, globalObject)
+ , m_heap(&m_globalObject->vm().heap)
+ , m_numCalleeRegisters(unlinkedCodeBlock->m_numCalleeRegisters)
+ , m_numVars(unlinkedCodeBlock->m_numVars)
+ , m_isConstructor(unlinkedCodeBlock->isConstructor())
+ , m_unlinkedCode(globalObject->vm(), ownerExecutable, unlinkedCodeBlock)
+ , m_ownerExecutable(globalObject->vm(), ownerExecutable, ownerExecutable)
+ , m_vm(unlinkedCodeBlock->vm())
+ , m_thisRegister(unlinkedCodeBlock->thisRegister())
+ , m_argumentsRegister(unlinkedCodeBlock->argumentsRegister())
+ , m_activationRegister(unlinkedCodeBlock->activationRegister())
+ , m_isStrictMode(unlinkedCodeBlock->isStrictMode())
+ , m_needsActivation(unlinkedCodeBlock->needsFullScopeChain())
, m_source(sourceProvider)
, m_sourceOffset(sourceOffset)
- , m_exceptionInfo(new ExceptionInfo)
+ , m_firstLineColumnOffset(firstLineColumnOffset)
+ , m_codeType(unlinkedCodeBlock->codeType())
+ , m_alternative(alternative)
+ , m_osrExitCounter(0)
+ , m_optimizationDelayCounter(0)
+ , m_reoptimizationRetryCounter(0)
{
+ m_vm->startedCompiling(this);
+
ASSERT(m_source);
+ setNumParameters(unlinkedCodeBlock->numParameters());
#if DUMP_CODE_BLOCK_STATISTICS
liveCodeBlockSet.add(this);
#endif
-}
+ setIdentifiers(unlinkedCodeBlock->identifiers());
+ setConstantRegisters(unlinkedCodeBlock->constantRegisters());
+ if (unlinkedCodeBlock->usesGlobalObject())
+ m_constantRegisters[unlinkedCodeBlock->globalObjectRegister()].set(*m_vm, ownerExecutable, globalObject);
+ m_functionDecls.grow(unlinkedCodeBlock->numberOfFunctionDecls());
+ for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) {
+ UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i);
+ unsigned lineCount = unlinkedExecutable->lineCount();
+ unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset();
+ unsigned startColumn = unlinkedExecutable->functionStartColumn();
+ startColumn += (unlinkedExecutable->firstLineOffset() ? 1 : ownerExecutable->startColumn());
+ unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset();
+ unsigned sourceLength = unlinkedExecutable->sourceLength();
+ SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn);
+ FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn);
+ m_functionDecls[i].set(*m_vm, ownerExecutable, executable);
+ }
-CodeBlock::~CodeBlock()
-{
-#if !ENABLE(JIT)
- for (size_t size = m_globalResolveInstructions.size(), i = 0; i < size; ++i)
- derefStructures(&m_instructions[m_globalResolveInstructions[i]]);
+ m_functionExprs.grow(unlinkedCodeBlock->numberOfFunctionExprs());
+ for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) {
+ UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i);
+ unsigned lineCount = unlinkedExecutable->lineCount();
+ unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset();
+ unsigned startColumn = unlinkedExecutable->functionStartColumn();
+ startColumn += (unlinkedExecutable->firstLineOffset() ? 1 : ownerExecutable->startColumn());
+ unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset();
+ unsigned sourceLength = unlinkedExecutable->sourceLength();
+ SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn);
+ FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn);
+ m_functionExprs[i].set(*m_vm, ownerExecutable, executable);
+ }
- for (size_t size = m_propertyAccessInstructions.size(), i = 0; i < size; ++i)
- derefStructures(&m_instructions[m_propertyAccessInstructions[i]]);
-#else
- for (size_t size = m_globalResolveInfos.size(), i = 0; i < size; ++i) {
- if (m_globalResolveInfos[i].structure)
- m_globalResolveInfos[i].structure->deref();
+ if (unlinkedCodeBlock->hasRareData()) {
+ createRareDataIfNecessary();
+ if (size_t count = unlinkedCodeBlock->constantBufferCount()) {
+ m_rareData->m_constantBuffers.grow(count);
+ for (size_t i = 0; i < count; i++) {
+ const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i);
+ m_rareData->m_constantBuffers[i] = buffer;
+ }
+ }
+ if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) {
+ m_rareData->m_exceptionHandlers.grow(count);
+ for (size_t i = 0; i < count; i++) {
+ const UnlinkedHandlerInfo& handler = unlinkedCodeBlock->exceptionHandler(i);
+ m_rareData->m_exceptionHandlers[i].start = handler.start;
+ m_rareData->m_exceptionHandlers[i].end = handler.end;
+ m_rareData->m_exceptionHandlers[i].target = handler.target;
+ m_rareData->m_exceptionHandlers[i].scopeDepth = handler.scopeDepth + baseScopeDepth;
+#if ENABLE(JIT) && ENABLE(LLINT)
+ m_rareData->m_exceptionHandlers[i].nativeCode = CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(llint_op_catch)));
+#endif
+ }
+ }
+
+ if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) {
+ m_rareData->m_stringSwitchJumpTables.grow(count);
+ for (size_t i = 0; i < count; i++) {
+ UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin();
+ UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end();
+ for (; ptr != end; ++ptr) {
+ OffsetLocation offset;
+ offset.branchOffset = ptr->value;
+ m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset);
+ }
+ }
+ }
+
+ if (size_t count = unlinkedCodeBlock->numberOfImmediateSwitchJumpTables()) {
+ m_rareData->m_immediateSwitchJumpTables.grow(count);
+ for (size_t i = 0; i < count; i++) {
+ UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->immediateSwitchJumpTable(i);
+ SimpleJumpTable& destTable = m_rareData->m_immediateSwitchJumpTables[i];
+ destTable.branchOffsets = sourceTable.branchOffsets;
+ destTable.min = sourceTable.min;
+ }
+ }
+
+ if (size_t count = unlinkedCodeBlock->numberOfCharacterSwitchJumpTables()) {
+ m_rareData->m_characterSwitchJumpTables.grow(count);
+ for (size_t i = 0; i < count; i++) {
+ UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->characterSwitchJumpTable(i);
+ SimpleJumpTable& destTable = m_rareData->m_characterSwitchJumpTables[i];
+ destTable.branchOffsets = sourceTable.branchOffsets;
+ destTable.min = sourceTable.min;
+ }
+ }
}
- for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i)
- m_structureStubInfos[i].deref();
+ // Allocate metadata buffers for the bytecode
+#if ENABLE(LLINT)
+ if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos())
+ m_llintCallLinkInfos.grow(size);
+#endif
+#if ENABLE(DFG_JIT)
+ if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles())
+ m_arrayProfiles.grow(size);
+ if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles())
+ m_arrayAllocationProfiles.grow(size);
+ if (size_t size = unlinkedCodeBlock->numberOfValueProfiles())
+ m_valueProfiles.grow(size);
+#endif
+ if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles())
+ m_objectAllocationProfiles.grow(size);
+ if (size_t size = unlinkedCodeBlock->numberOfResolveOperations())
+ m_resolveOperations.grow(size);
+ if (size_t putToBaseCount = unlinkedCodeBlock->numberOfPutToBaseOperations()) {
+ m_putToBaseOperations.reserveInitialCapacity(putToBaseCount);
+ for (size_t i = 0; i < putToBaseCount; ++i)
+ m_putToBaseOperations.uncheckedAppend(PutToBaseOperation(isStrictMode()));
+ }
+
+ // Copy and translate the UnlinkedInstructions
+ size_t instructionCount = unlinkedCodeBlock->instructions().size();
+ UnlinkedInstruction* pc = unlinkedCodeBlock->instructions().data();
+ Vector<Instruction, 0, UnsafeVectorOverflow> instructions(instructionCount);
+ for (size_t i = 0; i < unlinkedCodeBlock->instructions().size(); ) {
+ unsigned opLength = opcodeLength(pc[i].u.opcode);
+ instructions[i] = vm()->interpreter->getOpcode(pc[i].u.opcode);
+ for (size_t j = 1; j < opLength; ++j) {
+ if (sizeof(int32_t) != sizeof(intptr_t))
+ instructions[i + j].u.pointer = 0;
+ instructions[i + j].u.operand = pc[i + j].u.operand;
+ }
+ switch (pc[i].u.opcode) {
+#if ENABLE(DFG_JIT)
+ case op_get_by_val:
+ case op_get_argument_by_val: {
+ int arrayProfileIndex = pc[i + opLength - 2].u.operand;
+ m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
+
+ instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex];
+ // fallthrough
+ }
+ case op_convert_this:
+ case op_get_by_id:
+ case op_call_put_result:
+ case op_get_callee: {
+ ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
+ ASSERT(profile->m_bytecodeOffset == -1);
+ profile->m_bytecodeOffset = i;
+ instructions[i + opLength - 1] = profile;
+ break;
+ }
+ case op_put_by_val: {
+ int arrayProfileIndex = pc[i + opLength - 1].u.operand;
+ m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
+ instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex];
+ break;
+ }
+
+ case op_new_array:
+ case op_new_array_buffer:
+ case op_new_array_with_size: {
+ int arrayAllocationProfileIndex = pc[i + opLength - 1].u.operand;
+ instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex];
+ break;
+ }
+#endif
+ case op_resolve_base:
+ case op_resolve_base_to_global:
+ case op_resolve_base_to_global_dynamic:
+ case op_resolve_base_to_scope:
+ case op_resolve_base_to_scope_with_top_scope_check: {
+ instructions[i + 4].u.resolveOperations = &m_resolveOperations[pc[i + 4].u.operand];
+ instructions[i + 5].u.putToBaseOperation = &m_putToBaseOperations[pc[i + 5].u.operand];
+#if ENABLE(DFG_JIT)
+ ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
+ ASSERT(profile->m_bytecodeOffset == -1);
+ profile->m_bytecodeOffset = i;
+ ASSERT((opLength - 1) > 5);
+ instructions[i + opLength - 1] = profile;
+#endif
+ break;
+ }
+ case op_resolve_global_property:
+ case op_resolve_global_var:
+ case op_resolve_scoped_var:
+ case op_resolve_scoped_var_on_top_scope:
+ case op_resolve_scoped_var_with_top_scope_check: {
+ instructions[i + 3].u.resolveOperations = &m_resolveOperations[pc[i + 3].u.operand];
+ break;
+ }
+ case op_put_to_base:
+ case op_put_to_base_variable: {
+ instructions[i + 4].u.putToBaseOperation = &m_putToBaseOperations[pc[i + 4].u.operand];
+ break;
+ }
+ case op_resolve: {
+#if ENABLE(DFG_JIT)
+ ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
+ ASSERT(profile->m_bytecodeOffset == -1);
+ profile->m_bytecodeOffset = i;
+ ASSERT((opLength - 1) > 3);
+ instructions[i + opLength - 1] = profile;
+#endif
+ instructions[i + 3].u.resolveOperations = &m_resolveOperations[pc[i + 3].u.operand];
+ break;
+ }
+ case op_resolve_with_base:
+ case op_resolve_with_this: {
+ instructions[i + 4].u.resolveOperations = &m_resolveOperations[pc[i + 4].u.operand];
+ if (pc[i].u.opcode != op_resolve_with_this)
+ instructions[i + 5].u.putToBaseOperation = &m_putToBaseOperations[pc[i + 5].u.operand];
+#if ENABLE(DFG_JIT)
+ ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
+ ASSERT(profile->m_bytecodeOffset == -1);
+ profile->m_bytecodeOffset = i;
+ instructions[i + opLength - 1] = profile;
+#endif
+ break;
+ }
+ case op_new_object: {
+ int objectAllocationProfileIndex = pc[i + opLength - 1].u.operand;
+ ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex];
+ int inferredInlineCapacity = pc[i + opLength - 2].u.operand;
+
+ instructions[i + opLength - 1] = objectAllocationProfile;
+ objectAllocationProfile->initialize(*vm(),
+ m_ownerExecutable.get(), m_globalObject->objectPrototype(), inferredInlineCapacity);
+ break;
+ }
+
+ case op_get_scoped_var: {
+#if ENABLE(DFG_JIT)
+ ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
+ ASSERT(profile->m_bytecodeOffset == -1);
+ profile->m_bytecodeOffset = i;
+ instructions[i + opLength - 1] = profile;
+#endif
+ break;
+ }
+
+ case op_call:
+ case op_call_eval: {
+#if ENABLE(DFG_JIT)
+ int arrayProfileIndex = pc[i + opLength - 1].u.operand;
+ m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
+ instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex];
+#endif
+#if ENABLE(LLINT)
+ instructions[i + 4] = &m_llintCallLinkInfos[pc[i + 4].u.operand];
+#endif
+ break;
+ }
+ case op_construct:
+#if ENABLE(LLINT)
+ instructions[i + 4] = &m_llintCallLinkInfos[pc[i + 4].u.operand];
+#endif
+ break;
+ case op_get_by_id_out_of_line:
+ case op_get_by_id_self:
+ case op_get_by_id_proto:
+ case op_get_by_id_chain:
+ case op_get_by_id_getter_self:
+ case op_get_by_id_getter_proto:
+ case op_get_by_id_getter_chain:
+ case op_get_by_id_custom_self:
+ case op_get_by_id_custom_proto:
+ case op_get_by_id_custom_chain:
+ case op_get_by_id_generic:
+ case op_get_array_length:
+ case op_get_string_length:
+ CRASH();
+
+ case op_init_global_const_nop: {
+ ASSERT(codeType() == GlobalCode);
+ Identifier ident = identifier(pc[i + 4].u.operand);
+ SymbolTableEntry entry = globalObject->symbolTable()->get(ident.impl());
+ if (entry.isNull())
+ break;
+
+ if (entry.couldBeWatched()) {
+ instructions[i + 0] = vm()->interpreter->getOpcode(op_init_global_const_check);
+ instructions[i + 1] = &globalObject->registerAt(entry.getIndex());
+ instructions[i + 3] = entry.addressOfIsWatched();
+ break;
+ }
+
+ instructions[i + 0] = vm()->interpreter->getOpcode(op_init_global_const);
+ instructions[i + 1] = &globalObject->registerAt(entry.getIndex());
+ break;
+ }
- for (size_t size = m_callLinkInfos.size(), i = 0; i < size; ++i) {
- CallLinkInfo* callLinkInfo = &m_callLinkInfos[i];
- if (callLinkInfo->isLinked())
- callLinkInfo->callee->removeCaller(callLinkInfo);
+ case op_debug: {
+ instructions[i + 4] = columnNumberForBytecodeOffset(i);
+ break;
+ }
+
+ default:
+ break;
+ }
+ i += opLength;
}
+ m_instructions = WTF::RefCountedArray<Instruction>(instructions);
+
+ // Set optimization thresholds only after m_instructions is initialized, since these
+ // rely on the instruction count (and are in theory permitted to also inspect the
+ // instruction stream to more accurate assess the cost of tier-up).
+ optimizeAfterWarmUp();
+ jitAfterWarmUp();
- unlinkCallers();
+ if (Options::dumpGeneratedBytecodes())
+ dumpBytecode();
+ m_vm->finishedCompiling(this);
+}
+
+CodeBlock::~CodeBlock()
+{
+ if (m_vm->m_perBytecodeProfiler)
+ m_vm->m_perBytecodeProfiler->notifyDestruction(this);
+
+#if ENABLE(DFG_JIT)
+ // Remove myself from the set of DFG code blocks. Note that I may not be in this set
+ // (because I'm not a DFG code block), in which case this is a no-op anyway.
+ m_vm->heap.m_dfgCodeBlocks.m_set.remove(this);
+#endif
+
+#if ENABLE(VERBOSE_VALUE_PROFILE)
+ dumpValueProfiles();
#endif
+#if ENABLE(LLINT)
+ while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end())
+ m_incomingLLIntCalls.begin()->remove();
+#endif // ENABLE(LLINT)
+#if ENABLE(JIT)
+ // We may be destroyed before any CodeBlocks that refer to us are destroyed.
+ // Consider that two CodeBlocks become unreachable at the same time. There
+ // is no guarantee about the order in which the CodeBlocks are destroyed.
+ // So, if we don't remove incoming calls, and get destroyed before the
+ // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's
+ // destructor will try to remove nodes from our (no longer valid) linked list.
+ while (m_incomingCalls.begin() != m_incomingCalls.end())
+ m_incomingCalls.begin()->remove();
+
+ // Note that our outgoing calls will be removed from other CodeBlocks'
+ // m_incomingCalls linked lists through the execution of the ~CallLinkInfo
+ // destructors.
+
+ for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i)
+ m_structureStubInfos[i].deref();
+#endif // ENABLE(JIT)
+
#if DUMP_CODE_BLOCK_STATISTICS
liveCodeBlockSet.remove(this);
#endif
}
-#if ENABLE(JIT)
-void CodeBlock::unlinkCallers()
+void CodeBlock::setNumParameters(int newValue)
{
- size_t size = m_linkedCallerList.size();
- for (size_t i = 0; i < size; ++i) {
- CallLinkInfo* currentCaller = m_linkedCallerList[i];
- JIT::unlinkCall(currentCaller);
- currentCaller->setUnlinked();
- }
- m_linkedCallerList.clear();
-}
+ m_numParameters = newValue;
+
+#if ENABLE(VALUE_PROFILER)
+ m_argumentValueProfiles.resizeToFit(newValue);
#endif
+}
-void CodeBlock::derefStructures(Instruction* vPC) const
+void CodeBlock::visitStructures(SlotVisitor& visitor, Instruction* vPC)
{
- Interpreter* interpreter = m_globalData->interpreter;
+ Interpreter* interpreter = m_vm->interpreter;
- if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) {
- vPC[4].u.structure->deref();
+ if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) && vPC[4].u.structure) {
+ visitor.append(&vPC[4].u.structure);
return;
}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) {
- vPC[4].u.structure->deref();
- vPC[5].u.structure->deref();
+
+ if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self)) {
+ visitor.append(&vPC[4].u.structure);
return;
}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) {
- vPC[4].u.structure->deref();
- vPC[5].u.structureChain->deref();
+ if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto)) {
+ visitor.append(&vPC[4].u.structure);
+ visitor.append(&vPC[5].u.structure);
return;
}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) {
- vPC[4].u.structure->deref();
- vPC[5].u.structure->deref();
- vPC[6].u.structureChain->deref();
+ if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_chain)) {
+ visitor.append(&vPC[4].u.structure);
+ if (vPC[5].u.structureChain)
+ visitor.append(&vPC[5].u.structureChain);
return;
}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) {
- vPC[4].u.structure->deref();
+ if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) {
+ visitor.append(&vPC[4].u.structure);
+ visitor.append(&vPC[5].u.structure);
+ if (vPC[6].u.structureChain)
+ visitor.append(&vPC[6].u.structureChain);
return;
}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global)) {
- if(vPC[4].u.structure)
- vPC[4].u.structure->deref();
+ if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) && vPC[4].u.structure) {
+ visitor.append(&vPC[4].u.structure);
return;
}
- if ((vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto_list))
- || (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self_list))) {
- PolymorphicAccessStructureList* polymorphicStructures = vPC[4].u.polymorphicStructures;
- polymorphicStructures->derefStructures(vPC[5].u.operand);
- delete polymorphicStructures;
+ if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) {
+ visitor.append(&vPC[4].u.structure);
return;
}
ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_get_array_length) || vPC[0].u.opcode == interpreter->getOpcode(op_get_string_length));
}
-void CodeBlock::refStructures(Instruction* vPC) const
+void EvalCodeCache::visitAggregate(SlotVisitor& visitor)
{
- Interpreter* interpreter = m_globalData->interpreter;
+ EvalCacheMap::iterator end = m_cacheMap.end();
+ for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr)
+ visitor.append(&ptr->value);
+}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) {
- vPC[4].u.structure->ref();
- return;
+void CodeBlock::visitAggregate(SlotVisitor& visitor)
+{
+#if ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT)
+ if (!!m_dfgData) {
+ // I may be asked to scan myself more than once, and it may even happen concurrently.
+ // To this end, use a CAS loop to check if I've been called already. Only one thread
+ // may proceed past this point - whichever one wins the CAS race.
+ unsigned oldValue;
+ do {
+ oldValue = m_dfgData->visitAggregateHasBeenCalled;
+ if (oldValue) {
+ // Looks like someone else won! Return immediately to ensure that we don't
+ // trace the same CodeBlock concurrently. Doing so is hazardous since we will
+ // be mutating the state of ValueProfiles, which contain JSValues, which can
+ // have word-tearing on 32-bit, leading to awesome timing-dependent crashes
+ // that are nearly impossible to track down.
+
+ // Also note that it must be safe to return early as soon as we see the
+ // value true (well, (unsigned)1), since once a GC thread is in this method
+ // and has won the CAS race (i.e. was responsible for setting the value true)
+ // it will definitely complete the rest of this method before declaring
+ // termination.
+ return;
+ }
+ } while (!WTF::weakCompareAndSwap(&m_dfgData->visitAggregateHasBeenCalled, 0, 1));
}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) {
- vPC[4].u.structure->ref();
- vPC[5].u.structure->ref();
+#endif // ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT)
+
+ if (!!m_alternative)
+ m_alternative->visitAggregate(visitor);
+
+ visitor.append(&m_unlinkedCode);
+
+ // There are three things that may use unconditional finalizers: lazy bytecode freeing,
+ // inline cache clearing, and jettisoning. The probability of us wanting to do at
+ // least one of those things is probably quite close to 1. So we add one no matter what
+ // and when it runs, it figures out whether it has any work to do.
+ visitor.addUnconditionalFinalizer(this);
+
+ if (shouldImmediatelyAssumeLivenessDuringScan()) {
+ // This code block is live, so scan all references strongly and return.
+ stronglyVisitStrongReferences(visitor);
+ stronglyVisitWeakReferences(visitor);
return;
}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) {
- vPC[4].u.structure->ref();
- vPC[5].u.structureChain->ref();
- return;
+
+#if ENABLE(DFG_JIT)
+ // We get here if we're live in the sense that our owner executable is live,
+ // but we're not yet live for sure in another sense: we may yet decide that this
+ // code block should be jettisoned based on its outgoing weak references being
+ // stale. Set a flag to indicate that we're still assuming that we're dead, and
+ // perform one round of determining if we're live. The GC may determine, based on
+ // either us marking additional objects, or by other objects being marked for
+ // other reasons, that this iteration should run again; it will notify us of this
+ // decision by calling harvestWeakReferences().
+
+ m_dfgData->livenessHasBeenProved = false;
+ m_dfgData->allTransitionsHaveBeenMarked = false;
+
+ performTracingFixpointIteration(visitor);
+
+ // GC doesn't have enough information yet for us to decide whether to keep our DFG
+ // data, so we need to register a handler to run again at the end of GC, when more
+ // information is available.
+ if (!(m_dfgData->livenessHasBeenProved && m_dfgData->allTransitionsHaveBeenMarked))
+ visitor.addWeakReferenceHarvester(this);
+
+#else // ENABLE(DFG_JIT)
+ RELEASE_ASSERT_NOT_REACHED();
+#endif // ENABLE(DFG_JIT)
+}
+
+void CodeBlock::performTracingFixpointIteration(SlotVisitor& visitor)
+{
+ UNUSED_PARAM(visitor);
+
+#if ENABLE(DFG_JIT)
+ // Evaluate our weak reference transitions, if there are still some to evaluate.
+ if (!m_dfgData->allTransitionsHaveBeenMarked) {
+ bool allAreMarkedSoFar = true;
+ for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) {
+ if ((!m_dfgData->transitions[i].m_codeOrigin
+ || Heap::isMarked(m_dfgData->transitions[i].m_codeOrigin.get()))
+ && Heap::isMarked(m_dfgData->transitions[i].m_from.get())) {
+ // If the following three things are live, then the target of the
+ // transition is also live:
+ // - This code block. We know it's live already because otherwise
+ // we wouldn't be scanning ourselves.
+ // - The code origin of the transition. Transitions may arise from
+ // code that was inlined. They are not relevant if the user's
+ // object that is required for the inlinee to run is no longer
+ // live.
+ // - The source of the transition. The transition checks if some
+ // heap location holds the source, and if so, stores the target.
+ // Hence the source must be live for the transition to be live.
+ visitor.append(&m_dfgData->transitions[i].m_to);
+ } else
+ allAreMarkedSoFar = false;
+ }
+
+ if (allAreMarkedSoFar)
+ m_dfgData->allTransitionsHaveBeenMarked = true;
}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) {
- vPC[4].u.structure->ref();
- vPC[5].u.structure->ref();
- vPC[6].u.structureChain->ref();
+
+ // Check if we have any remaining work to do.
+ if (m_dfgData->livenessHasBeenProved)
return;
+
+ // Now check all of our weak references. If all of them are live, then we
+ // have proved liveness and so we scan our strong references. If at end of
+ // GC we still have not proved liveness, then this code block is toast.
+ bool allAreLiveSoFar = true;
+ for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) {
+ if (!Heap::isMarked(m_dfgData->weakReferences[i].get())) {
+ allAreLiveSoFar = false;
+ break;
+ }
}
- if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) {
- vPC[4].u.structure->ref();
+
+ // If some weak references are dead, then this fixpoint iteration was
+ // unsuccessful.
+ if (!allAreLiveSoFar)
return;
- }
- // These instructions don't ref their Structures.
- ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic));
+ // All weak references are live. Record this information so we don't
+ // come back here again, and scan the strong references.
+ m_dfgData->livenessHasBeenProved = true;
+ stronglyVisitStrongReferences(visitor);
+#endif // ENABLE(DFG_JIT)
}
-void CodeBlock::mark()
+void CodeBlock::visitWeakReferences(SlotVisitor& visitor)
{
- for (size_t i = 0; i < m_constantRegisters.size(); ++i)
- if (!m_constantRegisters[i].marked())
- m_constantRegisters[i].mark();
+ performTracingFixpointIteration(visitor);
+}
- for (size_t i = 0; i < m_functionExpressions.size(); ++i)
- m_functionExpressions[i]->body()->mark();
+#if ENABLE(JIT_VERBOSE_OSR)
+static const bool verboseUnlinking = true;
+#else
+static const bool verboseUnlinking = false;
+#endif
- if (m_rareData) {
- for (size_t i = 0; i < m_rareData->m_functions.size(); ++i)
- m_rareData->m_functions[i]->body()->mark();
+void CodeBlock::finalizeUnconditionally()
+{
+#if ENABLE(LLINT)
+ Interpreter* interpreter = m_vm->interpreter;
+ if (!!numberOfInstructions()) {
+ const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions();
+ for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) {
+ Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]];
+ switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) {
+ case op_get_by_id:
+ case op_get_by_id_out_of_line:
+ case op_put_by_id:
+ case op_put_by_id_out_of_line:
+ if (!curInstruction[4].u.structure || Heap::isMarked(curInstruction[4].u.structure.get()))
+ break;
+ if (verboseUnlinking)
+ dataLogF("Clearing LLInt property access with structure %p.\n", curInstruction[4].u.structure.get());
+ curInstruction[4].u.structure.clear();
+ curInstruction[5].u.operand = 0;
+ break;
+ case op_put_by_id_transition_direct:
+ case op_put_by_id_transition_normal:
+ case op_put_by_id_transition_direct_out_of_line:
+ case op_put_by_id_transition_normal_out_of_line:
+ if (Heap::isMarked(curInstruction[4].u.structure.get())
+ && Heap::isMarked(curInstruction[6].u.structure.get())
+ && Heap::isMarked(curInstruction[7].u.structureChain.get()))
+ break;
+ if (verboseUnlinking) {
+ dataLogF("Clearing LLInt put transition with structures %p -> %p, chain %p.\n",
+ curInstruction[4].u.structure.get(),
+ curInstruction[6].u.structure.get(),
+ curInstruction[7].u.structureChain.get());
+ }
+ curInstruction[4].u.structure.clear();
+ curInstruction[6].u.structure.clear();
+ curInstruction[7].u.structureChain.clear();
+ curInstruction[0].u.opcode = interpreter->getOpcode(op_put_by_id);
+ break;
+ case op_get_array_length:
+ break;
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+ }
- for (size_t i = 0; i < m_rareData->m_unexpectedConstants.size(); ++i) {
- if (!m_rareData->m_unexpectedConstants[i].marked())
- m_rareData->m_unexpectedConstants[i].mark();
+ for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) {
+ if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) {
+ if (verboseUnlinking)
+ dataLog("Clearing LLInt call from ", *this, "\n");
+ m_llintCallLinkInfos[i].unlink();
+ }
+ if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get()))
+ m_llintCallLinkInfos[i].lastSeenCallee.clear();
}
- m_rareData->m_evalCodeCache.mark();
}
-}
-
-void CodeBlock::reparseForExceptionInfoIfNecessary(CallFrame* callFrame)
-{
- if (m_exceptionInfo)
- return;
-
- ScopeChainNode* scopeChain = callFrame->scopeChain();
- if (m_needsFullScopeChain) {
- ScopeChain sc(scopeChain);
- int scopeDelta = sc.localDepth();
- if (m_codeType == EvalCode)
- scopeDelta -= static_cast<EvalCodeBlock*>(this)->baseScopeDepth();
- else if (m_codeType == FunctionCode)
- scopeDelta++; // Compilation of function code assumes activation is not on the scope chain yet.
- ASSERT(scopeDelta >= 0);
- while (scopeDelta--)
- scopeChain = scopeChain->next;
+#endif // ENABLE(LLINT)
+
+#if ENABLE(DFG_JIT)
+ // Check if we're not live. If we are, then jettison.
+ if (!(shouldImmediatelyAssumeLivenessDuringScan() || m_dfgData->livenessHasBeenProved)) {
+ if (verboseUnlinking)
+ dataLog(*this, " has dead weak references, jettisoning during GC.\n");
+
+ if (DFG::shouldShowDisassembly()) {
+ dataLog(*this, " will be jettisoned because of the following dead references:\n");
+ for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) {
+ WeakReferenceTransition& transition = m_dfgData->transitions[i];
+ JSCell* origin = transition.m_codeOrigin.get();
+ JSCell* from = transition.m_from.get();
+ JSCell* to = transition.m_to.get();
+ if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from))
+ continue;
+ dataLog(" Transition under ", JSValue(origin), ", ", JSValue(from), " -> ", JSValue(to), ".\n");
+ }
+ for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) {
+ JSCell* weak = m_dfgData->weakReferences[i].get();
+ if (Heap::isMarked(weak))
+ continue;
+ dataLog(" Weak reference ", JSValue(weak), ".\n");
+ }
+ }
+
+ jettison();
+ return;
}
+#endif // ENABLE(DFG_JIT)
- switch (m_codeType) {
- case FunctionCode: {
- FunctionBodyNode* ownerFunctionBodyNode = static_cast<FunctionBodyNode*>(m_ownerNode);
- RefPtr<FunctionBodyNode> newFunctionBody = m_globalData->parser->reparse<FunctionBodyNode>(m_globalData, ownerFunctionBodyNode);
- ASSERT(newFunctionBody);
- newFunctionBody->finishParsing(ownerFunctionBodyNode->copyParameters(), ownerFunctionBodyNode->parameterCount());
-
- m_globalData->scopeNodeBeingReparsed = newFunctionBody.get();
-
- CodeBlock& newCodeBlock = newFunctionBody->bytecodeForExceptionInfoReparse(scopeChain, this);
- ASSERT(newCodeBlock.m_exceptionInfo);
- ASSERT(newCodeBlock.m_instructionCount == m_instructionCount);
-
-#if ENABLE(JIT)
- JIT::compile(m_globalData, &newCodeBlock);
- ASSERT(newCodeBlock.m_jitCode.codeSize == m_jitCode.codeSize);
+ for (size_t size = m_putToBaseOperations.size(), i = 0; i < size; ++i) {
+ if (m_putToBaseOperations[i].m_structure && !Heap::isMarked(m_putToBaseOperations[i].m_structure.get())) {
+ if (verboseUnlinking)
+ dataLog("Clearing putToBase info in ", *this, "\n");
+ m_putToBaseOperations[i].m_structure.clear();
+ }
+ }
+ for (size_t size = m_resolveOperations.size(), i = 0; i < size; ++i) {
+ if (m_resolveOperations[i].isEmpty())
+ continue;
+#ifndef NDEBUG
+ for (size_t insnSize = m_resolveOperations[i].size() - 1, k = 0; k < insnSize; ++k)
+ ASSERT(!m_resolveOperations[i][k].m_structure);
#endif
+ m_resolveOperations[i].last().m_structure.clear();
+ if (m_resolveOperations[i].last().m_structure && !Heap::isMarked(m_resolveOperations[i].last().m_structure.get())) {
+ if (verboseUnlinking)
+ dataLog("Clearing resolve info in ", *this, "\n");
+ m_resolveOperations[i].last().m_structure.clear();
+ }
+ }
- m_exceptionInfo.set(newCodeBlock.m_exceptionInfo.release());
-
- m_globalData->scopeNodeBeingReparsed = 0;
-
- break;
+#if ENABLE(JIT)
+ // Handle inline caches.
+ if (!!getJITCode()) {
+ RepatchBuffer repatchBuffer(this);
+ for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i) {
+ if (callLinkInfo(i).isLinked()) {
+ if (ClosureCallStubRoutine* stub = callLinkInfo(i).stub.get()) {
+ if (!Heap::isMarked(stub->structure())
+ || !Heap::isMarked(stub->executable())) {
+ if (verboseUnlinking) {
+ dataLog(
+ "Clearing closure call from ", *this, " to ",
+ stub->executable()->hashFor(callLinkInfo(i).specializationKind()),
+ ", stub routine ", RawPointer(stub), ".\n");
+ }
+ callLinkInfo(i).unlink(*m_vm, repatchBuffer);
+ }
+ } else if (!Heap::isMarked(callLinkInfo(i).callee.get())) {
+ if (verboseUnlinking) {
+ dataLog(
+ "Clearing call from ", *this, " to ",
+ RawPointer(callLinkInfo(i).callee.get()), " (",
+ callLinkInfo(i).callee.get()->executable()->hashFor(
+ callLinkInfo(i).specializationKind()),
+ ").\n");
+ }
+ callLinkInfo(i).unlink(*m_vm, repatchBuffer);
+ }
+ }
+ if (!!callLinkInfo(i).lastSeenCallee
+ && !Heap::isMarked(callLinkInfo(i).lastSeenCallee.get()))
+ callLinkInfo(i).lastSeenCallee.clear();
+ }
+ for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) {
+ StructureStubInfo& stubInfo = m_structureStubInfos[i];
+
+ if (stubInfo.visitWeakReferences())
+ continue;
+
+ resetStubDuringGCInternal(repatchBuffer, stubInfo);
}
- case EvalCode: {
- EvalNode* ownerEvalNode = static_cast<EvalNode*>(m_ownerNode);
- RefPtr<EvalNode> newEvalBody = m_globalData->parser->reparse<EvalNode>(m_globalData, ownerEvalNode);
+ }
+#endif
+}
- m_globalData->scopeNodeBeingReparsed = newEvalBody.get();
+#if ENABLE(JIT)
+void CodeBlock::resetStub(StructureStubInfo& stubInfo)
+{
+ if (stubInfo.accessType == access_unset)
+ return;
+
+ RepatchBuffer repatchBuffer(this);
+ resetStubInternal(repatchBuffer, stubInfo);
+}
- EvalCodeBlock& newCodeBlock = newEvalBody->bytecodeForExceptionInfoReparse(scopeChain, this);
- ASSERT(newCodeBlock.m_exceptionInfo);
- ASSERT(newCodeBlock.m_instructionCount == m_instructionCount);
+void CodeBlock::resetStubInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo)
+{
+ AccessType accessType = static_cast<AccessType>(stubInfo.accessType);
+
+ if (verboseUnlinking)
+ dataLog("Clearing structure cache (kind ", static_cast<int>(stubInfo.accessType), ") in ", *this, ".\n");
+
+ if (isGetByIdAccess(accessType)) {
+ if (getJITCode().jitType() == JITCode::DFGJIT)
+ DFG::dfgResetGetByID(repatchBuffer, stubInfo);
+ else
+ JIT::resetPatchGetById(repatchBuffer, &stubInfo);
+ } else {
+ ASSERT(isPutByIdAccess(accessType));
+ if (getJITCode().jitType() == JITCode::DFGJIT)
+ DFG::dfgResetPutByID(repatchBuffer, stubInfo);
+ else
+ JIT::resetPatchPutById(repatchBuffer, &stubInfo);
+ }
+
+ stubInfo.reset();
+}
-#if ENABLE(JIT)
- JIT::compile(m_globalData, &newCodeBlock);
- ASSERT(newCodeBlock.m_jitCode.codeSize == m_jitCode.codeSize);
+void CodeBlock::resetStubDuringGCInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo)
+{
+ resetStubInternal(repatchBuffer, stubInfo);
+ stubInfo.resetByGC = true;
+}
#endif
- m_exceptionInfo.set(newCodeBlock.m_exceptionInfo.release());
+void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor)
+{
+ visitor.append(&m_globalObject);
+ visitor.append(&m_ownerExecutable);
+ visitor.append(&m_unlinkedCode);
+ if (m_rareData)
+ m_rareData->m_evalCodeCache.visitAggregate(visitor);
+ visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size());
+ for (size_t i = 0; i < m_functionExprs.size(); ++i)
+ visitor.append(&m_functionExprs[i]);
+ for (size_t i = 0; i < m_functionDecls.size(); ++i)
+ visitor.append(&m_functionDecls[i]);
+ for (unsigned i = 0; i < m_objectAllocationProfiles.size(); ++i)
+ m_objectAllocationProfiles[i].visitAggregate(visitor);
+
+ updateAllPredictions(Collection);
+}
- m_globalData->scopeNodeBeingReparsed = 0;
+void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor)
+{
+ UNUSED_PARAM(visitor);
- break;
- }
- default:
- // CodeBlocks for Global code blocks are transient and therefore to not gain from
- // from throwing out there exception information.
- ASSERT_NOT_REACHED();
+#if ENABLE(DFG_JIT)
+ if (!m_dfgData)
+ return;
+
+ for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) {
+ if (!!m_dfgData->transitions[i].m_codeOrigin)
+ visitor.append(&m_dfgData->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though.
+ visitor.append(&m_dfgData->transitions[i].m_from);
+ visitor.append(&m_dfgData->transitions[i].m_to);
}
+
+ for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i)
+ visitor.append(&m_dfgData->weakReferences[i]);
+#endif
}
HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset)
{
- ASSERT(bytecodeOffset < m_instructionCount);
+ RELEASE_ASSERT(bytecodeOffset < instructions().size());
if (!m_rareData)
return 0;
for (size_t i = 0; i < exceptionHandlers.size(); ++i) {
// Handlers are ordered innermost first, so the first handler we encounter
// that contains the source address is the correct handler to use.
- if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end >= bytecodeOffset)
+ if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end > bytecodeOffset)
return &exceptionHandlers[i];
}
return 0;
}
-int CodeBlock::lineNumberForBytecodeOffset(CallFrame* callFrame, unsigned bytecodeOffset)
+unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset)
{
- ASSERT(bytecodeOffset < m_instructionCount);
+ RELEASE_ASSERT(bytecodeOffset < instructions().size());
+ return m_ownerExecutable->lineNo() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset);
+}
- reparseForExceptionInfoIfNecessary(callFrame);
- ASSERT(m_exceptionInfo);
+unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset)
+{
+ int divot;
+ int startOffset;
+ int endOffset;
+ unsigned line;
+ unsigned column;
+ expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column);
+ return column;
+}
- if (!m_exceptionInfo->m_lineInfo.size())
- return m_ownerNode->source().firstLine(); // Empty function
+void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column)
+{
+ m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column);
+ divot += m_sourceOffset;
+ column += line ? 1 : firstLineColumnOffset();
+ line += m_ownerExecutable->lineNo();
+}
- int low = 0;
- int high = m_exceptionInfo->m_lineInfo.size();
- while (low < high) {
- int mid = low + (high - low) / 2;
- if (m_exceptionInfo->m_lineInfo[mid].instructionOffset <= bytecodeOffset)
- low = mid + 1;
- else
- high = mid;
+void CodeBlock::shrinkToFit(ShrinkMode shrinkMode)
+{
+#if ENABLE(LLINT)
+ m_llintCallLinkInfos.shrinkToFit();
+#endif
+#if ENABLE(JIT)
+ m_structureStubInfos.shrinkToFit();
+ m_callLinkInfos.shrinkToFit();
+#endif
+#if ENABLE(VALUE_PROFILER)
+ m_rareCaseProfiles.shrinkToFit();
+ m_specialFastCaseProfiles.shrinkToFit();
+#endif
+
+ if (shrinkMode == EarlyShrink) {
+ m_identifiers.shrinkToFit();
+ m_functionDecls.shrinkToFit();
+ m_functionExprs.shrinkToFit();
+ m_constantRegisters.shrinkToFit();
+ } // else don't shrink these, because we would have already pointed pointers into these tables.
+
+ if (m_rareData) {
+ m_rareData->m_exceptionHandlers.shrinkToFit();
+ m_rareData->m_immediateSwitchJumpTables.shrinkToFit();
+ m_rareData->m_characterSwitchJumpTables.shrinkToFit();
+ m_rareData->m_stringSwitchJumpTables.shrinkToFit();
+#if ENABLE(JIT)
+ m_rareData->m_callReturnIndexVector.shrinkToFit();
+#endif
+#if ENABLE(DFG_JIT)
+ m_rareData->m_inlineCallFrames.shrinkToFit();
+ m_rareData->m_codeOrigins.shrinkToFit();
+#endif
}
- if (!low)
- return m_ownerNode->source().firstLine();
- return m_exceptionInfo->m_lineInfo[low - 1].lineNumber;
+#if ENABLE(DFG_JIT)
+ if (m_dfgData) {
+ m_dfgData->osrEntry.shrinkToFit();
+ m_dfgData->osrExit.shrinkToFit();
+ m_dfgData->speculationRecovery.shrinkToFit();
+ m_dfgData->weakReferences.shrinkToFit();
+ m_dfgData->transitions.shrinkToFit();
+ m_dfgData->minifiedDFG.prepareAndShrink();
+ m_dfgData->variableEventStream.shrinkToFit();
+ }
+#endif
}
-int CodeBlock::expressionRangeForBytecodeOffset(CallFrame* callFrame, unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset)
+void CodeBlock::createActivation(CallFrame* callFrame)
{
- ASSERT(bytecodeOffset < m_instructionCount);
-
- reparseForExceptionInfoIfNecessary(callFrame);
- ASSERT(m_exceptionInfo);
+ ASSERT(codeType() == FunctionCode);
+ ASSERT(needsFullScopeChain());
+ ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue());
+ JSActivation* activation = JSActivation::create(callFrame->vm(), callFrame, this);
+ callFrame->uncheckedR(activationRegister()) = JSValue(activation);
+ callFrame->setScope(activation);
+}
- if (!m_exceptionInfo->m_expressionInfo.size()) {
- // We didn't think anything could throw. Apparently we were wrong.
- startOffset = 0;
- endOffset = 0;
- divot = 0;
- return lineNumberForBytecodeOffset(callFrame, bytecodeOffset);
+unsigned CodeBlock::addOrFindConstant(JSValue v)
+{
+ unsigned numberOfConstants = numberOfConstantRegisters();
+ for (unsigned i = 0; i < numberOfConstants; ++i) {
+ if (getConstant(FirstConstantRegisterIndex + i) == v)
+ return i;
}
+ return addConstant(v);
+}
- int low = 0;
- int high = m_exceptionInfo->m_expressionInfo.size();
- while (low < high) {
- int mid = low + (high - low) / 2;
- if (m_exceptionInfo->m_expressionInfo[mid].instructionOffset <= bytecodeOffset)
- low = mid + 1;
- else
- high = mid;
+#if ENABLE(JIT)
+void CodeBlock::unlinkCalls()
+{
+ if (!!m_alternative)
+ m_alternative->unlinkCalls();
+#if ENABLE(LLINT)
+ for (size_t i = 0; i < m_llintCallLinkInfos.size(); ++i) {
+ if (m_llintCallLinkInfos[i].isLinked())
+ m_llintCallLinkInfos[i].unlink();
}
-
- ASSERT(low);
- if (!low) {
- startOffset = 0;
- endOffset = 0;
- divot = 0;
- return lineNumberForBytecodeOffset(callFrame, bytecodeOffset);
+#endif
+ if (!m_callLinkInfos.size())
+ return;
+ if (!m_vm->canUseJIT())
+ return;
+ RepatchBuffer repatchBuffer(this);
+ for (size_t i = 0; i < m_callLinkInfos.size(); i++) {
+ if (!m_callLinkInfos[i].isLinked())
+ continue;
+ m_callLinkInfos[i].unlink(*m_vm, repatchBuffer);
}
+}
- startOffset = m_exceptionInfo->m_expressionInfo[low - 1].startOffset;
- endOffset = m_exceptionInfo->m_expressionInfo[low - 1].endOffset;
- divot = m_exceptionInfo->m_expressionInfo[low - 1].divotPoint + m_sourceOffset;
- return lineNumberForBytecodeOffset(callFrame, bytecodeOffset);
+void CodeBlock::unlinkIncomingCalls()
+{
+#if ENABLE(LLINT)
+ while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end())
+ m_incomingLLIntCalls.begin()->unlink();
+#endif
+ if (m_incomingCalls.isEmpty())
+ return;
+ RepatchBuffer repatchBuffer(this);
+ while (m_incomingCalls.begin() != m_incomingCalls.end())
+ m_incomingCalls.begin()->unlink(*m_vm, repatchBuffer);
}
+#endif // ENABLE(JIT)
-bool CodeBlock::getByIdExceptionInfoForBytecodeOffset(CallFrame* callFrame, unsigned bytecodeOffset, OpcodeID& opcodeID)
+#if ENABLE(LLINT)
+Instruction* CodeBlock::adjustPCIfAtCallSite(Instruction* potentialReturnPC)
{
- ASSERT(bytecodeOffset < m_instructionCount);
+ ASSERT(potentialReturnPC);
+
+ unsigned returnPCOffset = potentialReturnPC - instructions().begin();
+ Instruction* adjustedPC;
+ unsigned opcodeLength;
+
+ // If we are at a callsite, the LLInt stores the PC after the call
+ // instruction rather than the PC of the call instruction. This requires
+ // some correcting. If so, we can rely on the fact that the preceding
+ // instruction must be one of the call instructions, so either it's a
+ // call_varargs or it's a call, construct, or eval.
+ //
+ // If we are not at a call site, then we need to guard against the
+ // possibility of peeking past the start of the bytecode range for this
+ // codeBlock. Hence, we do a bounds check before we peek at the
+ // potential "preceding" instruction.
+ // The bounds check is done by comparing the offset of the potential
+ // returnPC with the length of the opcode. If there is room for a call
+ // instruction before the returnPC, then the offset of the returnPC must
+ // be greater than the size of the call opcode we're looking for.
+
+ // The determination of the call instruction present (if we are at a
+ // callsite) depends on the following assumptions. So, assert that
+ // they are still true:
+ ASSERT(OPCODE_LENGTH(op_call_varargs) <= OPCODE_LENGTH(op_call));
+ ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct));
+ ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_call_eval));
+
+ // Check for the case of a preceeding op_call_varargs:
+ opcodeLength = OPCODE_LENGTH(op_call_varargs);
+ adjustedPC = potentialReturnPC - opcodeLength;
+ if ((returnPCOffset >= opcodeLength)
+ && (adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_call_varargs))) {
+ return adjustedPC;
+ }
- reparseForExceptionInfoIfNecessary(callFrame);
- ASSERT(m_exceptionInfo);
+ // Check for the case of the other 3 call instructions:
+ opcodeLength = OPCODE_LENGTH(op_call);
+ adjustedPC = potentialReturnPC - opcodeLength;
+ if ((returnPCOffset >= opcodeLength)
+ && (adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_call)
+ || adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_construct)
+ || adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_call_eval))) {
+ return adjustedPC;
+ }
- if (!m_exceptionInfo->m_getByIdExceptionInfo.size())
- return false;
+ // Not a call site. No need to adjust PC. Just return the original.
+ return potentialReturnPC;
+}
+#endif // ENABLE(LLINT)
- int low = 0;
- int high = m_exceptionInfo->m_getByIdExceptionInfo.size();
- while (low < high) {
- int mid = low + (high - low) / 2;
- if (m_exceptionInfo->m_getByIdExceptionInfo[mid].bytecodeOffset <= bytecodeOffset)
- low = mid + 1;
- else
- high = mid;
+#if ENABLE(JIT)
+ClosureCallStubRoutine* CodeBlock::findClosureCallForReturnPC(ReturnAddressPtr returnAddress)
+{
+ for (unsigned i = m_callLinkInfos.size(); i--;) {
+ CallLinkInfo& info = m_callLinkInfos[i];
+ if (!info.stub)
+ continue;
+ if (!info.stub->code().executableMemory()->contains(returnAddress.value()))
+ continue;
+
+ RELEASE_ASSERT(info.stub->codeOrigin().bytecodeIndex < CodeOrigin::maximumBytecodeIndex);
+ return info.stub.get();
+ }
+
+ // The stub routine may have been jettisoned. This is rare, but we have to handle it.
+ const JITStubRoutineSet& set = m_vm->heap.jitStubRoutines();
+ for (unsigned i = set.size(); i--;) {
+ GCAwareJITStubRoutine* genericStub = set.at(i);
+ if (!genericStub->isClosureCall())
+ continue;
+ ClosureCallStubRoutine* stub = static_cast<ClosureCallStubRoutine*>(genericStub);
+ if (!stub->code().executableMemory()->contains(returnAddress.value()))
+ continue;
+ RELEASE_ASSERT(stub->codeOrigin().bytecodeIndex < CodeOrigin::maximumBytecodeIndex);
+ return stub;
+ }
+
+ return 0;
+}
+#endif
+
+unsigned CodeBlock::bytecodeOffset(ExecState* exec, ReturnAddressPtr returnAddress)
+{
+ UNUSED_PARAM(exec);
+ UNUSED_PARAM(returnAddress);
+#if ENABLE(LLINT)
+#if !ENABLE(LLINT_C_LOOP)
+ // When using the JIT, we could have addresses that are not bytecode
+ // addresses. We check if the return address is in the LLint glue and
+ // opcode handlers range here to ensure that we are looking at bytecode
+ // before attempting to convert the return address into a bytecode offset.
+ //
+ // In the case of the C Loop LLInt, the JIT is disabled, and the only
+ // valid return addresses should be bytecode PCs. So, we can and need to
+ // forego this check because when we do not ENABLE(COMPUTED_GOTO_OPCODES),
+ // then the bytecode "PC"s are actually the opcodeIDs and are not bounded
+ // by llint_begin and llint_end.
+ if (returnAddress.value() >= LLInt::getCodePtr(llint_begin)
+ && returnAddress.value() <= LLInt::getCodePtr(llint_end))
+#endif
+ {
+ RELEASE_ASSERT(exec->codeBlock());
+ RELEASE_ASSERT(exec->codeBlock() == this);
+ RELEASE_ASSERT(JITCode::isBaselineCode(getJITType()));
+ Instruction* instruction = exec->currentVPC();
+ RELEASE_ASSERT(instruction);
+
+ instruction = adjustPCIfAtCallSite(instruction);
+ return bytecodeOffset(instruction);
+ }
+#endif // !ENABLE(LLINT)
+
+#if ENABLE(JIT)
+ if (!m_rareData)
+ return 1;
+ Vector<CallReturnOffsetToBytecodeOffset, 0, UnsafeVectorOverflow>& callIndices = m_rareData->m_callReturnIndexVector;
+ if (!callIndices.size())
+ return 1;
+
+ if (getJITCode().getExecutableMemory()->contains(returnAddress.value())) {
+ unsigned callReturnOffset = getJITCode().offsetOf(returnAddress.value());
+ CallReturnOffsetToBytecodeOffset* result =
+ binarySearch<CallReturnOffsetToBytecodeOffset, unsigned>(
+ callIndices, callIndices.size(), callReturnOffset, getCallReturnOffset);
+ RELEASE_ASSERT(result->callReturnOffset == callReturnOffset);
+ RELEASE_ASSERT(result->bytecodeOffset < instructionCount());
+ return result->bytecodeOffset;
+ }
+ ClosureCallStubRoutine* closureInfo = findClosureCallForReturnPC(returnAddress);
+ CodeOrigin origin = closureInfo->codeOrigin();
+ while (InlineCallFrame* inlineCallFrame = origin.inlineCallFrame) {
+ if (inlineCallFrame->baselineCodeBlock() == this)
+ break;
+ origin = inlineCallFrame->caller;
+ RELEASE_ASSERT(origin.bytecodeIndex < CodeOrigin::maximumBytecodeIndex);
}
+ RELEASE_ASSERT(origin.bytecodeIndex < CodeOrigin::maximumBytecodeIndex);
+ unsigned bytecodeIndex = origin.bytecodeIndex;
+ RELEASE_ASSERT(bytecodeIndex < instructionCount());
+ return bytecodeIndex;
+#endif // ENABLE(JIT)
+
+#if !ENABLE(LLINT) && !ENABLE(JIT)
+ return 1;
+#endif
+}
- if (!low || m_exceptionInfo->m_getByIdExceptionInfo[low - 1].bytecodeOffset != bytecodeOffset)
+#if ENABLE(DFG_JIT)
+bool CodeBlock::codeOriginForReturn(ReturnAddressPtr returnAddress, CodeOrigin& codeOrigin)
+{
+ if (!hasCodeOrigins())
return false;
- opcodeID = m_exceptionInfo->m_getByIdExceptionInfo[low - 1].isOpConstruct ? op_construct : op_instanceof;
+ if (!getJITCode().getExecutableMemory()->contains(returnAddress.value())) {
+ ClosureCallStubRoutine* stub = findClosureCallForReturnPC(returnAddress);
+ ASSERT(stub);
+ if (!stub)
+ return false;
+ codeOrigin = stub->codeOrigin();
+ return true;
+ }
+
+ unsigned offset = getJITCode().offsetOf(returnAddress.value());
+ CodeOriginAtCallReturnOffset* entry =
+ tryBinarySearch<CodeOriginAtCallReturnOffset, unsigned>(
+ codeOrigins(), codeOrigins().size(), offset,
+ getCallReturnOffsetForCodeOrigin);
+ if (!entry)
+ return false;
+ codeOrigin = entry->codeOrigin;
return true;
}
+#endif // ENABLE(DFG_JIT)
+
+void CodeBlock::clearEvalCache()
+{
+ if (!!m_alternative)
+ m_alternative->clearEvalCache();
+ if (!m_rareData)
+ return;
+ m_rareData->m_evalCodeCache.clear();
+}
+
+template<typename T, size_t inlineCapacity, typename U, typename V>
+inline void replaceExistingEntries(Vector<T, inlineCapacity, U>& target, Vector<T, inlineCapacity, V>& source)
+{
+ ASSERT(target.size() <= source.size());
+ for (size_t i = 0; i < target.size(); ++i)
+ target[i] = source[i];
+}
+
+void CodeBlock::copyPostParseDataFrom(CodeBlock* alternative)
+{
+ if (!alternative)
+ return;
+
+ replaceExistingEntries(m_constantRegisters, alternative->m_constantRegisters);
+ replaceExistingEntries(m_functionDecls, alternative->m_functionDecls);
+ replaceExistingEntries(m_functionExprs, alternative->m_functionExprs);
+ if (!!m_rareData && !!alternative->m_rareData)
+ replaceExistingEntries(m_rareData->m_constantBuffers, alternative->m_rareData->m_constantBuffers);
+}
+
+void CodeBlock::copyPostParseDataFromAlternative()
+{
+ copyPostParseDataFrom(m_alternative.get());
+}
#if ENABLE(JIT)
-bool CodeBlock::functionRegisterForBytecodeOffset(unsigned bytecodeOffset, int& functionRegisterIndex)
+void CodeBlock::reoptimize()
{
- ASSERT(bytecodeOffset < m_instructionCount);
+ ASSERT(replacement() != this);
+ ASSERT(replacement()->alternative() == this);
+ if (DFG::shouldShowDisassembly())
+ dataLog(*replacement(), " will be jettisoned due to reoptimization of ", *this, ".\n");
+ replacement()->jettison();
+ countReoptimization();
+}
- if (!m_rareData || !m_rareData->m_functionRegisterInfos.size())
- return false;
+CodeBlock* ProgramCodeBlock::replacement()
+{
+ return &static_cast<ProgramExecutable*>(ownerExecutable())->generatedBytecode();
+}
- int low = 0;
- int high = m_rareData->m_functionRegisterInfos.size();
- while (low < high) {
- int mid = low + (high - low) / 2;
- if (m_rareData->m_functionRegisterInfos[mid].bytecodeOffset <= bytecodeOffset)
- low = mid + 1;
- else
- high = mid;
- }
+CodeBlock* EvalCodeBlock::replacement()
+{
+ return &static_cast<EvalExecutable*>(ownerExecutable())->generatedBytecode();
+}
- if (!low || m_rareData->m_functionRegisterInfos[low - 1].bytecodeOffset != bytecodeOffset)
- return false;
+CodeBlock* FunctionCodeBlock::replacement()
+{
+ return &static_cast<FunctionExecutable*>(ownerExecutable())->generatedBytecodeFor(m_isConstructor ? CodeForConstruct : CodeForCall);
+}
- functionRegisterIndex = m_rareData->m_functionRegisterInfos[low - 1].functionRegisterIndex;
- return true;
+JSObject* ProgramCodeBlock::compileOptimized(ExecState* exec, JSScope* scope, unsigned bytecodeIndex)
+{
+ if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType()))
+ return 0;
+ JSObject* error = static_cast<ProgramExecutable*>(ownerExecutable())->compileOptimized(exec, scope, bytecodeIndex);
+ return error;
+}
+
+JSObject* EvalCodeBlock::compileOptimized(ExecState* exec, JSScope* scope, unsigned bytecodeIndex)
+{
+ if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType()))
+ return 0;
+ JSObject* error = static_cast<EvalExecutable*>(ownerExecutable())->compileOptimized(exec, scope, bytecodeIndex);
+ return error;
+}
+
+JSObject* FunctionCodeBlock::compileOptimized(ExecState* exec, JSScope* scope, unsigned bytecodeIndex)
+{
+ if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType()))
+ return 0;
+ JSObject* error = static_cast<FunctionExecutable*>(ownerExecutable())->compileOptimizedFor(exec, scope, bytecodeIndex, m_isConstructor ? CodeForConstruct : CodeForCall);
+ return error;
+}
+
+DFG::CapabilityLevel ProgramCodeBlock::canCompileWithDFGInternal()
+{
+ return DFG::canCompileProgram(this);
+}
+
+DFG::CapabilityLevel EvalCodeBlock::canCompileWithDFGInternal()
+{
+ return DFG::canCompileEval(this);
+}
+
+DFG::CapabilityLevel FunctionCodeBlock::canCompileWithDFGInternal()
+{
+ if (m_isConstructor)
+ return DFG::canCompileFunctionForConstruct(this);
+ return DFG::canCompileFunctionForCall(this);
+}
+
+void CodeBlock::jettison()
+{
+ ASSERT(JITCode::isOptimizingJIT(getJITType()));
+ ASSERT(this == replacement());
+ alternative()->optimizeAfterWarmUp();
+ tallyFrequentExitSites();
+ if (DFG::shouldShowDisassembly())
+ dataLog("Jettisoning ", *this, ".\n");
+ jettisonImpl();
+}
+
+void ProgramCodeBlock::jettisonImpl()
+{
+ static_cast<ProgramExecutable*>(ownerExecutable())->jettisonOptimizedCode(*vm());
+}
+
+void EvalCodeBlock::jettisonImpl()
+{
+ static_cast<EvalExecutable*>(ownerExecutable())->jettisonOptimizedCode(*vm());
+}
+
+void FunctionCodeBlock::jettisonImpl()
+{
+ static_cast<FunctionExecutable*>(ownerExecutable())->jettisonOptimizedCodeFor(*vm(), m_isConstructor ? CodeForConstruct : CodeForCall);
+}
+
+bool ProgramCodeBlock::jitCompileImpl(ExecState* exec)
+{
+ ASSERT(getJITType() == JITCode::InterpreterThunk);
+ ASSERT(this == replacement());
+ return static_cast<ProgramExecutable*>(ownerExecutable())->jitCompile(exec);
+}
+
+bool EvalCodeBlock::jitCompileImpl(ExecState* exec)
+{
+ ASSERT(getJITType() == JITCode::InterpreterThunk);
+ ASSERT(this == replacement());
+ return static_cast<EvalExecutable*>(ownerExecutable())->jitCompile(exec);
+}
+
+bool FunctionCodeBlock::jitCompileImpl(ExecState* exec)
+{
+ ASSERT(getJITType() == JITCode::InterpreterThunk);
+ ASSERT(this == replacement());
+ return static_cast<FunctionExecutable*>(ownerExecutable())->jitCompileFor(exec, m_isConstructor ? CodeForConstruct : CodeForCall);
}
#endif
-#if !ENABLE(JIT)
-bool CodeBlock::hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset)
+JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin)
{
- if (m_globalResolveInstructions.isEmpty())
- return false;
+ if (!codeOrigin.inlineCallFrame)
+ return globalObject();
+ return jsCast<FunctionExecutable*>(codeOrigin.inlineCallFrame->executable.get())->generatedBytecode().globalObject();
+}
- int low = 0;
- int high = m_globalResolveInstructions.size();
- while (low < high) {
- int mid = low + (high - low) / 2;
- if (m_globalResolveInstructions[mid] <= bytecodeOffset)
- low = mid + 1;
- else
- high = mid;
+unsigned CodeBlock::reoptimizationRetryCounter() const
+{
+ ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax());
+ return m_reoptimizationRetryCounter;
+}
+
+void CodeBlock::countReoptimization()
+{
+ m_reoptimizationRetryCounter++;
+ if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax())
+ m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax();
+}
+
+int32_t CodeBlock::codeTypeThresholdMultiplier() const
+{
+ if (codeType() == EvalCode)
+ return Options::evalThresholdMultiplier();
+
+ return 1;
+}
+
+double CodeBlock::optimizationThresholdScalingFactor()
+{
+ // This expression arises from doing a least-squares fit of
+ //
+ // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d
+ //
+ // against the data points:
+ //
+ // x F[x_]
+ // 10 0.9 (smallest reasonable code block)
+ // 200 1.0 (typical small-ish code block)
+ // 320 1.2 (something I saw in 3d-cube that I wanted to optimize)
+ // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize)
+ // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort)
+ // 10000 6.0 (similar to above)
+ //
+ // I achieve the minimization using the following Mathematica code:
+ //
+ // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d
+ //
+ // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}}
+ //
+ // solution =
+ // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples),
+ // {a, b, c, d}][[2]]
+ //
+ // And the code below (to initialize a, b, c, d) is generated by:
+ //
+ // Print["const double " <> ToString[#[[1]]] <> " = " <>
+ // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution
+ //
+ // We've long known the following to be true:
+ // - Small code blocks are cheap to optimize and so we should do it sooner rather
+ // than later.
+ // - Large code blocks are expensive to optimize and so we should postpone doing so,
+ // and sometimes have a large enough threshold that we never optimize them.
+ // - The difference in cost is not totally linear because (a) just invoking the
+ // DFG incurs some base cost and (b) for large code blocks there is enough slop
+ // in the correlation between instruction count and the actual compilation cost
+ // that for those large blocks, the instruction count should not have a strong
+ // influence on our threshold.
+ //
+ // I knew the goals but I didn't know how to achieve them; so I picked an interesting
+ // example where the heuristics were right (code block in 3d-cube with instruction
+ // count 320, which got compiled early as it should have been) and one where they were
+ // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive
+ // to compile and didn't run often enough to warrant compilation in my opinion), and
+ // then threw in additional data points that represented my own guess of what our
+ // heuristics should do for some round-numbered examples.
+ //
+ // The expression to which I decided to fit the data arose because I started with an
+ // affine function, and then did two things: put the linear part in an Abs to ensure
+ // that the fit didn't end up choosing a negative value of c (which would result in
+ // the function turning over and going negative for large x) and I threw in a Sqrt
+ // term because Sqrt represents my intution that the function should be more sensitive
+ // to small changes in small values of x, but less sensitive when x gets large.
+
+ // Note that the current fit essentially eliminates the linear portion of the
+ // expression (c == 0.0).
+ const double a = 0.061504;
+ const double b = 1.02406;
+ const double c = 0.0;
+ const double d = 0.825914;
+
+ double instructionCount = this->instructionCount();
+
+ ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense.
+
+ double result = d + a * sqrt(instructionCount + b) + c * instructionCount;
+#if ENABLE(JIT_VERBOSE_OSR)
+ dataLog(*this, ": instruction count is ", instructionCount, ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(), "\n");
+#endif
+ return result * codeTypeThresholdMultiplier();
+}
+
+static int32_t clipThreshold(double threshold)
+{
+ if (threshold < 1.0)
+ return 1;
+
+ if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max()))
+ return std::numeric_limits<int32_t>::max();
+
+ return static_cast<int32_t>(threshold);
+}
+
+int32_t CodeBlock::counterValueForOptimizeAfterWarmUp()
+{
+ return clipThreshold(
+ Options::thresholdForOptimizeAfterWarmUp() *
+ optimizationThresholdScalingFactor() *
+ (1 << reoptimizationRetryCounter()));
+}
+
+int32_t CodeBlock::counterValueForOptimizeAfterLongWarmUp()
+{
+ return clipThreshold(
+ Options::thresholdForOptimizeAfterLongWarmUp() *
+ optimizationThresholdScalingFactor() *
+ (1 << reoptimizationRetryCounter()));
+}
+
+int32_t CodeBlock::counterValueForOptimizeSoon()
+{
+ return clipThreshold(
+ Options::thresholdForOptimizeSoon() *
+ optimizationThresholdScalingFactor() *
+ (1 << reoptimizationRetryCounter()));
+}
+
+bool CodeBlock::checkIfOptimizationThresholdReached()
+{
+ return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this);
+}
+
+void CodeBlock::optimizeNextInvocation()
+{
+ m_jitExecuteCounter.setNewThreshold(0, this);
+}
+
+void CodeBlock::dontOptimizeAnytimeSoon()
+{
+ m_jitExecuteCounter.deferIndefinitely();
+}
+
+void CodeBlock::optimizeAfterWarmUp()
+{
+ m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterWarmUp(), this);
+}
+
+void CodeBlock::optimizeAfterLongWarmUp()
+{
+ m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterLongWarmUp(), this);
+}
+
+void CodeBlock::optimizeSoon()
+{
+ m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeSoon(), this);
+}
+
+#if ENABLE(JIT)
+uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold)
+{
+ ASSERT(getJITType() == JITCode::DFGJIT);
+ // Compute this the lame way so we don't saturate. This is called infrequently
+ // enough that this loop won't hurt us.
+ unsigned result = desiredThreshold;
+ for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) {
+ unsigned newResult = result << 1;
+ if (newResult < result)
+ return std::numeric_limits<uint32_t>::max();
+ result = newResult;
}
+ return result;
+}
- if (!low || m_globalResolveInstructions[low - 1] != bytecodeOffset)
- return false;
- return true;
+uint32_t CodeBlock::exitCountThresholdForReoptimization()
+{
+ return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier());
}
-#else
-bool CodeBlock::hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset)
+
+uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop()
{
- if (m_globalResolveInfos.isEmpty())
- return false;
+ return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier());
+}
- int low = 0;
- int high = m_globalResolveInfos.size();
- while (low < high) {
- int mid = low + (high - low) / 2;
- if (m_globalResolveInfos[mid].bytecodeOffset <= bytecodeOffset)
- low = mid + 1;
- else
- high = mid;
+bool CodeBlock::shouldReoptimizeNow()
+{
+ return osrExitCounter() >= exitCountThresholdForReoptimization();
+}
+
+bool CodeBlock::shouldReoptimizeFromLoopNow()
+{
+ return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop();
+}
+#endif
+
+#if ENABLE(VALUE_PROFILER)
+ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset)
+{
+ for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) {
+ if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset)
+ return &m_arrayProfiles[i];
}
+ return 0;
+}
- if (!low || m_globalResolveInfos[low - 1].bytecodeOffset != bytecodeOffset)
- return false;
- return true;
+ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset)
+{
+ ArrayProfile* result = getArrayProfile(bytecodeOffset);
+ if (result)
+ return result;
+ return addArrayProfile(bytecodeOffset);
}
+
+void CodeBlock::updateAllPredictionsAndCountLiveness(
+ OperationInProgress operation, unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles)
+{
+ numberOfLiveNonArgumentValueProfiles = 0;
+ numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full.
+ for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) {
+ ValueProfile* profile = getFromAllValueProfiles(i);
+ unsigned numSamples = profile->totalNumberOfSamples();
+ if (numSamples > ValueProfile::numberOfBuckets)
+ numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight.
+ numberOfSamplesInProfiles += numSamples;
+ if (profile->m_bytecodeOffset < 0) {
+ profile->computeUpdatedPrediction(operation);
+ continue;
+ }
+ if (profile->numberOfSamples() || profile->m_prediction != SpecNone)
+ numberOfLiveNonArgumentValueProfiles++;
+ profile->computeUpdatedPrediction(operation);
+ }
+
+#if ENABLE(DFG_JIT)
+ m_lazyOperandValueProfiles.computeUpdatedPredictions(operation);
#endif
+}
-#if ENABLE(JIT)
-void CodeBlock::setJITCode(JITCodeRef& jitCode)
+void CodeBlock::updateAllValueProfilePredictions(OperationInProgress operation)
{
- m_jitCode = jitCode;
-#if !ENABLE(OPCODE_SAMPLING)
- if (!BytecodeGenerator::dumpsGeneratedCode())
- m_instructions.clear();
+ unsigned ignoredValue1, ignoredValue2;
+ updateAllPredictionsAndCountLiveness(operation, ignoredValue1, ignoredValue2);
+}
+
+void CodeBlock::updateAllArrayPredictions(OperationInProgress operation)
+{
+ for (unsigned i = m_arrayProfiles.size(); i--;)
+ m_arrayProfiles[i].computeUpdatedPrediction(this, operation);
+
+ // Don't count these either, for similar reasons.
+ for (unsigned i = m_arrayAllocationProfiles.size(); i--;)
+ m_arrayAllocationProfiles[i].updateIndexingType();
+}
+
+void CodeBlock::updateAllPredictions(OperationInProgress operation)
+{
+ updateAllValueProfilePredictions(operation);
+ updateAllArrayPredictions(operation);
+}
+
+bool CodeBlock::shouldOptimizeNow()
+{
+#if ENABLE(JIT_VERBOSE_OSR)
+ dataLog("Considering optimizing ", *this, "...\n");
#endif
+
+#if ENABLE(VERBOSE_VALUE_PROFILE)
+ dumpValueProfiles();
+#endif
+
+ if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay())
+ return true;
+
+ updateAllArrayPredictions();
+
+ unsigned numberOfLiveNonArgumentValueProfiles;
+ unsigned numberOfSamplesInProfiles;
+ updateAllPredictionsAndCountLiveness(NoOperation, numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles);
+
+#if ENABLE(JIT_VERBOSE_OSR)
+ dataLogF("Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles());
+#endif
+
+ if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate())
+ && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate())
+ && static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay())
+ return true;
+
+ ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max());
+ m_optimizationDelayCounter++;
+ optimizeAfterWarmUp();
+ return false;
}
#endif
-void CodeBlock::shrinkToFit()
+#if ENABLE(DFG_JIT)
+void CodeBlock::tallyFrequentExitSites()
{
- m_instructions.shrinkToFit();
-
-#if !ENABLE(JIT)
- m_propertyAccessInstructions.shrinkToFit();
- m_globalResolveInstructions.shrinkToFit();
-#else
- m_structureStubInfos.shrinkToFit();
- m_globalResolveInfos.shrinkToFit();
- m_callLinkInfos.shrinkToFit();
- m_linkedCallerList.shrinkToFit();
+ ASSERT(getJITType() == JITCode::DFGJIT);
+ ASSERT(alternative()->getJITType() == JITCode::BaselineJIT);
+ ASSERT(!!m_dfgData);
+
+ CodeBlock* profiledBlock = alternative();
+
+ for (unsigned i = 0; i < m_dfgData->osrExit.size(); ++i) {
+ DFG::OSRExit& exit = m_dfgData->osrExit[i];
+
+ if (!exit.considerAddingAsFrequentExitSite(profiledBlock))
+ continue;
+
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLog("OSR exit #", i, " (bc#", exit.m_codeOrigin.bytecodeIndex, ", ", exit.m_kind, ") for ", *this, " occurred frequently: counting as frequent exit site.\n");
#endif
+ }
+}
+#endif // ENABLE(DFG_JIT)
- m_identifiers.shrinkToFit();
- m_functionExpressions.shrinkToFit();
- m_constantRegisters.shrinkToFit();
+#if ENABLE(VERBOSE_VALUE_PROFILE)
+void CodeBlock::dumpValueProfiles()
+{
+ dataLog("ValueProfile for ", *this, ":\n");
+ for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) {
+ ValueProfile* profile = getFromAllValueProfiles(i);
+ if (profile->m_bytecodeOffset < 0) {
+ ASSERT(profile->m_bytecodeOffset == -1);
+ dataLogF(" arg = %u: ", i);
+ } else
+ dataLogF(" bc = %d: ", profile->m_bytecodeOffset);
+ if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) {
+ dataLogF("<empty>\n");
+ continue;
+ }
+ profile->dump(WTF::dataFile());
+ dataLogF("\n");
+ }
+ dataLog("RareCaseProfile for ", *this, ":\n");
+ for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) {
+ RareCaseProfile* profile = rareCaseProfile(i);
+ dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter);
+ }
+ dataLog("SpecialFastCaseProfile for ", *this, ":\n");
+ for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) {
+ RareCaseProfile* profile = specialFastCaseProfile(i);
+ dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter);
+ }
+}
+#endif // ENABLE(VERBOSE_VALUE_PROFILE)
- if (m_exceptionInfo) {
- m_exceptionInfo->m_expressionInfo.shrinkToFit();
- m_exceptionInfo->m_lineInfo.shrinkToFit();
- m_exceptionInfo->m_getByIdExceptionInfo.shrinkToFit();
+size_t CodeBlock::predictedMachineCodeSize()
+{
+ // This will be called from CodeBlock::CodeBlock before either m_vm or the
+ // instructions have been initialized. It's OK to return 0 because what will really
+ // matter is the recomputation of this value when the slow path is triggered.
+ if (!m_vm)
+ return 0;
+
+ if (!m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT)
+ return 0; // It's as good of a prediction as we'll get.
+
+ // Be conservative: return a size that will be an overestimation 84% of the time.
+ double multiplier = m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() +
+ m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation();
+
+ // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing
+ // here is OK, since this whole method is just a heuristic.
+ if (multiplier < 0 || multiplier > 1000)
+ return 0;
+
+ double doubleResult = multiplier * m_instructions.size();
+
+ // Be even more paranoid: silently reject values that won't fit into a size_t. If
+ // the function is so huge that we can't even fit it into virtual memory then we
+ // should probably have some other guards in place to prevent us from even getting
+ // to this point.
+ if (doubleResult > std::numeric_limits<size_t>::max())
+ return 0;
+
+ return static_cast<size_t>(doubleResult);
+}
+
+bool CodeBlock::usesOpcode(OpcodeID opcodeID)
+{
+ Interpreter* interpreter = vm()->interpreter;
+ Instruction* instructionsBegin = instructions().begin();
+ unsigned instructionCount = instructions().size();
+
+ for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) {
+ switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) {
+#define DEFINE_OP(curOpcode, length) \
+ case curOpcode: \
+ if (curOpcode == opcodeID) \
+ return true; \
+ bytecodeOffset += length; \
+ break;
+ FOR_EACH_OPCODE_ID(DEFINE_OP)
+#undef DEFINE_OP
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
}
+
+ return false;
+}
- if (m_rareData) {
- m_rareData->m_exceptionHandlers.shrinkToFit();
- m_rareData->m_functions.shrinkToFit();
- m_rareData->m_unexpectedConstants.shrinkToFit();
- m_rareData->m_regexps.shrinkToFit();
- m_rareData->m_immediateSwitchJumpTables.shrinkToFit();
- m_rareData->m_characterSwitchJumpTables.shrinkToFit();
- m_rareData->m_stringSwitchJumpTables.shrinkToFit();
-#if ENABLE(JIT)
- m_rareData->m_functionRegisterInfos.shrinkToFit();
-#endif
+String CodeBlock::nameForRegister(int registerNumber)
+{
+ SymbolTable::iterator end = symbolTable()->end();
+ for (SymbolTable::iterator ptr = symbolTable()->begin(); ptr != end; ++ptr) {
+ if (ptr->value.getIndex() == registerNumber)
+ return String(ptr->key);
+ }
+ if (needsActivation() && registerNumber == activationRegister())
+ return ASCIILiteral("activation");
+ if (registerNumber == thisRegister())
+ return ASCIILiteral("this");
+ if (usesArguments()) {
+ if (registerNumber == argumentsRegister())
+ return ASCIILiteral("arguments");
+ if (unmodifiedArgumentsRegister(argumentsRegister()) == registerNumber)
+ return ASCIILiteral("real arguments");
}
+ if (registerNumber < 0) {
+ int argumentPosition = -registerNumber;
+ argumentPosition -= JSStack::CallFrameHeaderSize + 1;
+ return String::format("arguments[%3d]", argumentPosition - 1).impl();
+ }
+ return "";
}
} // namespace JSC