- /*
- * Copyright (C) 2011, 2012, 2013, 2014 Apple Inc. All rights reserved.
+/*
+ * Copyright (C) 2011-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
#if ENABLE(DFG_JIT)
#include "ArrayConstructor.h"
+#include "BasicBlockLocation.h"
#include "CallLinkStatus.h"
#include "CodeBlock.h"
#include "CodeBlockWithJITType.h"
#include "DFGArrayMode.h"
#include "DFGCapabilities.h"
+#include "DFGGraph.h"
#include "DFGJITCode.h"
#include "GetByIdStatus.h"
#include "Heap.h"
-#include "JSActivation.h"
+#include "JSLexicalEnvironment.h"
#include "JSCInlines.h"
#include "PreciseJumpTargets.h"
#include "PutByIdStatus.h"
namespace JSC { namespace DFG {
+static const bool verbose = false;
+
class ConstantBufferKey {
public:
ConstantBufferKey()
, m_graph(graph)
, m_currentBlock(0)
, m_currentIndex(0)
- , m_constantUndefined(UINT_MAX)
- , m_constantNull(UINT_MAX)
- , m_constantNaN(UINT_MAX)
- , m_constant1(UINT_MAX)
- , m_constants(m_codeBlock->numberOfConstantRegisters())
+ , m_constantUndefined(graph.freeze(jsUndefined()))
+ , m_constantNull(graph.freeze(jsNull()))
+ , m_constantNaN(graph.freeze(jsNumber(PNaN)))
+ , m_constantOne(graph.freeze(jsNumber(1)))
, m_numArguments(m_codeBlock->numParameters())
, m_numLocals(m_codeBlock->m_numCalleeRegisters)
, m_parameterSlots(0)
, m_numPassedVarArgs(0)
, m_inlineStackTop(0)
, m_haveBuiltOperandMaps(false)
- , m_emptyJSValueIndex(UINT_MAX)
, m_currentInstruction(0)
+ , m_hasDebuggerEnabled(graph.hasDebuggerEnabled())
{
ASSERT(m_profiledBlock);
}
}
// Helper for min and max.
- bool handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis);
+ template<typename ChecksFunctor>
+ bool handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks);
// Handle calls. This resolves issues surrounding inlining and intrinsics.
+ void handleCall(
+ int result, NodeType op, InlineCallFrame::Kind, unsigned instructionSize,
+ Node* callTarget, int argCount, int registerOffset, CallLinkStatus,
+ SpeculatedType prediction);
+ void handleCall(
+ int result, NodeType op, InlineCallFrame::Kind, unsigned instructionSize,
+ Node* callTarget, int argCount, int registerOffset, CallLinkStatus);
void handleCall(int result, NodeType op, CodeSpecializationKind, unsigned instructionSize, int callee, int argCount, int registerOffset);
void handleCall(Instruction* pc, NodeType op, CodeSpecializationKind);
- void emitFunctionChecks(const CallLinkStatus&, Node* callTarget, int registerOffset, CodeSpecializationKind);
- void emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind);
+ void handleVarargsCall(Instruction* pc, NodeType op, CodeSpecializationKind);
+ void emitFunctionChecks(CallVariant, Node* callTarget, VirtualRegister thisArgumnt);
+ void emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis);
+ unsigned inliningCost(CallVariant, int argumentCountIncludingThis, CodeSpecializationKind); // Return UINT_MAX if it's not an inlining candidate. By convention, intrinsics have a cost of 1.
// Handle inlining. Return true if it succeeded, false if we need to plant a call.
- bool handleInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, CodeSpecializationKind);
+ bool handleInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, VirtualRegister thisArgument, VirtualRegister argumentsArgument, unsigned argumentsOffset, int argumentCountIncludingThis, unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind, SpeculatedType prediction);
+ enum CallerLinkability { CallerDoesNormalLinking, CallerLinksManually };
+ template<typename ChecksFunctor>
+ bool attemptToInlineCall(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind, CallerLinkability, SpeculatedType prediction, unsigned& inliningBalance, const ChecksFunctor& insertChecks);
+ template<typename ChecksFunctor>
+ void inlineCall(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind, CallerLinkability, const ChecksFunctor& insertChecks);
+ void cancelLinkingForBlock(InlineStackEntry*, BasicBlock*); // Only works when the given block is the last one to have been added for that inline stack entry.
// Handle intrinsic functions. Return true if it succeeded, false if we need to plant a call.
- bool handleIntrinsic(int resultOperand, Intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction);
- bool handleTypedArrayConstructor(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, TypedArrayType);
- bool handleConstantInternalFunction(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, CodeSpecializationKind);
+ template<typename ChecksFunctor>
+ bool handleIntrinsic(int resultOperand, Intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks);
+ template<typename ChecksFunctor>
+ bool handleTypedArrayConstructor(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, TypedArrayType, const ChecksFunctor& insertChecks);
+ template<typename ChecksFunctor>
+ bool handleConstantInternalFunction(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind, const ChecksFunctor& insertChecks);
Node* handlePutByOffset(Node* base, unsigned identifier, PropertyOffset, Node* value);
- Node* handleGetByOffset(SpeculatedType, Node* base, unsigned identifierNumber, PropertyOffset);
- void handleGetByOffset(
- int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber,
- PropertyOffset);
+ Node* handleGetByOffset(SpeculatedType, Node* base, const StructureSet&, unsigned identifierNumber, PropertyOffset, NodeType op = GetByOffset);
void handleGetById(
int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber,
const GetByIdStatus&);
void handlePutById(
Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus&,
bool isDirect);
- Node* emitPrototypeChecks(Structure*, IntendedStructureChain*);
+ void emitChecks(const ConstantStructureCheckVector&);
- Node* getScope(bool skipTop, unsigned skipCount);
-
- // Prepare to parse a block.
void prepareToParseBlock();
+ void clearCaches();
+
// Parse a single basic block of bytecode instructions.
bool parseBlock(unsigned limit);
// Link block successors.
void linkBlock(BasicBlock*, Vector<BasicBlock*>& possibleTargets);
void linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets);
- VariableAccessData* newVariableAccessData(VirtualRegister operand, bool isCaptured)
+ VariableAccessData* newVariableAccessData(VirtualRegister operand)
{
ASSERT(!operand.isConstant());
- m_graph.m_variableAccessData.append(VariableAccessData(operand, isCaptured));
+ m_graph.m_variableAccessData.append(VariableAccessData(operand));
return &m_graph.m_variableAccessData.last();
}
// Get/Set the operands/result of a bytecode instruction.
Node* getDirect(VirtualRegister operand)
{
- // Is this a constant?
- if (operand.isConstant()) {
- unsigned constant = operand.toConstantIndex();
- ASSERT(constant < m_constants.size());
- return getJSConstant(constant);
- }
+ ASSERT(!operand.isConstant());
// Is this an argument?
if (operand.isArgument())
Node* get(VirtualRegister operand)
{
+ if (operand.isConstant()) {
+ unsigned constantIndex = operand.toConstantIndex();
+ unsigned oldSize = m_constants.size();
+ if (constantIndex >= oldSize || !m_constants[constantIndex]) {
+ const CodeBlock& codeBlock = *m_inlineStackTop->m_codeBlock;
+ JSValue value = codeBlock.getConstant(operand.offset());
+ SourceCodeRepresentation sourceCodeRepresentation = codeBlock.constantSourceCodeRepresentation(operand.offset());
+ if (constantIndex >= oldSize) {
+ m_constants.grow(constantIndex + 1);
+ for (unsigned i = oldSize; i < m_constants.size(); ++i)
+ m_constants[i] = nullptr;
+ }
+
+ Node* constantNode = nullptr;
+ if (sourceCodeRepresentation == SourceCodeRepresentation::Double)
+ constantNode = addToGraph(DoubleConstant, OpInfo(m_graph.freezeStrong(jsDoubleNumber(value.asNumber()))));
+ else
+ constantNode = addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(value)));
+ m_constants[constantIndex] = constantNode;
+ }
+ ASSERT(m_constants[constantIndex]);
+ return m_constants[constantIndex];
+ }
+
if (inlineCallFrame()) {
if (!inlineCallFrame()->isClosureCall) {
JSFunction* callee = inlineCallFrame()->calleeConstant();
if (operand.offset() == JSStack::Callee)
- return cellConstant(callee);
- if (operand.offset() == JSStack::ScopeChain)
- return cellConstant(callee->scope());
+ return weakJSConstant(callee);
+ }
+ } else if (operand.offset() == JSStack::Callee) {
+ // We have to do some constant-folding here because this enables CreateThis folding. Note
+ // that we don't have such watchpoint-based folding for inlined uses of Callee, since in that
+ // case if the function is a singleton then we already know it.
+ if (FunctionExecutable* executable = jsDynamicCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())) {
+ InferredValue* singleton = executable->singletonFunction();
+ if (JSValue value = singleton->inferredValue()) {
+ m_graph.watchpoints().addLazily(singleton);
+ JSFunction* function = jsCast<JSFunction*>(value);
+ return weakJSConstant(function);
+ }
}
- } else if (operand.offset() == JSStack::Callee)
return addToGraph(GetCallee);
- else if (operand.offset() == JSStack::ScopeChain)
- return addToGraph(GetMyScope);
+ }
return getDirect(m_inlineStackTop->remapOperand(operand));
}
Node* setDirect(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
addToGraph(MovHint, OpInfo(operand.offset()), value);
-
- DelayedSetLocal delayed = DelayedSetLocal(operand, value);
+
+ DelayedSetLocal delayed(currentCodeOrigin(), operand, value);
if (setMode == NormalSet) {
m_setLocalQueue.append(delayed);
return delayed.execute(this, setMode);
}
+
+ void processSetLocalQueue()
+ {
+ for (unsigned i = 0; i < m_setLocalQueue.size(); ++i)
+ m_setLocalQueue[i].execute(this);
+ m_setLocalQueue.resize(0);
+ }
Node* set(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
{
unsigned local = operand.toLocal();
- if (local < m_localWatchpoints.size()) {
- if (VariableWatchpointSet* set = m_localWatchpoints[local]) {
- if (JSValue value = set->inferredValue()) {
- addToGraph(FunctionReentryWatchpoint, OpInfo(m_codeBlock->symbolTable()));
- addToGraph(VariableWatchpoint, OpInfo(set));
- // Note: this is very special from an OSR exit standpoint. We wouldn't be
- // able to do this for most locals, but it works here because we're dealing
- // with a flushed local. For most locals we would need to issue a GetLocal
- // here and ensure that we have uses in DFG IR wherever there would have
- // been uses in bytecode. Clearly this optimization does not do this. But
- // that's fine, because we don't need to track liveness for captured
- // locals, and this optimization only kicks in for captured locals.
- return inferredConstant(value);
- }
- }
- }
-
Node* node = m_currentBlock->variablesAtTail.local(local);
- bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame());
// This has two goals: 1) link together variable access datas, and 2)
// try to avoid creating redundant GetLocals. (1) is required for
if (node) {
variable = node->variableAccessData();
- variable->mergeIsCaptured(isCaptured);
- if (!isCaptured) {
- switch (node->op()) {
- case GetLocal:
- return node;
- case SetLocal:
- return node->child1().node();
- default:
- break;
- }
+ switch (node->op()) {
+ case GetLocal:
+ return node;
+ case SetLocal:
+ return node->child1().node();
+ default:
+ break;
}
} else
- variable = newVariableAccessData(operand, isCaptured);
+ variable = newVariableAccessData(operand);
node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
m_currentBlock->variablesAtTail.local(local) = node;
return node;
}
- Node* setLocal(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
+ Node* setLocal(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
+ CodeOrigin oldSemanticOrigin = m_currentSemanticOrigin;
+ m_currentSemanticOrigin = semanticOrigin;
+
unsigned local = operand.toLocal();
- bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame());
if (setMode != ImmediateNakedSet) {
ArgumentPosition* argumentPosition = findArgumentPositionForLocal(operand);
- if (isCaptured || argumentPosition)
+ if (argumentPosition)
flushDirect(operand, argumentPosition);
+ else if (m_hasDebuggerEnabled && operand == m_codeBlock->scopeRegister())
+ flush(operand);
}
- VariableAccessData* variableAccessData = newVariableAccessData(operand, isCaptured);
+ VariableAccessData* variableAccessData = newVariableAccessData(operand);
variableAccessData->mergeStructureCheckHoistingFailed(
- m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCacheWatchpoint));
+ m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache));
variableAccessData->mergeCheckArrayHoistingFailed(
- m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType));
+ m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType));
Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
m_currentBlock->variablesAtTail.local(local) = node;
+
+ m_currentSemanticOrigin = oldSemanticOrigin;
return node;
}
ASSERT(argument < m_numArguments);
Node* node = m_currentBlock->variablesAtTail.argument(argument);
- bool isCaptured = m_codeBlock->isCaptured(operand);
VariableAccessData* variable;
if (node) {
variable = node->variableAccessData();
- variable->mergeIsCaptured(isCaptured);
switch (node->op()) {
case GetLocal:
break;
}
} else
- variable = newVariableAccessData(operand, isCaptured);
+ variable = newVariableAccessData(operand);
node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
m_currentBlock->variablesAtTail.argument(argument) = node;
return node;
}
- Node* setArgument(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
+ Node* setArgument(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
+ CodeOrigin oldSemanticOrigin = m_currentSemanticOrigin;
+ m_currentSemanticOrigin = semanticOrigin;
+
unsigned argument = operand.toArgument();
ASSERT(argument < m_numArguments);
- bool isCaptured = m_codeBlock->isCaptured(operand);
-
- VariableAccessData* variableAccessData = newVariableAccessData(operand, isCaptured);
+ VariableAccessData* variableAccessData = newVariableAccessData(operand);
// Always flush arguments, except for 'this'. If 'this' is created by us,
// then make sure that it's never unboxed.
variableAccessData->mergeShouldNeverUnbox(true);
variableAccessData->mergeStructureCheckHoistingFailed(
- m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCacheWatchpoint));
+ m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache));
variableAccessData->mergeCheckArrayHoistingFailed(
- m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType));
+ m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType));
Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
m_currentBlock->variablesAtTail.argument(argument) = node;
+
+ m_currentSemanticOrigin = oldSemanticOrigin;
return node;
}
return findArgumentPositionForLocal(operand);
}
- void addConstant(JSValue value)
- {
- unsigned constantIndex = m_codeBlock->addConstantLazily();
- initializeLazyWriteBarrierForConstant(
- m_graph.m_plan.writeBarriers,
- m_codeBlock->constants()[constantIndex],
- m_codeBlock,
- constantIndex,
- m_codeBlock->ownerExecutable(),
- value);
- }
-
void flush(VirtualRegister operand)
{
flushDirect(m_inlineStackTop->remapOperand(operand));
void flushDirect(VirtualRegister operand, ArgumentPosition* argumentPosition)
{
- bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame());
-
ASSERT(!operand.isConstant());
Node* node = m_currentBlock->variablesAtTail.operand(operand);
VariableAccessData* variable;
- if (node) {
+ if (node)
variable = node->variableAccessData();
- variable->mergeIsCaptured(isCaptured);
- } else
- variable = newVariableAccessData(operand, isCaptured);
+ else
+ variable = newVariableAccessData(operand);
node = addToGraph(Flush, OpInfo(variable));
m_currentBlock->variablesAtTail.operand(operand) = node;
{
int numArguments;
if (InlineCallFrame* inlineCallFrame = inlineStackEntry->m_inlineCallFrame) {
+ ASSERT(!m_hasDebuggerEnabled);
numArguments = inlineCallFrame->arguments.size();
- if (inlineCallFrame->isClosureCall) {
+ if (inlineCallFrame->isClosureCall)
flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::Callee)));
- flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::ScopeChain)));
- }
+ if (inlineCallFrame->isVarargs())
+ flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::ArgumentCount)));
} else
numArguments = inlineStackEntry->m_codeBlock->numParameters();
for (unsigned argument = numArguments; argument-- > 1;)
flushDirect(inlineStackEntry->remapOperand(virtualRegisterForArgument(argument)));
- for (int local = 0; local < inlineStackEntry->m_codeBlock->m_numVars; ++local) {
- if (!inlineStackEntry->m_codeBlock->isCaptured(virtualRegisterForLocal(local)))
- continue;
- flushDirect(inlineStackEntry->remapOperand(virtualRegisterForLocal(local)));
- }
+ if (m_hasDebuggerEnabled)
+ flush(m_codeBlock->scopeRegister());
}
void flushForTerminal()
flushForTerminal();
}
- // NOTE: Only use this to construct constants that arise from non-speculative
- // constant folding. I.e. creating constants using this if we had constant
- // field inference would be a bad idea, since the bytecode parser's folding
- // doesn't handle liveness preservation.
- Node* getJSConstantForValue(JSValue constantValue)
+ // Assumes that the constant should be strongly marked.
+ Node* jsConstant(JSValue constantValue)
{
- unsigned constantIndex;
- if (!m_codeBlock->findConstant(constantValue, constantIndex)) {
- addConstant(constantValue);
- m_constants.append(ConstantRecord());
- }
-
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
-
- return getJSConstant(constantIndex);
+ return addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(constantValue)));
}
- Node* getJSConstant(unsigned constant)
+ Node* weakJSConstant(JSValue constantValue)
{
- Node* node = m_constants[constant].asJSValue;
- if (node)
- return node;
-
- Node* result = addToGraph(JSConstant, OpInfo(constant));
- m_constants[constant].asJSValue = result;
- return result;
+ return addToGraph(JSConstant, OpInfo(m_graph.freeze(constantValue)));
}
// Helper functions to get/set the this value.
set(m_inlineStackTop->m_codeBlock->thisRegister(), value);
}
- // Convenience methods for checking nodes for constants.
- bool isJSConstant(Node* node)
- {
- return node->op() == JSConstant;
- }
- bool isInt32Constant(Node* node)
- {
- return isJSConstant(node) && valueOfJSConstant(node).isInt32();
- }
- // Convenience methods for getting constant values.
- JSValue valueOfJSConstant(Node* node)
- {
- ASSERT(isJSConstant(node));
- return m_codeBlock->getConstant(FirstConstantRegisterIndex + node->constantNumber());
- }
- int32_t valueOfInt32Constant(Node* node)
- {
- ASSERT(isInt32Constant(node));
- return valueOfJSConstant(node).asInt32();
- }
-
- // This method returns a JSConstant with the value 'undefined'.
- Node* constantUndefined()
- {
- // Has m_constantUndefined been set up yet?
- if (m_constantUndefined == UINT_MAX) {
- // Search the constant pool for undefined, if we find it, we can just reuse this!
- unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
- for (m_constantUndefined = 0; m_constantUndefined < numberOfConstants; ++m_constantUndefined) {
- JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined);
- if (testMe.isUndefined())
- return getJSConstant(m_constantUndefined);
- }
-
- // Add undefined to the CodeBlock's constants, and add a corresponding slot in m_constants.
- ASSERT(m_constants.size() == numberOfConstants);
- addConstant(jsUndefined());
- m_constants.append(ConstantRecord());
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
- }
-
- // m_constantUndefined must refer to an entry in the CodeBlock's constant pool that has the value 'undefined'.
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined).isUndefined());
- return getJSConstant(m_constantUndefined);
- }
-
- // This method returns a JSConstant with the value 'null'.
- Node* constantNull()
- {
- // Has m_constantNull been set up yet?
- if (m_constantNull == UINT_MAX) {
- // Search the constant pool for null, if we find it, we can just reuse this!
- unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
- for (m_constantNull = 0; m_constantNull < numberOfConstants; ++m_constantNull) {
- JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull);
- if (testMe.isNull())
- return getJSConstant(m_constantNull);
- }
-
- // Add null to the CodeBlock's constants, and add a corresponding slot in m_constants.
- ASSERT(m_constants.size() == numberOfConstants);
- addConstant(jsNull());
- m_constants.append(ConstantRecord());
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
- }
-
- // m_constantNull must refer to an entry in the CodeBlock's constant pool that has the value 'null'.
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull).isNull());
- return getJSConstant(m_constantNull);
- }
-
- // This method returns a DoubleConstant with the value 1.
- Node* one()
- {
- // Has m_constant1 been set up yet?
- if (m_constant1 == UINT_MAX) {
- // Search the constant pool for the value 1, if we find it, we can just reuse this!
- unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
- for (m_constant1 = 0; m_constant1 < numberOfConstants; ++m_constant1) {
- JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1);
- if (testMe.isInt32() && testMe.asInt32() == 1)
- return getJSConstant(m_constant1);
- }
-
- // Add the value 1 to the CodeBlock's constants, and add a corresponding slot in m_constants.
- ASSERT(m_constants.size() == numberOfConstants);
- addConstant(jsNumber(1));
- m_constants.append(ConstantRecord());
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
- }
-
- // m_constant1 must refer to an entry in the CodeBlock's constant pool that has the integer value 1.
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).isInt32());
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).asInt32() == 1);
- return getJSConstant(m_constant1);
- }
-
- // This method returns a DoubleConstant with the value NaN.
- Node* constantNaN()
- {
- JSValue nan = jsNaN();
-
- // Has m_constantNaN been set up yet?
- if (m_constantNaN == UINT_MAX) {
- // Search the constant pool for the value NaN, if we find it, we can just reuse this!
- unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
- for (m_constantNaN = 0; m_constantNaN < numberOfConstants; ++m_constantNaN) {
- JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN);
- if (JSValue::encode(testMe) == JSValue::encode(nan))
- return getJSConstant(m_constantNaN);
- }
-
- // Add the value nan to the CodeBlock's constants, and add a corresponding slot in m_constants.
- ASSERT(m_constants.size() == numberOfConstants);
- addConstant(nan);
- m_constants.append(ConstantRecord());
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
- }
-
- // m_constantNaN must refer to an entry in the CodeBlock's constant pool that has the value nan.
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN).isDouble());
- ASSERT(std::isnan(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN).asDouble()));
- return getJSConstant(m_constantNaN);
- }
-
- Node* cellConstant(JSCell* cell)
- {
- HashMap<JSCell*, Node*>::AddResult result = m_cellConstantNodes.add(cell, nullptr);
- if (result.isNewEntry) {
- ASSERT(!Heap::isZombified(cell));
- result.iterator->value = addToGraph(WeakJSConstant, OpInfo(cell));
- }
-
- return result.iterator->value;
- }
-
- Node* inferredConstant(JSValue value)
- {
- if (value.isCell())
- return cellConstant(value.asCell());
- return getJSConstantForValue(value);
- }
-
InlineCallFrame* inlineCallFrame()
{
return m_inlineStackTop->m_inlineCallFrame;
{
return CodeOrigin(m_currentIndex, inlineCallFrame());
}
+
+ NodeOrigin currentNodeOrigin()
+ {
+ // FIXME: We should set the forExit origin only on those nodes that can exit.
+ // https://bugs.webkit.org/show_bug.cgi?id=145204
+ if (m_currentSemanticOrigin.isSet())
+ return NodeOrigin(m_currentSemanticOrigin, currentCodeOrigin());
+ return NodeOrigin(currentCodeOrigin());
+ }
BranchData* branchData(unsigned taken, unsigned notTaken)
{
return data;
}
+ Node* addToGraph(Node* node)
+ {
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" appended ", node, " ", Graph::opName(node->op()), "\n");
+ m_currentBlock->append(node);
+ return node;
+ }
+
Node* addToGraph(NodeType op, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
- SpecNone, op, NodeOrigin(currentCodeOrigin()), Edge(child1), Edge(child2),
+ SpecNone, op, currentNodeOrigin(), Edge(child1), Edge(child2),
Edge(child3));
- ASSERT(op != Phi);
- m_currentBlock->append(result);
- return result;
+ return addToGraph(result);
}
Node* addToGraph(NodeType op, Edge child1, Edge child2 = Edge(), Edge child3 = Edge())
{
Node* result = m_graph.addNode(
- SpecNone, op, NodeOrigin(currentCodeOrigin()), child1, child2, child3);
- ASSERT(op != Phi);
- m_currentBlock->append(result);
- return result;
+ SpecNone, op, currentNodeOrigin(), child1, child2, child3);
+ return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
- SpecNone, op, NodeOrigin(currentCodeOrigin()), info, Edge(child1), Edge(child2),
+ SpecNone, op, currentNodeOrigin(), info, Edge(child1), Edge(child2),
Edge(child3));
- ASSERT(op != Phi);
- m_currentBlock->append(result);
- return result;
+ return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info1, OpInfo info2, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
- SpecNone, op, NodeOrigin(currentCodeOrigin()), info1, info2,
+ SpecNone, op, currentNodeOrigin(), info1, info2,
Edge(child1), Edge(child2), Edge(child3));
- ASSERT(op != Phi);
- m_currentBlock->append(result);
- return result;
+ return addToGraph(result);
}
Node* addToGraph(Node::VarArgTag, NodeType op, OpInfo info1, OpInfo info2)
{
Node* result = m_graph.addNode(
- SpecNone, Node::VarArg, op, NodeOrigin(currentCodeOrigin()), info1, info2,
+ SpecNone, Node::VarArg, op, currentNodeOrigin(), info1, info2,
m_graph.m_varArgChildren.size() - m_numPassedVarArgs, m_numPassedVarArgs);
- ASSERT(op != Phi);
- m_currentBlock->append(result);
+ addToGraph(result);
m_numPassedVarArgs = 0;
return result;
}
-
+
void addVarArgChild(Node* child)
{
m_graph.m_varArgChildren.append(Edge(child));
m_numPassedVarArgs++;
}
- Node* addCall(int result, NodeType op, int callee, int argCount, int registerOffset)
+ Node* addCallWithoutSettingResult(
+ NodeType op, OpInfo opInfo, Node* callee, int argCount, int registerOffset,
+ SpeculatedType prediction)
{
- SpeculatedType prediction = getPrediction();
-
- addVarArgChild(get(VirtualRegister(callee)));
+ addVarArgChild(callee);
size_t parameterSlots = JSStack::CallFrameHeaderSize - JSStack::CallerFrameAndPCSize + argCount;
if (parameterSlots > m_parameterSlots)
m_parameterSlots = parameterSlots;
- int dummyThisArgument = op == Call ? 0 : 1;
- for (int i = 0 + dummyThisArgument; i < argCount; ++i)
+ for (int i = 0; i < argCount; ++i)
addVarArgChild(get(virtualRegisterForArgument(i, registerOffset)));
- Node* call = addToGraph(Node::VarArg, op, OpInfo(0), OpInfo(prediction));
- set(VirtualRegister(result), call);
+ return addToGraph(Node::VarArg, op, opInfo, OpInfo(prediction));
+ }
+
+ Node* addCall(
+ int result, NodeType op, OpInfo opInfo, Node* callee, int argCount, int registerOffset,
+ SpeculatedType prediction)
+ {
+ Node* call = addCallWithoutSettingResult(
+ op, opInfo, callee, argCount, registerOffset, prediction);
+ VirtualRegister resultReg(result);
+ if (resultReg.isValid())
+ set(resultReg, call);
return call;
}
Node* cellConstantWithStructureCheck(JSCell* object, Structure* structure)
{
- Node* objectNode = cellConstant(object);
+ Node* objectNode = weakJSConstant(object);
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(structure)), objectNode);
return objectNode;
}
- Node* cellConstantWithStructureCheck(JSCell* object)
- {
- return cellConstantWithStructureCheck(object, object->structure());
- }
-
SpeculatedType getPredictionWithoutOSRExit(unsigned bytecodeIndex)
{
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
{
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
profile->computeUpdatedPrediction(locker, m_inlineStackTop->m_profiledBlock);
- return ArrayMode::fromObserved(locker, profile, action, false);
+ bool makeSafe = profile->outOfBounds(locker);
+ return ArrayMode::fromObserved(locker, profile, action, makeSafe);
}
ArrayMode getArrayMode(ArrayProfile* profile)
return getArrayMode(profile, Array::Read);
}
- ArrayMode getArrayModeConsideringSlowPath(ArrayProfile* profile, Array::Action action)
- {
- ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
-
- profile->computeUpdatedPrediction(locker, m_inlineStackTop->m_profiledBlock);
-
- bool makeSafe =
- m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex)
- || profile->outOfBounds(locker);
-
- ArrayMode result = ArrayMode::fromObserved(locker, profile, action, makeSafe);
-
- return result;
- }
-
Node* makeSafe(Node* node)
{
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
return node;
}
- bool structureChainIsStillValid(bool direct, Structure* previousStructure, StructureChain* chain)
+ void noticeArgumentsUse()
{
- if (direct)
- return true;
-
- if (!previousStructure->storedPrototype().isNull() && previousStructure->storedPrototype().asCell()->structure() != chain->head()->get())
- return false;
+ // All of the arguments in this function need to be formatted as JSValues because we will
+ // load from them in a random-access fashion and we don't want to have to switch on
+ // format.
- for (WriteBarrier<Structure>* it = chain->head(); *it; ++it) {
- if (!(*it)->storedPrototype().isNull() && (*it)->storedPrototype().asCell()->structure() != it[1].get())
- return false;
- }
-
- return true;
+ for (ArgumentPosition* argument : m_inlineStackTop->m_argumentPositions)
+ argument->mergeShouldNeverUnbox(true);
}
void buildOperandMapsIfNecessary();
BasicBlock* m_currentBlock;
// The bytecode index of the current instruction being generated.
unsigned m_currentIndex;
+ // The semantic origin of the current node if different from the current Index.
+ CodeOrigin m_currentSemanticOrigin;
- // We use these values during code generation, and to avoid the need for
- // special handling we make sure they are available as constants in the
- // CodeBlock's constant pool. These variables are initialized to
- // UINT_MAX, and lazily updated to hold an index into the CodeBlock's
- // constant pool, as necessary.
- unsigned m_constantUndefined;
- unsigned m_constantNull;
- unsigned m_constantNaN;
- unsigned m_constant1;
- HashMap<JSCell*, unsigned> m_cellConstants;
- HashMap<JSCell*, Node*> m_cellConstantNodes;
-
- // A constant in the constant pool may be represented by more than one
- // node in the graph, depending on the context in which it is being used.
- struct ConstantRecord {
- ConstantRecord()
- : asInt32(0)
- , asNumeric(0)
- , asJSValue(0)
- {
- }
-
- Node* asInt32;
- Node* asNumeric;
- Node* asJSValue;
- };
-
- // Track the index of the node whose result is the current value for every
- // register value in the bytecode - argument, local, and temporary.
- Vector<ConstantRecord, 16> m_constants;
+ FrozenValue* m_constantUndefined;
+ FrozenValue* m_constantNull;
+ FrozenValue* m_constantNaN;
+ FrozenValue* m_constantOne;
+ Vector<Node*, 16> m_constants;
// The number of arguments passed to the function.
unsigned m_numArguments;
HashMap<ConstantBufferKey, unsigned> m_constantBufferCache;
- Vector<VariableWatchpointSet*, 16> m_localWatchpoints;
-
struct InlineStackEntry {
ByteCodeParser* m_byteCodeParser;
// (the machine code block, which is the transitive, though not necessarily
// direct, caller).
Vector<unsigned> m_identifierRemap;
- Vector<unsigned> m_constantRemap;
Vector<unsigned> m_constantBufferRemap;
Vector<unsigned> m_switchRemap;
Vector<UnlinkedBlock> m_unlinkedBlocks;
// Potential block linking targets. Must be sorted by bytecodeBegin, and
- // cannot have two blocks that have the same bytecodeBegin. For this very
- // reason, this is not equivalent to
+ // cannot have two blocks that have the same bytecodeBegin.
Vector<BasicBlock*> m_blockLinkingTargets;
// If the callsite's basic block was split into two, then this will be
VirtualRegister returnValueVR,
VirtualRegister inlineCallFrameStart,
int argumentCountIncludingThis,
- CodeSpecializationKind);
+ InlineCallFrame::Kind);
~InlineStackEntry()
{
if (!m_inlineCallFrame)
return operand;
- if (operand.isConstant()) {
- VirtualRegister result = VirtualRegister(m_constantRemap[operand.toConstantIndex()]);
- ASSERT(result.isConstant());
- return result;
- }
+ ASSERT(!operand.isConstant());
return VirtualRegister(operand.offset() + m_inlineCallFrame->stackOffset);
}
InlineStackEntry* m_inlineStackTop;
struct DelayedSetLocal {
+ CodeOrigin m_origin;
VirtualRegister m_operand;
Node* m_value;
DelayedSetLocal() { }
- DelayedSetLocal(VirtualRegister operand, Node* value)
- : m_operand(operand)
+ DelayedSetLocal(const CodeOrigin& origin, VirtualRegister operand, Node* value)
+ : m_origin(origin)
+ , m_operand(operand)
, m_value(value)
{
}
Node* execute(ByteCodeParser* parser, SetMode setMode = NormalSet)
{
if (m_operand.isArgument())
- return parser->setArgument(m_operand, m_value, setMode);
- return parser->setLocal(m_operand, m_value, setMode);
+ return parser->setArgument(m_origin, m_operand, m_value, setMode);
+ return parser->setLocal(m_origin, m_operand, m_value, setMode);
}
};
bool m_haveBuiltOperandMaps;
// Mapping between identifier names and numbers.
BorrowedIdentifierMap m_identifierMap;
- // Mapping between values and constant numbers.
- JSValueMap m_jsValueMap;
- // Index of the empty value, or UINT_MAX if there is no mapping. This is a horrible
- // work-around for the fact that JSValueMap can't handle "empty" values.
- unsigned m_emptyJSValueIndex;
CodeBlock* m_dfgCodeBlock;
CallLinkStatus::ContextMap m_callContextMap;
StubInfoMap m_dfgStubInfos;
Instruction* m_currentInstruction;
+ bool m_hasDebuggerEnabled;
};
#define NEXT_OPCODE(name) \
int result, NodeType op, CodeSpecializationKind kind, unsigned instructionSize,
int callee, int argumentCountIncludingThis, int registerOffset)
{
- ASSERT(registerOffset <= 0);
-
Node* callTarget = get(VirtualRegister(callee));
- CallLinkStatus callLinkStatus;
+ CallLinkStatus callLinkStatus = CallLinkStatus::computeFor(
+ m_inlineStackTop->m_profiledBlock, currentCodeOrigin(),
+ m_inlineStackTop->m_callLinkInfos, m_callContextMap);
+
+ handleCall(
+ result, op, InlineCallFrame::kindFor(kind), instructionSize, callTarget,
+ argumentCountIncludingThis, registerOffset, callLinkStatus);
+}
+
+void ByteCodeParser::handleCall(
+ int result, NodeType op, InlineCallFrame::Kind kind, unsigned instructionSize,
+ Node* callTarget, int argumentCountIncludingThis, int registerOffset,
+ CallLinkStatus callLinkStatus)
+{
+ handleCall(
+ result, op, kind, instructionSize, callTarget, argumentCountIncludingThis,
+ registerOffset, callLinkStatus, getPrediction());
+}
- if (m_graph.isConstant(callTarget)) {
- callLinkStatus = CallLinkStatus(
- m_graph.valueOfJSConstant(callTarget)).setIsProved(true);
- } else {
- callLinkStatus = CallLinkStatus::computeFor(
- m_inlineStackTop->m_profiledBlock, currentCodeOrigin(),
- m_inlineStackTop->m_callLinkInfos, m_callContextMap);
- }
+void ByteCodeParser::handleCall(
+ int result, NodeType op, InlineCallFrame::Kind kind, unsigned instructionSize,
+ Node* callTarget, int argumentCountIncludingThis, int registerOffset,
+ CallLinkStatus callLinkStatus, SpeculatedType prediction)
+{
+ ASSERT(registerOffset <= 0);
+
+ if (callTarget->isCellConstant())
+ callLinkStatus.setProvenConstantCallee(CallVariant(callTarget->asCell()));
+
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Handling call at ", currentCodeOrigin(), ": ", callLinkStatus, "\n");
if (!callLinkStatus.canOptimize()) {
// Oddly, this conflates calls that haven't executed with calls that behaved sufficiently polymorphically
// that we cannot optimize them.
- addCall(result, op, callee, argumentCountIncludingThis, registerOffset);
+ addCall(result, op, OpInfo(), callTarget, argumentCountIncludingThis, registerOffset, prediction);
return;
}
unsigned nextOffset = m_currentIndex + instructionSize;
- SpeculatedType prediction = getPrediction();
-
- if (InternalFunction* function = callLinkStatus.internalFunction()) {
- if (handleConstantInternalFunction(result, function, registerOffset, argumentCountIncludingThis, prediction, kind)) {
- // This phantoming has to be *after* the code for the intrinsic, to signify that
- // the inputs must be kept alive whatever exits the intrinsic may do.
- addToGraph(Phantom, callTarget);
- emitArgumentPhantoms(registerOffset, argumentCountIncludingThis, kind);
- return;
- }
-
- // Can only handle this using the generic call handler.
- addCall(result, op, callee, argumentCountIncludingThis, registerOffset);
+
+ OpInfo callOpInfo;
+
+ if (handleInlining(callTarget, result, callLinkStatus, registerOffset, virtualRegisterForArgument(0, registerOffset), VirtualRegister(), 0, argumentCountIncludingThis, nextOffset, op, kind, prediction)) {
+ if (m_graph.compilation())
+ m_graph.compilation()->noticeInlinedCall();
return;
}
-
- Intrinsic intrinsic = callLinkStatus.intrinsicFor(kind);
- if (intrinsic != NoIntrinsic) {
- emitFunctionChecks(callLinkStatus, callTarget, registerOffset, kind);
-
- if (handleIntrinsic(result, intrinsic, registerOffset, argumentCountIncludingThis, prediction)) {
- // This phantoming has to be *after* the code for the intrinsic, to signify that
- // the inputs must be kept alive whatever exits the intrinsic may do.
- addToGraph(Phantom, callTarget);
- emitArgumentPhantoms(registerOffset, argumentCountIncludingThis, kind);
- if (m_graph.compilation())
- m_graph.compilation()->noticeInlinedCall();
- return;
+
+#if ENABLE(FTL_NATIVE_CALL_INLINING)
+ if (isFTL(m_graph.m_plan.mode) && Options::optimizeNativeCalls() && callLinkStatus.size() == 1 && !callLinkStatus.couldTakeSlowPath()) {
+ CallVariant callee = callLinkStatus[0];
+ JSFunction* function = callee.function();
+ CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
+ if (function && function->isHostFunction()) {
+ emitFunctionChecks(callee, callTarget, virtualRegisterForArgument(0, registerOffset));
+ callOpInfo = OpInfo(m_graph.freeze(function));
+
+ if (op == Call)
+ op = NativeCall;
+ else {
+ ASSERT(op == Construct);
+ op = NativeConstruct;
+ }
}
- } else if (handleInlining(callTarget, result, callLinkStatus, registerOffset, argumentCountIncludingThis, nextOffset, kind)) {
+ }
+#endif
+
+ addCall(result, op, callOpInfo, callTarget, argumentCountIncludingThis, registerOffset, prediction);
+}
+
+void ByteCodeParser::handleVarargsCall(Instruction* pc, NodeType op, CodeSpecializationKind kind)
+{
+ ASSERT(OPCODE_LENGTH(op_call_varargs) == OPCODE_LENGTH(op_construct_varargs));
+
+ int result = pc[1].u.operand;
+ int callee = pc[2].u.operand;
+ int thisReg = pc[3].u.operand;
+ int arguments = pc[4].u.operand;
+ int firstFreeReg = pc[5].u.operand;
+ int firstVarArgOffset = pc[6].u.operand;
+
+ SpeculatedType prediction = getPrediction();
+
+ Node* callTarget = get(VirtualRegister(callee));
+
+ CallLinkStatus callLinkStatus = CallLinkStatus::computeFor(
+ m_inlineStackTop->m_profiledBlock, currentCodeOrigin(),
+ m_inlineStackTop->m_callLinkInfos, m_callContextMap);
+ if (callTarget->isCellConstant())
+ callLinkStatus.setProvenConstantCallee(CallVariant(callTarget->asCell()));
+
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Varargs call link status at ", currentCodeOrigin(), ": ", callLinkStatus, "\n");
+
+ if (callLinkStatus.canOptimize()
+ && handleInlining(callTarget, result, callLinkStatus, firstFreeReg, VirtualRegister(thisReg), VirtualRegister(arguments), firstVarArgOffset, 0, m_currentIndex + OPCODE_LENGTH(op_call_varargs), op, InlineCallFrame::varargsKindFor(kind), prediction)) {
if (m_graph.compilation())
m_graph.compilation()->noticeInlinedCall();
return;
}
- addCall(result, op, callee, argumentCountIncludingThis, registerOffset);
+ CallVarargsData* data = m_graph.m_callVarargsData.add();
+ data->firstVarArgOffset = firstVarArgOffset;
+
+ Node* thisChild = get(VirtualRegister(thisReg));
+
+ Node* call = addToGraph(op, OpInfo(data), OpInfo(prediction), callTarget, get(VirtualRegister(arguments)), thisChild);
+ VirtualRegister resultReg(result);
+ if (resultReg.isValid())
+ set(resultReg, call);
}
-void ByteCodeParser::emitFunctionChecks(const CallLinkStatus& callLinkStatus, Node* callTarget, int registerOffset, CodeSpecializationKind kind)
+void ByteCodeParser::emitFunctionChecks(CallVariant callee, Node* callTarget, VirtualRegister thisArgumentReg)
{
Node* thisArgument;
- if (kind == CodeForCall)
- thisArgument = get(virtualRegisterForArgument(0, registerOffset));
+ if (thisArgumentReg.isValid())
+ thisArgument = get(thisArgumentReg);
else
thisArgument = 0;
- if (callLinkStatus.isProved()) {
- addToGraph(Phantom, callTarget, thisArgument);
- return;
+ JSCell* calleeCell;
+ Node* callTargetForCheck;
+ if (callee.isClosureCall()) {
+ calleeCell = callee.executable();
+ callTargetForCheck = addToGraph(GetExecutable, callTarget);
+ } else {
+ calleeCell = callee.nonExecutableCallee();
+ callTargetForCheck = callTarget;
}
- ASSERT(callLinkStatus.canOptimize());
-
- if (JSFunction* function = callLinkStatus.function())
- addToGraph(CheckFunction, OpInfo(function), callTarget, thisArgument);
- else {
- ASSERT(callLinkStatus.structure());
- ASSERT(callLinkStatus.executable());
-
- addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(callLinkStatus.structure())), callTarget);
- addToGraph(CheckExecutable, OpInfo(callLinkStatus.executable()), callTarget, thisArgument);
- }
+ ASSERT(calleeCell);
+ addToGraph(CheckCell, OpInfo(m_graph.freeze(calleeCell)), callTargetForCheck, thisArgument);
}
-void ByteCodeParser::emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind kind)
+void ByteCodeParser::emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis)
{
- for (int i = kind == CodeForCall ? 0 : 1; i < argumentCountIncludingThis; ++i)
+ for (int i = 0; i < argumentCountIncludingThis; ++i)
addToGraph(Phantom, get(virtualRegisterForArgument(i, registerOffset)));
}
-bool ByteCodeParser::handleInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus& callLinkStatus, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, CodeSpecializationKind kind)
+unsigned ByteCodeParser::inliningCost(CallVariant callee, int argumentCountIncludingThis, CodeSpecializationKind kind)
{
- static const bool verbose = false;
-
if (verbose)
- dataLog("Considering inlining ", callLinkStatus, " into ", currentCodeOrigin(), "\n");
+ dataLog("Considering inlining ", callee, " into ", currentCodeOrigin(), "\n");
- // First, the really simple checks: do we have an actual JS function?
- if (!callLinkStatus.executable()) {
+ if (m_hasDebuggerEnabled) {
if (verbose)
- dataLog(" Failing because there is no executable.\n");
- return false;
+ dataLog(" Failing because the debugger is in use.\n");
+ return UINT_MAX;
}
- if (callLinkStatus.executable()->isHostFunction()) {
+
+ FunctionExecutable* executable = callee.functionExecutable();
+ if (!executable) {
if (verbose)
- dataLog(" Failing because it's a host function.\n");
- return false;
+ dataLog(" Failing because there is no function executable.\n");
+ return UINT_MAX;
}
- FunctionExecutable* executable = jsCast<FunctionExecutable*>(callLinkStatus.executable());
-
// Does the number of arguments we're passing match the arity of the target? We currently
// inline only if the number of arguments passed is greater than or equal to the number
// arguments expected.
if (static_cast<int>(executable->parameterCount()) + 1 > argumentCountIncludingThis) {
if (verbose)
dataLog(" Failing because of arity mismatch.\n");
- return false;
+ return UINT_MAX;
}
// Do we have a code block, and does the code block's size match the heuristics/requirements for
- // being an inline candidate? We might not have a code block if code was thrown away or if we
- // simply hadn't actually made this call yet. We could still theoretically attempt to inline it
- // if we had a static proof of what was being called; this might happen for example if you call a
- // global function, where watchpointing gives us static information. Overall, it's a rare case
- // because we expect that any hot callees would have already been compiled.
+ // being an inline candidate? We might not have a code block (1) if code was thrown away,
+ // (2) if we simply hadn't actually made this call yet or (3) code is a builtin function and
+ // specialization kind is construct. In the former 2 cases, we could still theoretically attempt
+ // to inline it if we had a static proof of what was being called; this might happen for example
+ // if you call a global function, where watchpointing gives us static information. Overall,
+ // it's a rare case because we expect that any hot callees would have already been compiled.
CodeBlock* codeBlock = executable->baselineCodeBlockFor(kind);
if (!codeBlock) {
if (verbose)
dataLog(" Failing because no code block available.\n");
- return false;
+ return UINT_MAX;
}
CapabilityLevel capabilityLevel = inlineFunctionForCapabilityLevel(
- codeBlock, kind, callLinkStatus.isClosureCall());
+ codeBlock, kind, callee.isClosureCall());
+ if (verbose) {
+ dataLog(" Kind: ", kind, "\n");
+ dataLog(" Is closure call: ", callee.isClosureCall(), "\n");
+ dataLog(" Capability level: ", capabilityLevel, "\n");
+ dataLog(" Might inline function: ", mightInlineFunctionFor(codeBlock, kind), "\n");
+ dataLog(" Might compile function: ", mightCompileFunctionFor(codeBlock, kind), "\n");
+ dataLog(" Is supported for inlining: ", isSupportedForInlining(codeBlock), "\n");
+ dataLog(" Needs activation: ", codeBlock->ownerExecutable()->needsActivation(), "\n");
+ dataLog(" Is inlining candidate: ", codeBlock->ownerExecutable()->isInliningCandidate(), "\n");
+ }
if (!canInline(capabilityLevel)) {
if (verbose)
dataLog(" Failing because the function is not inlineable.\n");
- return false;
+ return UINT_MAX;
}
// Check if the caller is already too large. We do this check here because that's just
codeBlock->m_shouldAlwaysBeInlined = false;
if (verbose)
dataLog(" Failing because the caller is too large.\n");
- return false;
+ return UINT_MAX;
}
// FIXME: this should be better at predicting how much bloat we will introduce by inlining
// this function.
// https://bugs.webkit.org/show_bug.cgi?id=127627
+ // FIXME: We currently inline functions that have run in LLInt but not in Baseline. These
+ // functions have very low fidelity profiling, and presumably they weren't very hot if they
+ // haven't gotten to Baseline yet. Consider not inlining these functions.
+ // https://bugs.webkit.org/show_bug.cgi?id=145503
+
// Have we exceeded inline stack depth, or are we trying to inline a recursive call to
// too many levels? If either of these are detected, then don't inline. We adjust our
// heuristics if we are dealing with a function that cannot otherwise be compiled.
if (depth >= Options::maximumInliningDepth()) {
if (verbose)
dataLog(" Failing because depth exceeded.\n");
- return false;
+ return UINT_MAX;
}
if (entry->executable() == executable) {
if (recursion >= Options::maximumInliningRecursion()) {
if (verbose)
dataLog(" Failing because recursion detected.\n");
- return false;
+ return UINT_MAX;
}
}
}
if (verbose)
- dataLog(" Committing to inlining.\n");
+ dataLog(" Inlining should be possible.\n");
- // Now we know without a doubt that we are committed to inlining. So begin the process
- // by checking the callee (if necessary) and making sure that arguments and the callee
- // are flushed.
- emitFunctionChecks(callLinkStatus, callTargetNode, registerOffset, kind);
+ // It might be possible to inline.
+ return codeBlock->instructionCount();
+}
+
+template<typename ChecksFunctor>
+void ByteCodeParser::inlineCall(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind kind, CallerLinkability callerLinkability, const ChecksFunctor& insertChecks)
+{
+ CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
+
+ ASSERT(inliningCost(callee, argumentCountIncludingThis, specializationKind) != UINT_MAX);
+ CodeBlock* codeBlock = callee.functionExecutable()->baselineCodeBlockFor(specializationKind);
+ insertChecks(codeBlock);
+
// FIXME: Don't flush constants!
int inlineCallFrameStart = m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset() + JSStack::CallFrameHeaderSize;
size_t argumentPositionStart = m_graph.m_argumentPositions.size();
+ VirtualRegister resultReg(resultOperand);
+ if (resultReg.isValid())
+ resultReg = m_inlineStackTop->remapOperand(resultReg);
+
InlineStackEntry inlineStackEntry(
- this, codeBlock, codeBlock, m_graph.lastBlock(), callLinkStatus.function(),
- m_inlineStackTop->remapOperand(VirtualRegister(resultOperand)),
+ this, codeBlock, codeBlock, m_graph.lastBlock(), callee.function(), resultReg,
(VirtualRegister)inlineCallFrameStart, argumentCountIncludingThis, kind);
// This is where the actual inlining really happens.
RELEASE_ASSERT(
m_inlineStackTop->m_inlineCallFrame->isClosureCall
- == callLinkStatus.isClosureCall());
- if (callLinkStatus.isClosureCall()) {
+ == callee.isClosureCall());
+ if (callee.isClosureCall()) {
VariableAccessData* calleeVariable =
set(VirtualRegister(JSStack::Callee), callTargetNode, ImmediateNakedSet)->variableAccessData();
- VariableAccessData* scopeVariable =
- set(VirtualRegister(JSStack::ScopeChain), addToGraph(GetScope, callTargetNode), ImmediateNakedSet)->variableAccessData();
calleeVariable->mergeShouldNeverUnbox(true);
- scopeVariable->mergeShouldNeverUnbox(true);
inlineVariableData.calleeVariable = calleeVariable;
}
m_graph.m_inlineVariableData.append(inlineVariableData);
parseCodeBlock();
+ clearCaches(); // Reset our state now that we're back to the outer code.
m_currentIndex = oldIndex;
else
ASSERT(inlineStackEntry.m_callsiteBlockHead->isLinked);
- // It's possible that the callsite block head is not owned by the caller.
- if (!inlineStackEntry.m_caller->m_unlinkedBlocks.isEmpty()) {
- // It's definitely owned by the caller, because the caller created new blocks.
- // Assert that this all adds up.
- ASSERT(inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_block == inlineStackEntry.m_callsiteBlockHead);
- ASSERT(inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_needsNormalLinking);
- inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_needsNormalLinking = false;
- } else {
- // It's definitely not owned by the caller. Tell the caller that he does not
- // need to link his callsite block head, because we did it for him.
- ASSERT(inlineStackEntry.m_caller->m_callsiteBlockHeadNeedsLinking);
- ASSERT(inlineStackEntry.m_caller->m_callsiteBlockHead == inlineStackEntry.m_callsiteBlockHead);
- inlineStackEntry.m_caller->m_callsiteBlockHeadNeedsLinking = false;
- }
+ if (callerLinkability == CallerDoesNormalLinking)
+ cancelLinkingForBlock(inlineStackEntry.m_caller, inlineStackEntry.m_callsiteBlockHead);
linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets);
} else
// If there was a return, but no early returns, then we're done. We allow parsing of
// the caller to continue in whatever basic block we're in right now.
if (!inlineStackEntry.m_didEarlyReturn && inlineStackEntry.m_didReturn) {
- ASSERT(lastBlock->isEmpty() || !lastBlock->last()->isTerminal());
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Allowing parsing to continue in last inlined block.\n");
+
+ ASSERT(lastBlock->isEmpty() || !lastBlock->terminal());
// If we created new blocks then the last block needs linking, but in the
// caller. It doesn't need to be linked to, but it needs outgoing links.
// For debugging purposes, set the bytecodeBegin. Note that this doesn't matter
// for release builds because this block will never serve as a potential target
// in the linker's binary search.
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Repurposing last block from ", lastBlock->bytecodeBegin, " to ", m_currentIndex, "\n");
lastBlock->bytecodeBegin = m_currentIndex;
- m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.lastBlock()));
+ if (callerLinkability == CallerDoesNormalLinking) {
+ if (verbose)
+ dataLog("Adding unlinked block ", RawPointer(m_graph.lastBlock()), " (one return)\n");
+ m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.lastBlock()));
+ }
}
m_currentBlock = m_graph.lastBlock();
- return true;
+ return;
}
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Creating new block after inlining.\n");
+
// If we get to this point then all blocks must end in some sort of terminals.
- ASSERT(lastBlock->last()->isTerminal());
-
+ ASSERT(lastBlock->terminal());
// Need to create a new basic block for the continuation at the caller.
RefPtr<BasicBlock> block = adoptRef(new BasicBlock(nextOffset, m_numArguments, m_numLocals, PNaN));
continue;
BasicBlock* blockToLink = inlineStackEntry.m_unlinkedBlocks[i].m_block;
ASSERT(!blockToLink->isLinked);
- Node* node = blockToLink->last();
+ Node* node = blockToLink->terminal();
ASSERT(node->op() == Jump);
ASSERT(!node->targetBlock());
node->targetBlock() = block.get();
inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking = false;
-#if !ASSERT_DISABLED
- blockToLink->isLinked = true;
-#endif
+ if (verbose)
+ dataLog("Marking ", RawPointer(blockToLink), " as linked (jumps to return)\n");
+ blockToLink->didLink();
}
m_currentBlock = block.get();
ASSERT(m_inlineStackTop->m_caller->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_caller->m_blockLinkingTargets.last()->bytecodeBegin < nextOffset);
- m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(block.get()));
- m_inlineStackTop->m_caller->m_blockLinkingTargets.append(block.get());
+ if (verbose)
+ dataLog("Adding unlinked block ", RawPointer(block.get()), " (many returns)\n");
+ if (callerLinkability == CallerDoesNormalLinking) {
+ m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(block.get()));
+ m_inlineStackTop->m_caller->m_blockLinkingTargets.append(block.get());
+ }
m_graph.appendBlock(block);
prepareToParseBlock();
+}
+
+void ByteCodeParser::cancelLinkingForBlock(InlineStackEntry* inlineStackEntry, BasicBlock* block)
+{
+ // It's possible that the callsite block head is not owned by the caller.
+ if (!inlineStackEntry->m_unlinkedBlocks.isEmpty()) {
+ // It's definitely owned by the caller, because the caller created new blocks.
+ // Assert that this all adds up.
+ ASSERT_UNUSED(block, inlineStackEntry->m_unlinkedBlocks.last().m_block == block);
+ ASSERT(inlineStackEntry->m_unlinkedBlocks.last().m_needsNormalLinking);
+ inlineStackEntry->m_unlinkedBlocks.last().m_needsNormalLinking = false;
+ } else {
+ // It's definitely not owned by the caller. Tell the caller that he does not
+ // need to link his callsite block head, because we did it for him.
+ ASSERT(inlineStackEntry->m_callsiteBlockHeadNeedsLinking);
+ ASSERT_UNUSED(block, inlineStackEntry->m_callsiteBlockHead == block);
+ inlineStackEntry->m_callsiteBlockHeadNeedsLinking = false;
+ }
+}
+
+template<typename ChecksFunctor>
+bool ByteCodeParser::attemptToInlineCall(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind kind, CallerLinkability callerLinkability, SpeculatedType prediction, unsigned& inliningBalance, const ChecksFunctor& insertChecks)
+{
+ CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
+
+ if (!inliningBalance)
+ return false;
+
+ bool didInsertChecks = false;
+ auto insertChecksWithAccounting = [&] () {
+ insertChecks(nullptr);
+ didInsertChecks = true;
+ };
+
+ if (verbose)
+ dataLog(" Considering callee ", callee, "\n");
+
+ // Intrinsics and internal functions can only be inlined if we're not doing varargs. This is because
+ // we currently don't have any way of getting profiling information for arguments to non-JS varargs
+ // calls. The prediction propagator won't be of any help because LoadVarargs obscures the data flow,
+ // and there are no callsite value profiles and native function won't have callee value profiles for
+ // those arguments. Even worse, if the intrinsic decides to exit, it won't really have anywhere to
+ // exit to: LoadVarargs is effectful and it's part of the op_call_varargs, so we can't exit without
+ // calling LoadVarargs twice.
+ if (!InlineCallFrame::isVarargs(kind)) {
+ if (InternalFunction* function = callee.internalFunction()) {
+ if (handleConstantInternalFunction(resultOperand, function, registerOffset, argumentCountIncludingThis, specializationKind, insertChecksWithAccounting)) {
+ RELEASE_ASSERT(didInsertChecks);
+ addToGraph(Phantom, callTargetNode);
+ emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
+ inliningBalance--;
+ return true;
+ }
+ RELEASE_ASSERT(!didInsertChecks);
+ return false;
+ }
+
+ Intrinsic intrinsic = callee.intrinsicFor(specializationKind);
+ if (intrinsic != NoIntrinsic) {
+ if (handleIntrinsic(resultOperand, intrinsic, registerOffset, argumentCountIncludingThis, prediction, insertChecksWithAccounting)) {
+ RELEASE_ASSERT(didInsertChecks);
+ addToGraph(Phantom, callTargetNode);
+ emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
+ inliningBalance--;
+ return true;
+ }
+ RELEASE_ASSERT(!didInsertChecks);
+ return false;
+ }
+ }
- // At this point we return and continue to generate code for the caller, but
- // in the new basic block.
+ unsigned myInliningCost = inliningCost(callee, argumentCountIncludingThis, specializationKind);
+ if (myInliningCost > inliningBalance)
+ return false;
+
+ Instruction* savedCurrentInstruction = m_currentInstruction;
+ inlineCall(callTargetNode, resultOperand, callee, registerOffset, argumentCountIncludingThis, nextOffset, kind, callerLinkability, insertChecks);
+ inliningBalance -= myInliningCost;
+ m_currentInstruction = savedCurrentInstruction;
return true;
}
-bool ByteCodeParser::handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis)
+bool ByteCodeParser::handleInlining(
+ Node* callTargetNode, int resultOperand, const CallLinkStatus& callLinkStatus,
+ int registerOffsetOrFirstFreeReg, VirtualRegister thisArgument,
+ VirtualRegister argumentsArgument, unsigned argumentsOffset, int argumentCountIncludingThis,
+ unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind kind, SpeculatedType prediction)
+{
+ if (verbose) {
+ dataLog("Handling inlining...\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+ CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
+
+ if (!callLinkStatus.size()) {
+ if (verbose)
+ dataLog("Bailing inlining.\n");
+ return false;
+ }
+
+ if (InlineCallFrame::isVarargs(kind)
+ && callLinkStatus.maxNumArguments() > Options::maximumVarargsForInlining()) {
+ if (verbose)
+ dataLog("Bailing inlining because of varargs.\n");
+ return false;
+ }
+
+ unsigned inliningBalance = Options::maximumFunctionForCallInlineCandidateInstructionCount();
+ if (specializationKind == CodeForConstruct)
+ inliningBalance = std::min(inliningBalance, Options::maximumFunctionForConstructInlineCandidateInstructionCount());
+ if (callLinkStatus.isClosureCall())
+ inliningBalance = std::min(inliningBalance, Options::maximumFunctionForClosureCallInlineCandidateInstructionCount());
+
+ // First check if we can avoid creating control flow. Our inliner does some CFG
+ // simplification on the fly and this helps reduce compile times, but we can only leverage
+ // this in cases where we don't need control flow diamonds to check the callee.
+ if (!callLinkStatus.couldTakeSlowPath() && callLinkStatus.size() == 1) {
+ int registerOffset;
+
+ // Only used for varargs calls.
+ unsigned mandatoryMinimum = 0;
+ unsigned maxNumArguments = 0;
+
+ if (InlineCallFrame::isVarargs(kind)) {
+ if (FunctionExecutable* functionExecutable = callLinkStatus[0].functionExecutable())
+ mandatoryMinimum = functionExecutable->parameterCount();
+ else
+ mandatoryMinimum = 0;
+
+ // includes "this"
+ maxNumArguments = std::max(
+ callLinkStatus.maxNumArguments(),
+ mandatoryMinimum + 1);
+
+ // We sort of pretend that this *is* the number of arguments that were passed.
+ argumentCountIncludingThis = maxNumArguments;
+
+ registerOffset = registerOffsetOrFirstFreeReg + 1;
+ registerOffset -= maxNumArguments; // includes "this"
+ registerOffset -= JSStack::CallFrameHeaderSize;
+ registerOffset = -WTF::roundUpToMultipleOf(
+ stackAlignmentRegisters(),
+ -registerOffset);
+ } else
+ registerOffset = registerOffsetOrFirstFreeReg;
+
+ bool result = attemptToInlineCall(
+ callTargetNode, resultOperand, callLinkStatus[0], registerOffset,
+ argumentCountIncludingThis, nextOffset, kind, CallerDoesNormalLinking, prediction,
+ inliningBalance, [&] (CodeBlock* codeBlock) {
+ emitFunctionChecks(callLinkStatus[0], callTargetNode, thisArgument);
+
+ // If we have a varargs call, we want to extract the arguments right now.
+ if (InlineCallFrame::isVarargs(kind)) {
+ int remappedRegisterOffset =
+ m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset();
+
+ ensureLocals(VirtualRegister(remappedRegisterOffset).toLocal());
+
+ int argumentStart = registerOffset + JSStack::CallFrameHeaderSize;
+ int remappedArgumentStart =
+ m_inlineStackTop->remapOperand(VirtualRegister(argumentStart)).offset();
+
+ LoadVarargsData* data = m_graph.m_loadVarargsData.add();
+ data->start = VirtualRegister(remappedArgumentStart + 1);
+ data->count = VirtualRegister(remappedRegisterOffset + JSStack::ArgumentCount);
+ data->offset = argumentsOffset;
+ data->limit = maxNumArguments;
+ data->mandatoryMinimum = mandatoryMinimum;
+
+ addToGraph(LoadVarargs, OpInfo(data), get(argumentsArgument));
+
+ // LoadVarargs may OSR exit. Hence, we need to keep alive callTargetNode, thisArgument
+ // and argumentsArgument for the baseline JIT. However, we only need a Phantom for
+ // callTargetNode because the other 2 are still in use and alive at this point.
+ addToGraph(Phantom, callTargetNode);
+
+ // In DFG IR before SSA, we cannot insert control flow between after the
+ // LoadVarargs and the last SetArgument. This isn't a problem once we get to DFG
+ // SSA. Fortunately, we also have other reasons for not inserting control flow
+ // before SSA.
+
+ VariableAccessData* countVariable = newVariableAccessData(
+ VirtualRegister(remappedRegisterOffset + JSStack::ArgumentCount));
+ // This is pretty lame, but it will force the count to be flushed as an int. This doesn't
+ // matter very much, since our use of a SetArgument and Flushes for this local slot is
+ // mostly just a formality.
+ countVariable->predict(SpecInt32);
+ countVariable->mergeIsProfitableToUnbox(true);
+ Node* setArgumentCount = addToGraph(SetArgument, OpInfo(countVariable));
+ m_currentBlock->variablesAtTail.setOperand(countVariable->local(), setArgumentCount);
+
+ set(VirtualRegister(argumentStart), get(thisArgument), ImmediateNakedSet);
+ for (unsigned argument = 1; argument < maxNumArguments; ++argument) {
+ VariableAccessData* variable = newVariableAccessData(
+ VirtualRegister(remappedArgumentStart + argument));
+ variable->mergeShouldNeverUnbox(true); // We currently have nowhere to put the type check on the LoadVarargs. LoadVarargs is effectful, so after it finishes, we cannot exit.
+
+ // For a while it had been my intention to do things like this inside the
+ // prediction injection phase. But in this case it's really best to do it here,
+ // because it's here that we have access to the variable access datas for the
+ // inlining we're about to do.
+ //
+ // Something else that's interesting here is that we'd really love to get
+ // predictions from the arguments loaded at the callsite, rather than the
+ // arguments received inside the callee. But that probably won't matter for most
+ // calls.
+ if (codeBlock && argument < static_cast<unsigned>(codeBlock->numParameters())) {
+ ConcurrentJITLocker locker(codeBlock->m_lock);
+ if (ValueProfile* profile = codeBlock->valueProfileForArgument(argument))
+ variable->predict(profile->computeUpdatedPrediction(locker));
+ }
+
+ Node* setArgument = addToGraph(SetArgument, OpInfo(variable));
+ m_currentBlock->variablesAtTail.setOperand(variable->local(), setArgument);
+ }
+ }
+ });
+ if (verbose) {
+ dataLog("Done inlining (simple).\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ dataLog("Result: ", result, "\n");
+ }
+ return result;
+ }
+
+ // We need to create some kind of switch over callee. For now we only do this if we believe that
+ // we're in the top tier. We have two reasons for this: first, it provides us an opportunity to
+ // do more detailed polyvariant/polymorphic profiling; and second, it reduces compile times in
+ // the DFG. And by polyvariant profiling we mean polyvariant profiling of *this* call. Note that
+ // we could improve that aspect of this by doing polymorphic inlining but having the profiling
+ // also.
+ if (!isFTL(m_graph.m_plan.mode) || !Options::enablePolymorphicCallInlining()
+ || InlineCallFrame::isVarargs(kind)) {
+ if (verbose) {
+ dataLog("Bailing inlining (hard).\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+ return false;
+ }
+
+ unsigned oldOffset = m_currentIndex;
+
+ bool allAreClosureCalls = true;
+ bool allAreDirectCalls = true;
+ for (unsigned i = callLinkStatus.size(); i--;) {
+ if (callLinkStatus[i].isClosureCall())
+ allAreDirectCalls = false;
+ else
+ allAreClosureCalls = false;
+ }
+
+ Node* thingToSwitchOn;
+ if (allAreDirectCalls)
+ thingToSwitchOn = callTargetNode;
+ else if (allAreClosureCalls)
+ thingToSwitchOn = addToGraph(GetExecutable, callTargetNode);
+ else {
+ // FIXME: We should be able to handle this case, but it's tricky and we don't know of cases
+ // where it would be beneficial. It might be best to handle these cases as if all calls were
+ // closure calls.
+ // https://bugs.webkit.org/show_bug.cgi?id=136020
+ if (verbose) {
+ dataLog("Bailing inlining (mix).\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+ return false;
+ }
+
+ if (verbose) {
+ dataLog("Doing hard inlining...\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+
+ int registerOffset = registerOffsetOrFirstFreeReg;
+
+ // This makes me wish that we were in SSA all the time. We need to pick a variable into which to
+ // store the callee so that it will be accessible to all of the blocks we're about to create. We
+ // get away with doing an immediate-set here because we wouldn't have performed any side effects
+ // yet.
+ if (verbose)
+ dataLog("Register offset: ", registerOffset);
+ VirtualRegister calleeReg(registerOffset + JSStack::Callee);
+ calleeReg = m_inlineStackTop->remapOperand(calleeReg);
+ if (verbose)
+ dataLog("Callee is going to be ", calleeReg, "\n");
+ setDirect(calleeReg, callTargetNode, ImmediateSetWithFlush);
+
+ SwitchData& data = *m_graph.m_switchData.add();
+ data.kind = SwitchCell;
+ addToGraph(Switch, OpInfo(&data), thingToSwitchOn);
+
+ BasicBlock* originBlock = m_currentBlock;
+ if (verbose)
+ dataLog("Marking ", RawPointer(originBlock), " as linked (origin of poly inline)\n");
+ originBlock->didLink();
+ cancelLinkingForBlock(m_inlineStackTop, originBlock);
+
+ // Each inlined callee will have a landing block that it returns at. They should all have jumps
+ // to the continuation block, which we create last.
+ Vector<BasicBlock*> landingBlocks;
+
+ // We may force this true if we give up on inlining any of the edges.
+ bool couldTakeSlowPath = callLinkStatus.couldTakeSlowPath();
+
+ if (verbose)
+ dataLog("About to loop over functions at ", currentCodeOrigin(), ".\n");
+
+ for (unsigned i = 0; i < callLinkStatus.size(); ++i) {
+ m_currentIndex = oldOffset;
+ RefPtr<BasicBlock> block = adoptRef(new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, PNaN));
+ m_currentBlock = block.get();
+ m_graph.appendBlock(block);
+ prepareToParseBlock();
+
+ Node* myCallTargetNode = getDirect(calleeReg);
+
+ bool inliningResult = attemptToInlineCall(
+ myCallTargetNode, resultOperand, callLinkStatus[i], registerOffset,
+ argumentCountIncludingThis, nextOffset, kind, CallerLinksManually, prediction,
+ inliningBalance, [&] (CodeBlock*) { });
+
+ if (!inliningResult) {
+ // That failed so we let the block die. Nothing interesting should have been added to
+ // the block. We also give up on inlining any of the (less frequent) callees.
+ ASSERT(m_currentBlock == block.get());
+ ASSERT(m_graph.m_blocks.last() == block);
+ m_graph.killBlockAndItsContents(block.get());
+ m_graph.m_blocks.removeLast();
+
+ // The fact that inlining failed means we need a slow path.
+ couldTakeSlowPath = true;
+ break;
+ }
+
+ JSCell* thingToCaseOn;
+ if (allAreDirectCalls)
+ thingToCaseOn = callLinkStatus[i].nonExecutableCallee();
+ else {
+ ASSERT(allAreClosureCalls);
+ thingToCaseOn = callLinkStatus[i].executable();
+ }
+ data.cases.append(SwitchCase(m_graph.freeze(thingToCaseOn), block.get()));
+ m_currentIndex = nextOffset;
+ processSetLocalQueue(); // This only comes into play for intrinsics, since normal inlined code will leave an empty queue.
+ addToGraph(Jump);
+ if (verbose)
+ dataLog("Marking ", RawPointer(m_currentBlock), " as linked (tail of poly inlinee)\n");
+ m_currentBlock->didLink();
+ landingBlocks.append(m_currentBlock);
+
+ if (verbose)
+ dataLog("Finished inlining ", callLinkStatus[i], " at ", currentCodeOrigin(), ".\n");
+ }
+
+ RefPtr<BasicBlock> slowPathBlock = adoptRef(
+ new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, PNaN));
+ m_currentIndex = oldOffset;
+ data.fallThrough = BranchTarget(slowPathBlock.get());
+ m_graph.appendBlock(slowPathBlock);
+ if (verbose)
+ dataLog("Marking ", RawPointer(slowPathBlock.get()), " as linked (slow path block)\n");
+ slowPathBlock->didLink();
+ prepareToParseBlock();
+ m_currentBlock = slowPathBlock.get();
+ Node* myCallTargetNode = getDirect(calleeReg);
+ if (couldTakeSlowPath) {
+ addCall(
+ resultOperand, callOp, OpInfo(), myCallTargetNode, argumentCountIncludingThis,
+ registerOffset, prediction);
+ } else {
+ addToGraph(CheckBadCell);
+ addToGraph(Phantom, myCallTargetNode);
+ emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
+
+ set(VirtualRegister(resultOperand), addToGraph(BottomValue));
+ }
+
+ m_currentIndex = nextOffset;
+ processSetLocalQueue();
+ addToGraph(Jump);
+ landingBlocks.append(m_currentBlock);
+
+ RefPtr<BasicBlock> continuationBlock = adoptRef(
+ new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, PNaN));
+ m_graph.appendBlock(continuationBlock);
+ if (verbose)
+ dataLog("Adding unlinked block ", RawPointer(continuationBlock.get()), " (continuation)\n");
+ m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(continuationBlock.get()));
+ prepareToParseBlock();
+ m_currentBlock = continuationBlock.get();
+
+ for (unsigned i = landingBlocks.size(); i--;)
+ landingBlocks[i]->terminal()->targetBlock() = continuationBlock.get();
+
+ m_currentIndex = oldOffset;
+
+ if (verbose) {
+ dataLog("Done inlining (hard).\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+ return true;
+}
+
+template<typename ChecksFunctor>
+bool ByteCodeParser::handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks)
{
if (argumentCountIncludingThis == 1) { // Math.min()
- set(VirtualRegister(resultOperand), constantNaN());
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
if (argumentCountIncludingThis == 2) { // Math.min(x)
+ insertChecks();
Node* result = get(VirtualRegister(virtualRegisterForArgument(1, registerOffset)));
addToGraph(Phantom, Edge(result, NumberUse));
set(VirtualRegister(resultOperand), result);
}
if (argumentCountIncludingThis == 3) { // Math.min(x, y)
+ insertChecks();
set(VirtualRegister(resultOperand), addToGraph(op, get(virtualRegisterForArgument(1, registerOffset)), get(virtualRegisterForArgument(2, registerOffset))));
return true;
}
return false;
}
-bool ByteCodeParser::handleIntrinsic(int resultOperand, Intrinsic intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction)
+template<typename ChecksFunctor>
+bool ByteCodeParser::handleIntrinsic(int resultOperand, Intrinsic intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks)
{
switch (intrinsic) {
case AbsIntrinsic: {
if (argumentCountIncludingThis == 1) { // Math.abs()
- set(VirtualRegister(resultOperand), constantNaN());
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
if (!MacroAssembler::supportsFloatingPointAbs())
return false;
+ insertChecks();
Node* node = addToGraph(ArithAbs, get(virtualRegisterForArgument(1, registerOffset)));
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInDFG);
}
case MinIntrinsic:
- return handleMinMax(resultOperand, ArithMin, registerOffset, argumentCountIncludingThis);
+ return handleMinMax(resultOperand, ArithMin, registerOffset, argumentCountIncludingThis, insertChecks);
case MaxIntrinsic:
- return handleMinMax(resultOperand, ArithMax, registerOffset, argumentCountIncludingThis);
-
+ return handleMinMax(resultOperand, ArithMax, registerOffset, argumentCountIncludingThis, insertChecks);
+
case SqrtIntrinsic:
case CosIntrinsic:
- case SinIntrinsic: {
+ case SinIntrinsic:
+ case LogIntrinsic: {
if (argumentCountIncludingThis == 1) {
- set(VirtualRegister(resultOperand), constantNaN());
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
switch (intrinsic) {
case SqrtIntrinsic:
- if (!MacroAssembler::supportsFloatingPointSqrt())
- return false;
-
+ insertChecks();
set(VirtualRegister(resultOperand), addToGraph(ArithSqrt, get(virtualRegisterForArgument(1, registerOffset))));
return true;
case CosIntrinsic:
+ insertChecks();
set(VirtualRegister(resultOperand), addToGraph(ArithCos, get(virtualRegisterForArgument(1, registerOffset))));
return true;
case SinIntrinsic:
+ insertChecks();
set(VirtualRegister(resultOperand), addToGraph(ArithSin, get(virtualRegisterForArgument(1, registerOffset))));
return true;
+
+ case LogIntrinsic:
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(ArithLog, get(virtualRegisterForArgument(1, registerOffset))));
+ return true;
default:
RELEASE_ASSERT_NOT_REACHED();
return false;
}
}
+
+ case PowIntrinsic: {
+ if (argumentCountIncludingThis < 3) {
+ // Math.pow() and Math.pow(x) return NaN.
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
+ return true;
+ }
+ insertChecks();
+ VirtualRegister xOperand = virtualRegisterForArgument(1, registerOffset);
+ VirtualRegister yOperand = virtualRegisterForArgument(2, registerOffset);
+ set(VirtualRegister(resultOperand), addToGraph(ArithPow, get(xOperand), get(yOperand)));
+ return true;
+ }
case ArrayPushIntrinsic: {
if (argumentCountIncludingThis != 2)
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage: {
+ insertChecks();
Node* arrayPush = addToGraph(ArrayPush, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), arrayPush);
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage: {
+ insertChecks();
Node* arrayPop = addToGraph(ArrayPop, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)));
set(VirtualRegister(resultOperand), arrayPop);
return true;
if (argumentCountIncludingThis != 2)
return false;
+ insertChecks();
VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset);
VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
Node* charCode = addToGraph(StringCharCodeAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand));
if (argumentCountIncludingThis != 2)
return false;
+ insertChecks();
VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset);
VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
Node* charCode = addToGraph(StringCharAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand));
set(VirtualRegister(resultOperand), charCode);
return true;
}
+ case Clz32Intrinsic: {
+ insertChecks();
+ if (argumentCountIncludingThis == 1)
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_graph.freeze(jsNumber(32)))));
+ else {
+ Node* operand = get(virtualRegisterForArgument(1, registerOffset));
+ set(VirtualRegister(resultOperand), addToGraph(ArithClz32, operand));
+ }
+ return true;
+ }
case FromCharCodeIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
+ insertChecks();
VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
Node* charCode = addToGraph(StringFromCharCode, get(indexOperand));
if (argumentCountIncludingThis != 2)
return false;
+ insertChecks();
Node* regExpExec = addToGraph(RegExpExec, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), regExpExec);
if (argumentCountIncludingThis != 2)
return false;
+ insertChecks();
Node* regExpExec = addToGraph(RegExpTest, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), regExpExec);
return true;
}
-
+ case RoundIntrinsic: {
+ if (argumentCountIncludingThis == 1) {
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
+ return true;
+ }
+ if (argumentCountIncludingThis == 2) {
+ insertChecks();
+ Node* operand = get(virtualRegisterForArgument(1, registerOffset));
+ Node* roundNode = addToGraph(ArithRound, OpInfo(0), OpInfo(prediction), operand);
+ set(VirtualRegister(resultOperand), roundNode);
+ return true;
+ }
+ return false;
+ }
case IMulIntrinsic: {
if (argumentCountIncludingThis != 3)
return false;
+ insertChecks();
VirtualRegister leftOperand = virtualRegisterForArgument(1, registerOffset);
VirtualRegister rightOperand = virtualRegisterForArgument(2, registerOffset);
Node* left = get(leftOperand);
case FRoundIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
+ insertChecks();
VirtualRegister operand = virtualRegisterForArgument(1, registerOffset);
set(VirtualRegister(resultOperand), addToGraph(ArithFRound, get(operand)));
return true;
}
case DFGTrueIntrinsic: {
- set(VirtualRegister(resultOperand), getJSConstantForValue(jsBoolean(true)));
+ insertChecks();
+ set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true)));
return true;
}
case OSRExitIntrinsic: {
+ insertChecks();
addToGraph(ForceOSRExit);
- set(VirtualRegister(resultOperand), constantUndefined());
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
return true;
}
case IsFinalTierIntrinsic: {
+ insertChecks();
set(VirtualRegister(resultOperand),
- getJSConstantForValue(jsBoolean(Options::useFTLJIT() ? isFTL(m_graph.m_plan.mode) : true)));
+ jsConstant(jsBoolean(Options::useFTLJIT() ? isFTL(m_graph.m_plan.mode) : true)));
return true;
}
case SetInt32HeapPredictionIntrinsic: {
+ insertChecks();
for (int i = 1; i < argumentCountIncludingThis; ++i) {
Node* node = get(virtualRegisterForArgument(i, registerOffset));
if (node->hasHeapPrediction())
node->setHeapPrediction(SpecInt32);
}
- set(VirtualRegister(resultOperand), constantUndefined());
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
+ return true;
+ }
+
+ case CheckInt32Intrinsic: {
+ insertChecks();
+ for (int i = 1; i < argumentCountIncludingThis; ++i) {
+ Node* node = get(virtualRegisterForArgument(i, registerOffset));
+ addToGraph(Phantom, Edge(node, Int32Use));
+ }
+ set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true)));
return true;
}
case FiatInt52Intrinsic: {
if (argumentCountIncludingThis != 2)
return false;
+ insertChecks();
VirtualRegister operand = virtualRegisterForArgument(1, registerOffset);
if (enableInt52())
set(VirtualRegister(resultOperand), addToGraph(FiatInt52, get(operand)));
}
}
+template<typename ChecksFunctor>
bool ByteCodeParser::handleTypedArrayConstructor(
int resultOperand, InternalFunction* function, int registerOffset,
- int argumentCountIncludingThis, TypedArrayType type)
+ int argumentCountIncludingThis, TypedArrayType type, const ChecksFunctor& insertChecks)
{
if (!isTypedView(type))
return false;
if (argumentCountIncludingThis != 2)
return false;
-
+
+ insertChecks();
set(VirtualRegister(resultOperand),
addToGraph(NewTypedArray, OpInfo(type), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
+template<typename ChecksFunctor>
bool ByteCodeParser::handleConstantInternalFunction(
int resultOperand, InternalFunction* function, int registerOffset,
- int argumentCountIncludingThis, SpeculatedType prediction, CodeSpecializationKind kind)
+ int argumentCountIncludingThis, CodeSpecializationKind kind, const ChecksFunctor& insertChecks)
{
+ if (verbose)
+ dataLog(" Handling constant internal function ", JSValue(function), "\n");
+
// If we ever find that we have a lot of internal functions that we specialize for,
// then we should probably have some sort of hashtable dispatch, or maybe even
// dispatch straight through the MethodTable of the InternalFunction. But for now,
// we know about is small enough, that having just a linear cascade of if statements
// is good enough.
- UNUSED_PARAM(prediction); // Remove this once we do more things.
-
if (function->classInfo() == ArrayConstructor::info()) {
if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject())
return false;
+ insertChecks();
if (argumentCountIncludingThis == 2) {
set(VirtualRegister(resultOperand),
addToGraph(NewArrayWithSize, OpInfo(ArrayWithUndecided), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
+ // FIXME: Array constructor should use "this" as newTarget.
for (int i = 1; i < argumentCountIncludingThis; ++i)
addVarArgChild(get(virtualRegisterForArgument(i, registerOffset)));
set(VirtualRegister(resultOperand),
}
if (function->classInfo() == StringConstructor::info()) {
+ insertChecks();
+
Node* result;
if (argumentCountIncludingThis <= 1)
- result = cellConstant(m_vm->smallStrings.emptyString());
+ result = jsConstant(m_vm->smallStrings.emptyString());
else
- result = addToGraph(ToString, get(virtualRegisterForArgument(1, registerOffset)));
+ result = addToGraph(CallStringConstructor, get(virtualRegisterForArgument(1, registerOffset)));
if (kind == CodeForConstruct)
result = addToGraph(NewStringObject, OpInfo(function->globalObject()->stringObjectStructure()), result);
for (unsigned typeIndex = 0; typeIndex < NUMBER_OF_TYPED_ARRAY_TYPES; ++typeIndex) {
bool result = handleTypedArrayConstructor(
resultOperand, function, registerOffset, argumentCountIncludingThis,
- indexToTypedArrayType(typeIndex));
+ indexToTypedArrayType(typeIndex), insertChecks);
if (result)
return true;
}
return false;
}
-Node* ByteCodeParser::handleGetByOffset(SpeculatedType prediction, Node* base, unsigned identifierNumber, PropertyOffset offset)
+Node* ByteCodeParser::handleGetByOffset(SpeculatedType prediction, Node* base, const StructureSet& structureSet, unsigned identifierNumber, PropertyOffset offset, NodeType op)
{
+ if (base->hasConstant()) {
+ if (JSValue constant = m_graph.tryGetConstantProperty(base->asJSValue(), structureSet, offset)) {
+ addToGraph(Phantom, base);
+ return weakJSConstant(constant);
+ }
+ }
+
Node* propertyStorage;
if (isInlineOffset(offset))
propertyStorage = base;
else
propertyStorage = addToGraph(GetButterfly, base);
- Node* getByOffset = addToGraph(GetByOffset, OpInfo(m_graph.m_storageAccessData.size()), OpInfo(prediction), propertyStorage, base);
-
- StorageAccessData storageAccessData;
- storageAccessData.offset = offset;
- storageAccessData.identifierNumber = identifierNumber;
- m_graph.m_storageAccessData.append(storageAccessData);
+
+ StorageAccessData* data = m_graph.m_storageAccessData.add();
+ data->offset = offset;
+ data->identifierNumber = identifierNumber;
+
+ Node* getByOffset = addToGraph(op, OpInfo(data), OpInfo(prediction), propertyStorage, base);
return getByOffset;
}
-void ByteCodeParser::handleGetByOffset(
- int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber,
- PropertyOffset offset)
-{
- set(VirtualRegister(destinationOperand), handleGetByOffset(prediction, base, identifierNumber, offset));
-}
-
Node* ByteCodeParser::handlePutByOffset(Node* base, unsigned identifier, PropertyOffset offset, Node* value)
{
Node* propertyStorage;
propertyStorage = base;
else
propertyStorage = addToGraph(GetButterfly, base);
- Node* result = addToGraph(PutByOffset, OpInfo(m_graph.m_storageAccessData.size()), propertyStorage, base, value);
- StorageAccessData storageAccessData;
- storageAccessData.offset = offset;
- storageAccessData.identifierNumber = identifier;
- m_graph.m_storageAccessData.append(storageAccessData);
-
+ StorageAccessData* data = m_graph.m_storageAccessData.add();
+ data->offset = offset;
+ data->identifierNumber = identifier;
+
+ Node* result = addToGraph(PutByOffset, OpInfo(data), propertyStorage, base, value);
+
return result;
}
-Node* ByteCodeParser::emitPrototypeChecks(
- Structure* structure, IntendedStructureChain* chain)
+void ByteCodeParser::emitChecks(const ConstantStructureCheckVector& vector)
{
- Node* base = 0;
- m_graph.chains().addLazily(chain);
- Structure* currentStructure = structure;
- JSObject* currentObject = 0;
- for (unsigned i = 0; i < chain->size(); ++i) {
- currentObject = asObject(currentStructure->prototypeForLookup(m_inlineStackTop->m_codeBlock));
- currentStructure = chain->at(i);
- base = cellConstantWithStructureCheck(currentObject, currentStructure);
- }
- return base;
+ for (unsigned i = 0; i < vector.size(); ++i)
+ cellConstantWithStructureCheck(vector[i].constant(), vector[i].structure());
}
void ByteCodeParser::handleGetById(
int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber,
const GetByIdStatus& getByIdStatus)
{
- if (!getByIdStatus.isSimple() || !Options::enableAccessInlining()) {
+ NodeType getById = getByIdStatus.makesCalls() ? GetByIdFlush : GetById;
+
+ if (!getByIdStatus.isSimple() || !getByIdStatus.numVariants() || !Options::enableAccessInlining()) {
set(VirtualRegister(destinationOperand),
- addToGraph(
- getByIdStatus.makesCalls() ? GetByIdFlush : GetById,
- OpInfo(identifierNumber), OpInfo(prediction), base));
+ addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
if (getByIdStatus.numVariants() > 1) {
- if (!isFTL(m_graph.m_plan.mode) || !Options::enablePolymorphicAccessInlining()) {
+ if (getByIdStatus.makesCalls() || !isFTL(m_graph.m_plan.mode)
+ || !Options::enablePolymorphicAccessInlining()) {
set(VirtualRegister(destinationOperand),
- addToGraph(GetById, OpInfo(identifierNumber), OpInfo(prediction), base));
+ addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
// 1) Emit prototype structure checks for all chains. This could sort of maybe not be
// optimal, if there is some rarely executed case in the chain that requires a lot
// of checks and those checks are not watchpointable.
- for (unsigned variantIndex = getByIdStatus.numVariants(); variantIndex--;) {
- if (getByIdStatus[variantIndex].chain()) {
- emitPrototypeChecks(
- getByIdStatus[variantIndex].structureSet().singletonStructure(),
- getByIdStatus[variantIndex].chain());
- }
- }
+ for (unsigned variantIndex = getByIdStatus.numVariants(); variantIndex--;)
+ emitChecks(getByIdStatus[variantIndex].constantChecks());
// 2) Emit a MultiGetByOffset
MultiGetByOffsetData* data = m_graph.m_multiGetByOffsetData.add();
if (m_graph.compilation())
m_graph.compilation()->noticeInlinedGetById();
- Node* originalBaseForBaselineJIT = base;
+ Node* originalBase = base;
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.structureSet())), base);
- if (variant.chain()) {
- base = emitPrototypeChecks(
- variant.structureSet().singletonStructure(), variant.chain());
- }
+ emitChecks(variant.constantChecks());
+
+ if (variant.alternateBase())
+ base = weakJSConstant(variant.alternateBase());
// Unless we want bugs like https://bugs.webkit.org/show_bug.cgi?id=88783, we need to
// ensure that the base of the original get_by_id is kept alive until we're done with
// all of the speculations. We only insert the Phantom if there had been a CheckStructure
- // on something other than the base following the CheckStructure on base, or if the
- // access was compiled to a WeakJSConstant specific value, in which case we might not
- // have any explicit use of the base at all.
- if (variant.specificValue() || originalBaseForBaselineJIT != base)
- addToGraph(Phantom, originalBaseForBaselineJIT);
+ // on something other than the base following the CheckStructure on base.
+ if (originalBase != base)
+ addToGraph(Phantom, originalBase);
- if (variant.specificValue()) {
- ASSERT(variant.specificValue().isCell());
-
- set(VirtualRegister(destinationOperand), cellConstant(variant.specificValue().asCell()));
+ Node* loadedValue = handleGetByOffset(
+ variant.callLinkStatus() ? SpecCellOther : prediction,
+ base, variant.baseStructure(), identifierNumber, variant.offset(),
+ variant.callLinkStatus() ? GetGetterSetterByOffset : GetByOffset);
+
+ if (!variant.callLinkStatus()) {
+ set(VirtualRegister(destinationOperand), loadedValue);
return;
}
- handleGetByOffset(
- destinationOperand, prediction, base, identifierNumber, variant.offset());
+ Node* getter = addToGraph(GetGetter, loadedValue);
+
+ // Make a call. We don't try to get fancy with using the smallest operand number because
+ // the stack layout phase should compress the stack anyway.
+
+ unsigned numberOfParameters = 0;
+ numberOfParameters++; // The 'this' argument.
+ numberOfParameters++; // True return PC.
+
+ // Start with a register offset that corresponds to the last in-use register.
+ int registerOffset = virtualRegisterForLocal(
+ m_inlineStackTop->m_profiledBlock->m_numCalleeRegisters - 1).offset();
+ registerOffset -= numberOfParameters;
+ registerOffset -= JSStack::CallFrameHeaderSize;
+
+ // Get the alignment right.
+ registerOffset = -WTF::roundUpToMultipleOf(
+ stackAlignmentRegisters(),
+ -registerOffset);
+
+ ensureLocals(
+ m_inlineStackTop->remapOperand(
+ VirtualRegister(registerOffset)).toLocal());
+
+ // Issue SetLocals. This has two effects:
+ // 1) That's how handleCall() sees the arguments.
+ // 2) If we inline then this ensures that the arguments are flushed so that if you use
+ // the dreaded arguments object on the getter, the right things happen. Well, sort of -
+ // since we only really care about 'this' in this case. But we're not going to take that
+ // shortcut.
+ int nextRegister = registerOffset + JSStack::CallFrameHeaderSize;
+ set(VirtualRegister(nextRegister++), originalBase, ImmediateNakedSet);
+
+ handleCall(
+ destinationOperand, Call, InlineCallFrame::GetterCall, OPCODE_LENGTH(op_get_by_id),
+ getter, numberOfParameters - 1, registerOffset, *variant.callLinkStatus(), prediction);
}
void ByteCodeParser::emitPutById(
Node* base, unsigned identifierNumber, Node* value,
const PutByIdStatus& putByIdStatus, bool isDirect)
{
- if (!putByIdStatus.isSimple() || !Options::enableAccessInlining()) {
+ if (!putByIdStatus.isSimple() || !putByIdStatus.numVariants() || !Options::enableAccessInlining()) {
if (!putByIdStatus.isSet())
addToGraph(ForceOSRExit);
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
for (unsigned variantIndex = putByIdStatus.numVariants(); variantIndex--;) {
if (putByIdStatus[variantIndex].kind() != PutByIdVariant::Transition)
continue;
- if (!putByIdStatus[variantIndex].structureChain())
- continue;
- emitPrototypeChecks(
- putByIdStatus[variantIndex].oldStructure(),
- putByIdStatus[variantIndex].structureChain());
+ emitChecks(putByIdStatus[variantIndex].constantChecks());
}
}
ASSERT(putByIdStatus.numVariants() == 1);
const PutByIdVariant& variant = putByIdStatus[0];
- if (variant.kind() == PutByIdVariant::Replace) {
+ switch (variant.kind()) {
+ case PutByIdVariant::Replace: {
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.structure())), base);
handlePutByOffset(base, identifierNumber, variant.offset(), value);
if (m_graph.compilation())
return;
}
- if (variant.kind() != PutByIdVariant::Transition) {
- emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
- return;
- }
-
- if (variant.structureChain() && !variant.structureChain()->isStillValid()) {
- emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
- return;
- }
-
- m_graph.chains().addLazily(variant.structureChain());
-
- addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.oldStructure())), base);
- if (!isDirect)
- emitPrototypeChecks(variant.oldStructure(), variant.structureChain());
+ case PutByIdVariant::Transition: {
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.oldStructure())), base);
+ emitChecks(variant.constantChecks());
- ASSERT(variant.oldStructure()->transitionWatchpointSetHasBeenInvalidated());
+ ASSERT(variant.oldStructureForTransition()->transitionWatchpointSetHasBeenInvalidated());
- Node* propertyStorage;
- StructureTransitionData* transitionData = m_graph.addStructureTransitionData(
- StructureTransitionData(variant.oldStructure(), variant.newStructure()));
+ Node* propertyStorage;
+ Transition* transition = m_graph.m_transitions.add(
+ variant.oldStructureForTransition(), variant.newStructure());
- if (variant.oldStructure()->outOfLineCapacity()
- != variant.newStructure()->outOfLineCapacity()) {
+ if (variant.reallocatesStorage()) {
- // If we're growing the property storage then it must be because we're
- // storing into the out-of-line storage.
- ASSERT(!isInlineOffset(variant.offset()));
+ // If we're growing the property storage then it must be because we're
+ // storing into the out-of-line storage.
+ ASSERT(!isInlineOffset(variant.offset()));
- if (!variant.oldStructure()->outOfLineCapacity()) {
- propertyStorage = addToGraph(
- AllocatePropertyStorage, OpInfo(transitionData), base);
+ if (!variant.oldStructureForTransition()->outOfLineCapacity()) {
+ propertyStorage = addToGraph(
+ AllocatePropertyStorage, OpInfo(transition), base);
+ } else {
+ propertyStorage = addToGraph(
+ ReallocatePropertyStorage, OpInfo(transition),
+ base, addToGraph(GetButterfly, base));
+ }
} else {
- propertyStorage = addToGraph(
- ReallocatePropertyStorage, OpInfo(transitionData),
- base, addToGraph(GetButterfly, base));
+ if (isInlineOffset(variant.offset()))
+ propertyStorage = base;
+ else
+ propertyStorage = addToGraph(GetButterfly, base);
}
- } else {
- if (isInlineOffset(variant.offset()))
- propertyStorage = base;
- else
- propertyStorage = addToGraph(GetButterfly, base);
- }
- addToGraph(PutStructure, OpInfo(transitionData), base);
-
- addToGraph(
- PutByOffset,
- OpInfo(m_graph.m_storageAccessData.size()),
- propertyStorage,
- base,
- value);
+ StorageAccessData* data = m_graph.m_storageAccessData.add();
+ data->offset = variant.offset();
+ data->identifierNumber = identifierNumber;
+
+ addToGraph(
+ PutByOffset,
+ OpInfo(data),
+ propertyStorage,
+ base,
+ value);
- StorageAccessData storageAccessData;
- storageAccessData.offset = variant.offset();
- storageAccessData.identifierNumber = identifierNumber;
- m_graph.m_storageAccessData.append(storageAccessData);
+ // FIXME: PutStructure goes last until we fix either
+ // https://bugs.webkit.org/show_bug.cgi?id=142921 or
+ // https://bugs.webkit.org/show_bug.cgi?id=142924.
+ addToGraph(PutStructure, OpInfo(transition), base);
- if (m_graph.compilation())
- m_graph.compilation()->noticeInlinedPutById();
+ if (m_graph.compilation())
+ m_graph.compilation()->noticeInlinedPutById();
+ return;
+ }
+
+ case PutByIdVariant::Setter: {
+ Node* originalBase = base;
+
+ addToGraph(
+ CheckStructure, OpInfo(m_graph.addStructureSet(variant.structure())), base);
+
+ emitChecks(variant.constantChecks());
+
+ if (variant.alternateBase())
+ base = weakJSConstant(variant.alternateBase());
+
+ Node* loadedValue = handleGetByOffset(
+ SpecCellOther, base, variant.baseStructure(), identifierNumber, variant.offset(),
+ GetGetterSetterByOffset);
+
+ Node* setter = addToGraph(GetSetter, loadedValue);
+
+ // Make a call. We don't try to get fancy with using the smallest operand number because
+ // the stack layout phase should compress the stack anyway.
+
+ unsigned numberOfParameters = 0;
+ numberOfParameters++; // The 'this' argument.
+ numberOfParameters++; // The new value.
+ numberOfParameters++; // True return PC.
+
+ // Start with a register offset that corresponds to the last in-use register.
+ int registerOffset = virtualRegisterForLocal(
+ m_inlineStackTop->m_profiledBlock->m_numCalleeRegisters - 1).offset();
+ registerOffset -= numberOfParameters;
+ registerOffset -= JSStack::CallFrameHeaderSize;
+
+ // Get the alignment right.
+ registerOffset = -WTF::roundUpToMultipleOf(
+ stackAlignmentRegisters(),
+ -registerOffset);
+
+ ensureLocals(
+ m_inlineStackTop->remapOperand(
+ VirtualRegister(registerOffset)).toLocal());
+
+ int nextRegister = registerOffset + JSStack::CallFrameHeaderSize;
+ set(VirtualRegister(nextRegister++), originalBase, ImmediateNakedSet);
+ set(VirtualRegister(nextRegister++), value, ImmediateNakedSet);
+
+ handleCall(
+ VirtualRegister().offset(), Call, InlineCallFrame::SetterCall,
+ OPCODE_LENGTH(op_put_by_id), setter, numberOfParameters - 1, registerOffset,
+ *variant.callLinkStatus(), SpecOther);
+ return;
+ }
+
+ default: {
+ emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
+ return;
+ } }
}
void ByteCodeParser::prepareToParseBlock()
{
- for (unsigned i = 0; i < m_constants.size(); ++i)
- m_constants[i] = ConstantRecord();
- m_cellConstantNodes.clear();
+ clearCaches();
+ ASSERT(m_setLocalQueue.isEmpty());
}
-Node* ByteCodeParser::getScope(bool skipTop, unsigned skipCount)
+void ByteCodeParser::clearCaches()
{
- Node* localBase = get(VirtualRegister(JSStack::ScopeChain));
- if (skipTop) {
- ASSERT(!inlineCallFrame());
- localBase = addToGraph(SkipTopScope, localBase);
- }
- for (unsigned n = skipCount; n--;)
- localBase = addToGraph(SkipScope, localBase);
- return localBase;
+ m_constants.resize(0);
}
bool ByteCodeParser::parseBlock(unsigned limit)
m_graph.m_arguments.resize(m_numArguments);
for (unsigned argument = 0; argument < m_numArguments; ++argument) {
VariableAccessData* variable = newVariableAccessData(
- virtualRegisterForArgument(argument), m_codeBlock->isCaptured(virtualRegisterForArgument(argument)));
+ virtualRegisterForArgument(argument));
variable->mergeStructureCheckHoistingFailed(
- m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCacheWatchpoint));
+ m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
variable->mergeCheckArrayHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType));
}
while (true) {
- for (unsigned i = 0; i < m_setLocalQueue.size(); ++i)
- m_setLocalQueue[i].execute(this);
- m_setLocalQueue.resize(0);
+ processSetLocalQueue();
// Don't extend over jump destinations.
if (m_currentIndex == limit) {
// === Function entry opcodes ===
- case op_enter:
+ case op_enter: {
+ Node* undefined = addToGraph(JSConstant, OpInfo(m_constantUndefined));
// Initialize all locals to undefined.
for (int i = 0; i < m_inlineStackTop->m_codeBlock->m_numVars; ++i)
- set(virtualRegisterForLocal(i), constantUndefined(), ImmediateNakedSet);
- if (m_inlineStackTop->m_codeBlock->specializationKind() == CodeForConstruct)
- set(virtualRegisterForArgument(0), constantUndefined(), ImmediateNakedSet);
+ set(virtualRegisterForLocal(i), undefined, ImmediateNakedSet);
NEXT_OPCODE(op_enter);
-
- case op_touch_entry:
- if (m_inlineStackTop->m_codeBlock->symbolTable()->m_functionEnteredOnce.isStillValid())
- addToGraph(ForceOSRExit);
- NEXT_OPCODE(op_touch_entry);
+ }
case op_to_this: {
Node* op1 = getThis();
if (op1->op() != ToThis) {
Structure* cachedStructure = currentInstruction[2].u.structure.get();
- if (!cachedStructure
+ if (currentInstruction[2].u.toThisStatus != ToThisOK
+ || !cachedStructure
|| cachedStructure->classInfo()->methodTable.toThis != JSObject::info()->methodTable.toThis
|| m_inlineStackTop->m_profiledBlock->couldTakeSlowCase(m_currentIndex)
|| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCacheWatchpoint)
|| (op1->op() == GetLocal && op1->variableAccessData()->structureCheckHoistingFailed())) {
setThis(addToGraph(ToThis, op1));
} else {
case op_create_this: {
int calleeOperand = currentInstruction[2].u.operand;
Node* callee = get(VirtualRegister(calleeOperand));
+
+ JSFunction* function = callee->dynamicCastConstant<JSFunction*>();
+ if (!function) {
+ JSCell* cachedFunction = currentInstruction[4].u.jsCell.unvalidatedGet();
+ if (cachedFunction
+ && cachedFunction != JSCell::seenMultipleCalleeObjects()
+ && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell)) {
+ ASSERT(cachedFunction->inherits(JSFunction::info()));
+
+ FrozenValue* frozen = m_graph.freeze(cachedFunction);
+ addToGraph(CheckCell, OpInfo(frozen), callee);
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(JSConstant, OpInfo(frozen)));
+
+ function = static_cast<JSFunction*>(cachedFunction);
+ }
+ }
+
bool alreadyEmitted = false;
- if (callee->op() == WeakJSConstant) {
- JSCell* cell = callee->weakConstant();
- ASSERT(cell->inherits(JSFunction::info()));
-
- JSFunction* function = jsCast<JSFunction*>(cell);
- if (Structure* structure = function->allocationStructure()) {
- addToGraph(AllocationProfileWatchpoint, OpInfo(function));
- // The callee is still live up to this point.
- addToGraph(Phantom, callee);
- set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewObject, OpInfo(structure)));
- alreadyEmitted = true;
+ if (function) {
+ if (FunctionRareData* rareData = function->rareData()) {
+ if (Structure* structure = rareData->allocationStructure()) {
+ m_graph.freeze(rareData);
+ m_graph.watchpoints().addLazily(rareData->allocationProfileWatchpointSet());
+ // The callee is still live up to this point.
+ addToGraph(Phantom, callee);
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewObject, OpInfo(structure)));
+ alreadyEmitted = true;
+ }
}
}
if (!alreadyEmitted) {
NEXT_OPCODE(op_new_regexp);
}
- case op_get_callee: {
- JSCell* cachedFunction = currentInstruction[2].u.jsCell.get();
- if (!cachedFunction
- || m_inlineStackTop->m_profiledBlock->couldTakeSlowCase(m_currentIndex)
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadFunction)) {
- set(VirtualRegister(currentInstruction[1].u.operand), get(VirtualRegister(JSStack::Callee)));
- } else {
- ASSERT(cachedFunction->inherits(JSFunction::info()));
- Node* actualCallee = get(VirtualRegister(JSStack::Callee));
- addToGraph(CheckFunction, OpInfo(cachedFunction), actualCallee);
- set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(WeakJSConstant, OpInfo(cachedFunction)));
- }
- NEXT_OPCODE(op_get_callee);
- }
-
// === Bitwise operations ===
case op_bitand: {
int srcDst = currentInstruction[1].u.operand;
VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst);
Node* op = get(srcDstVirtualRegister);
- set(srcDstVirtualRegister, makeSafe(addToGraph(ArithAdd, op, one())));
+ set(srcDstVirtualRegister, makeSafe(addToGraph(ArithAdd, op, addToGraph(JSConstant, OpInfo(m_constantOne)))));
NEXT_OPCODE(op_inc);
}
int srcDst = currentInstruction[1].u.operand;
VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst);
Node* op = get(srcDstVirtualRegister);
- set(srcDstVirtualRegister, makeSafe(addToGraph(ArithSub, op, one())));
+ set(srcDstVirtualRegister, makeSafe(addToGraph(ArithSub, op, addToGraph(JSConstant, OpInfo(m_constantOne)))));
NEXT_OPCODE(op_dec);
}
set(VirtualRegister(currentInstruction[1].u.operand), op);
NEXT_OPCODE(op_mov);
}
-
- case op_captured_mov: {
- Node* op = get(VirtualRegister(currentInstruction[2].u.operand));
- if (VariableWatchpointSet* set = currentInstruction[3].u.watchpointSet) {
- if (set->state() != IsInvalidated)
- addToGraph(NotifyWrite, OpInfo(set), op);
- }
- set(VirtualRegister(currentInstruction[1].u.operand), op);
- NEXT_OPCODE(op_captured_mov);
+
+ case op_check_tdz: {
+ Node* op = get(VirtualRegister(currentInstruction[1].u.operand));
+ addToGraph(CheckNotEmpty, op);
+ NEXT_OPCODE(op_check_tdz);
}
case op_check_has_instance:
NEXT_OPCODE(op_is_object);
}
+ case op_is_object_or_null: {
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObjectOrNull, value));
+ NEXT_OPCODE(op_is_object_or_null);
+ }
+
case op_is_function: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsFunction, value));
case op_eq_null: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
- set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEqConstant, value, constantNull()));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEqConstant, value, addToGraph(JSConstant, OpInfo(m_constantNull))));
NEXT_OPCODE(op_eq_null);
}
case op_neq_null: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
- set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEqConstant, value, constantNull())));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEqConstant, value, addToGraph(JSConstant, OpInfo(m_constantNull)))));
NEXT_OPCODE(op_neq_null);
}
// === Property access operations ===
case op_get_by_val: {
- SpeculatedType prediction = getPrediction();
+ SpeculatedType prediction = getPredictionWithoutOSRExit();
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
- ArrayMode arrayMode = getArrayModeConsideringSlowPath(currentInstruction[4].u.arrayProfile, Array::Read);
+ ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read);
Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
Node* getByVal = addToGraph(GetByVal, OpInfo(arrayMode.asWord()), OpInfo(prediction), base, property);
set(VirtualRegister(currentInstruction[1].u.operand), getByVal);
case op_put_by_val: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
- ArrayMode arrayMode = getArrayModeConsideringSlowPath(currentInstruction[4].u.arrayProfile, Array::Write);
+ ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Write);
Node* property = get(VirtualRegister(currentInstruction[2].u.operand));
Node* value = get(VirtualRegister(currentInstruction[3].u.operand));
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
- StringImpl* uid = m_graph.identifiers()[identifierNumber];
+ UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
GetByIdStatus getByIdStatus = GetByIdStatus::computeFor(
m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock,
m_inlineStackTop->m_stubInfos, m_dfgStubInfos,
case op_init_global_const: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
addToGraph(
PutGlobalVar,
- OpInfo(m_inlineStackTop->m_codeBlock->globalObject()->assertRegisterIsInThisObject(currentInstruction[1].u.registerPointer)),
- value);
+ OpInfo(globalObject->assertVariableIsInThisObject(currentInstruction[1].u.variablePointer)),
+ weakJSConstant(globalObject), value);
NEXT_OPCODE(op_init_global_const);
}
+ case op_profile_type: {
+ Node* valueToProfile = get(VirtualRegister(currentInstruction[1].u.operand));
+ addToGraph(ProfileType, OpInfo(currentInstruction[2].u.location), valueToProfile);
+ NEXT_OPCODE(op_profile_type);
+ }
+
+ case op_profile_control_flow: {
+ BasicBlockLocation* basicBlockLocation = currentInstruction[1].u.basicBlockLocation;
+ addToGraph(ProfileControlFlow, OpInfo(basicBlockLocation));
+ NEXT_OPCODE(op_profile_control_flow);
+ }
+
// === Block terminators. ===
case op_jmp: {
int relativeOffset = currentInstruction[1].u.operand;
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
if (relativeOffset <= 0)
flushForTerminal();
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
LAST_OPCODE(op_jmp);
}
case op_jeq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* value = get(VirtualRegister(currentInstruction[1].u.operand));
- Node* condition = addToGraph(CompareEqConstant, value, constantNull());
+ Node* condition = addToGraph(CompareEqConstant, value, addToGraph(JSConstant, OpInfo(m_constantNull)));
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jeq_null))), condition);
LAST_OPCODE(op_jeq_null);
}
case op_jneq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* value = get(VirtualRegister(currentInstruction[1].u.operand));
- Node* condition = addToGraph(CompareEqConstant, value, constantNull());
+ Node* condition = addToGraph(CompareEqConstant, value, addToGraph(JSConstant, OpInfo(m_constantNull)));
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jneq_null), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jneq_null);
}
unsigned target = m_currentIndex + table.branchOffsets[i];
if (target == data.fallThrough.bytecodeIndex())
continue;
- data.cases.append(SwitchCase::withBytecodeIndex(jsNumber(static_cast<int32_t>(table.min + i)), target));
+ data.cases.append(SwitchCase::withBytecodeIndex(m_graph.freeze(jsNumber(static_cast<int32_t>(table.min + i))), target));
}
- flushIfTerminal(data);
addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
+ flushIfTerminal(data);
LAST_OPCODE(op_switch_imm);
}
data.cases.append(
SwitchCase::withBytecodeIndex(LazyJSValue::singleCharacterString(table.min + i), target));
}
- flushIfTerminal(data);
addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
+ flushIfTerminal(data);
LAST_OPCODE(op_switch_char);
}
data.cases.append(
SwitchCase::withBytecodeIndex(LazyJSValue::knownStringImpl(iter->key.get()), target));
}
- flushIfTerminal(data);
addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
+ flushIfTerminal(data);
LAST_OPCODE(op_switch_string);
}
case op_ret:
- flushForReturn();
if (inlineCallFrame()) {
- ASSERT(m_inlineStackTop->m_returnValue.isValid());
- setDirect(m_inlineStackTop->m_returnValue, get(VirtualRegister(currentInstruction[1].u.operand)), ImmediateSetWithFlush);
+ flushForReturn();
+ if (m_inlineStackTop->m_returnValue.isValid())
+ setDirect(m_inlineStackTop->m_returnValue, get(VirtualRegister(currentInstruction[1].u.operand)), ImmediateSetWithFlush);
m_inlineStackTop->m_didReturn = true;
if (m_inlineStackTop->m_unlinkedBlocks.isEmpty()) {
// If we're returning from the first block, then we're done parsing.
LAST_OPCODE(op_ret);
}
addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand)));
+ flushForReturn();
LAST_OPCODE(op_ret);
case op_end:
- flushForReturn();
ASSERT(!inlineCallFrame());
addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand)));
+ flushForReturn();
LAST_OPCODE(op_end);
case op_throw:
case op_call:
handleCall(currentInstruction, Call, CodeForCall);
+ // Verify that handleCall(), which could have inlined the callee, didn't trash m_currentInstruction
+ ASSERT(m_currentInstruction == currentInstruction);
NEXT_OPCODE(op_call);
case op_construct:
NEXT_OPCODE(op_construct);
case op_call_varargs: {
- int result = currentInstruction[1].u.operand;
- int callee = currentInstruction[2].u.operand;
- int thisReg = currentInstruction[3].u.operand;
- int arguments = currentInstruction[4].u.operand;
- int firstFreeReg = currentInstruction[5].u.operand;
-
- ASSERT(inlineCallFrame());
- ASSERT_UNUSED(arguments, arguments == m_inlineStackTop->m_codeBlock->argumentsRegister().offset());
- ASSERT(!m_inlineStackTop->m_codeBlock->symbolTable()->slowArguments());
-
- addToGraph(CheckArgumentsNotCreated);
-
- unsigned argCount = inlineCallFrame()->arguments.size();
-
- // Let's compute the register offset. We start with the last used register, and
- // then adjust for the things we want in the call frame.
- int registerOffset = firstFreeReg + 1;
- registerOffset -= argCount; // We will be passing some arguments.
- registerOffset -= JSStack::CallFrameHeaderSize; // We will pretend to have a call frame header.
-
- // Get the alignment right.
- registerOffset = -WTF::roundUpToMultipleOf(
- stackAlignmentRegisters(),
- -registerOffset);
-
- ensureLocals(
- m_inlineStackTop->remapOperand(
- VirtualRegister(registerOffset)).toLocal());
-
- // The bytecode wouldn't have set up the arguments. But we'll do it and make it
- // look like the bytecode had done it.
- int nextRegister = registerOffset + JSStack::CallFrameHeaderSize;
- set(VirtualRegister(nextRegister++), get(VirtualRegister(thisReg)), ImmediateNakedSet);
- for (unsigned argument = 1; argument < argCount; ++argument)
- set(VirtualRegister(nextRegister++), get(virtualRegisterForArgument(argument)), ImmediateNakedSet);
-
- handleCall(
- result, Call, CodeForCall, OPCODE_LENGTH(op_call_varargs),
- callee, argCount, registerOffset);
+ handleVarargsCall(currentInstruction, CallVarargs, CodeForCall);
NEXT_OPCODE(op_call_varargs);
}
+ case op_construct_varargs: {
+ handleVarargsCall(currentInstruction, ConstructVarargs, CodeForConstruct);
+ NEXT_OPCODE(op_construct_varargs);
+ }
+
case op_jneq_ptr:
// Statically speculate for now. It makes sense to let speculate-only jneq_ptr
// support simmer for a while before making it more general, since it's
// already gnarly enough as it is.
ASSERT(pointerIsFunction(currentInstruction[2].u.specialPointer));
addToGraph(
- CheckFunction,
- OpInfo(actualPointerFor(m_inlineStackTop->m_codeBlock, currentInstruction[2].u.specialPointer)),
+ CheckCell,
+ OpInfo(m_graph.freeze(static_cast<JSCell*>(actualPointerFor(
+ m_inlineStackTop->m_codeBlock, currentInstruction[2].u.specialPointer)))),
get(VirtualRegister(currentInstruction[1].u.operand)));
addToGraph(Jump, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_ptr)));
LAST_OPCODE(op_jneq_ptr);
case op_resolve_scope: {
int dst = currentInstruction[1].u.operand;
- ResolveType resolveType = static_cast<ResolveType>(currentInstruction[3].u.operand);
- unsigned depth = currentInstruction[4].u.operand;
+ ResolveType resolveType = static_cast<ResolveType>(currentInstruction[4].u.operand);
+ unsigned depth = currentInstruction[5].u.operand;
// get_from_scope and put_to_scope depend on this watchpoint forcing OSR exit, so they don't add their own watchpoints.
if (needsVarInjectionChecks(resolveType))
case GlobalVar:
case GlobalPropertyWithVarInjectionChecks:
case GlobalVarWithVarInjectionChecks:
- set(VirtualRegister(dst), cellConstant(m_inlineStackTop->m_codeBlock->globalObject()));
+ set(VirtualRegister(dst), weakJSConstant(m_inlineStackTop->m_codeBlock->globalObject()));
+ if (resolveType == GlobalPropertyWithVarInjectionChecks || resolveType == GlobalVarWithVarInjectionChecks)
+ addToGraph(Phantom, getDirect(m_inlineStackTop->remapOperand(VirtualRegister(currentInstruction[2].u.operand))));
break;
+ case LocalClosureVar:
case ClosureVar:
case ClosureVarWithVarInjectionChecks: {
- JSActivation* activation = currentInstruction[5].u.activation.get();
- if (activation
- && activation->symbolTable()->m_functionEnteredOnce.isStillValid()) {
- addToGraph(FunctionReentryWatchpoint, OpInfo(activation->symbolTable()));
- set(VirtualRegister(dst), cellConstant(activation));
+ Node* localBase = get(VirtualRegister(currentInstruction[2].u.operand));
+ addToGraph(Phantom, localBase); // OSR exit cannot handle resolve_scope on a DCE'd scope.
+
+ // We have various forms of constant folding here. This is necessary to avoid
+ // spurious recompiles in dead-but-foldable code.
+ if (SymbolTable* symbolTable = currentInstruction[6].u.symbolTable.get()) {
+ InferredValue* singleton = symbolTable->singletonScope();
+ if (JSValue value = singleton->inferredValue()) {
+ m_graph.watchpoints().addLazily(singleton);
+ set(VirtualRegister(dst), weakJSConstant(value));
+ break;
+ }
+ }
+ if (JSScope* scope = localBase->dynamicCastConstant<JSScope*>()) {
+ for (unsigned n = depth; n--;)
+ scope = scope->next();
+ set(VirtualRegister(dst), weakJSConstant(scope));
break;
}
- set(VirtualRegister(dst),
- getScope(m_inlineStackTop->m_codeBlock->needsActivation(), depth));
+ for (unsigned n = depth; n--;)
+ localBase = addToGraph(SkipScope, localBase);
+ set(VirtualRegister(dst), localBase);
break;
}
case Dynamic:
int dst = currentInstruction[1].u.operand;
int scope = currentInstruction[2].u.operand;
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
- StringImpl* uid = m_graph.identifiers()[identifierNumber];
+ UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
ResolveType resolveType = ResolveModeAndType(currentInstruction[4].u.operand).type();
Structure* structure = 0;
UNUSED_PARAM(watchpoints); // We will use this in the future. For now we set it as a way of documenting the fact that that's what index 5 is in GlobalVar mode.
- SpeculatedType prediction = getPrediction();
JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
switch (resolveType) {
case GlobalProperty:
case GlobalPropertyWithVarInjectionChecks: {
- GetByIdStatus status = GetByIdStatus::computeFor(*m_vm, structure, uid);
- if (status.state() != GetByIdStatus::Simple || status.numVariants() != 1) {
+ SpeculatedType prediction = getPrediction();
+ GetByIdStatus status = GetByIdStatus::computeFor(structure, uid);
+ if (status.state() != GetByIdStatus::Simple
+ || status.numVariants() != 1
+ || status[0].structureSet().size() != 1) {
set(VirtualRegister(dst), addToGraph(GetByIdFlush, OpInfo(identifierNumber), OpInfo(prediction), get(VirtualRegister(scope))));
break;
}
- Node* base = cellConstantWithStructureCheck(globalObject, status[0].structureSet().singletonStructure());
+ Node* base = cellConstantWithStructureCheck(globalObject, status[0].structureSet().onlyStructure());
addToGraph(Phantom, get(VirtualRegister(scope)));
- if (JSValue specificValue = status[0].specificValue())
- set(VirtualRegister(dst), cellConstant(specificValue.asCell()));
- else
- set(VirtualRegister(dst), handleGetByOffset(prediction, base, identifierNumber, operand));
+ set(VirtualRegister(dst), handleGetByOffset(prediction, base, status[0].structureSet(), identifierNumber, operand));
break;
}
case GlobalVar:
case GlobalVarWithVarInjectionChecks: {
addToGraph(Phantom, get(VirtualRegister(scope)));
- SymbolTableEntry entry = globalObject->symbolTable()->get(uid);
- VariableWatchpointSet* watchpointSet = entry.watchpointSet();
- JSValue specificValue =
- watchpointSet ? watchpointSet->inferredValue() : JSValue();
- if (!specificValue) {
- set(VirtualRegister(dst), addToGraph(GetGlobalVar, OpInfo(operand), OpInfo(prediction)));
- break;
+ WatchpointSet* watchpointSet;
+ ScopeOffset offset;
+ {
+ ConcurrentJITLocker locker(globalObject->symbolTable()->m_lock);
+ SymbolTableEntry entry = globalObject->symbolTable()->get(locker, uid);
+ watchpointSet = entry.watchpointSet();
+ offset = entry.scopeOffset();
+ }
+ if (watchpointSet && watchpointSet->state() == IsWatched) {
+ // This has a fun concurrency story. There is the possibility of a race in two
+ // directions:
+ //
+ // We see that the set IsWatched, but in the meantime it gets invalidated: this is
+ // fine because if we saw that it IsWatched then we add a watchpoint. If it gets
+ // invalidated, then this compilation is invalidated. Note that in the meantime we
+ // may load an absurd value from the global object. It's fine to load an absurd
+ // value if the compilation is invalidated anyway.
+ //
+ // We see that the set IsWatched, but the value isn't yet initialized: this isn't
+ // possible because of the ordering of operations.
+ //
+ // Here's how we order operations:
+ //
+ // Main thread stores to the global object: always store a value first, and only
+ // after that do we touch the watchpoint set. There is a fence in the touch, that
+ // ensures that the store to the global object always happens before the touch on the
+ // set.
+ //
+ // Compilation thread: always first load the state of the watchpoint set, and then
+ // load the value. The WatchpointSet::state() method does fences for us to ensure
+ // that the load of the state happens before our load of the value.
+ //
+ // Finalizing compilation: this happens on the main thread and synchronously checks
+ // validity of all watchpoint sets.
+ //
+ // We will only perform optimizations if the load of the state yields IsWatched. That
+ // means that at least one store would have happened to initialize the original value
+ // of the variable (that is, the value we'd like to constant fold to). There may be
+ // other stores that happen after that, but those stores will invalidate the
+ // watchpoint set and also the compilation.
+
+ // Note that we need to use the operand, which is a direct pointer at the global,
+ // rather than looking up the global by doing variableAt(offset). That's because the
+ // internal data structures of JSSegmentedVariableObject are not thread-safe even
+ // though accessing the global itself is. The segmentation involves a vector spine
+ // that resizes with malloc/free, so if new globals unrelated to the one we are
+ // reading are added, we might access freed memory if we do variableAt().
+ WriteBarrier<Unknown>* pointer = bitwise_cast<WriteBarrier<Unknown>*>(operand);
+
+ ASSERT(globalObject->findVariableIndex(pointer) == offset);
+
+ JSValue value = pointer->get();
+ if (value) {
+ m_graph.watchpoints().addLazily(watchpointSet);
+ set(VirtualRegister(dst), weakJSConstant(value));
+ break;
+ }
}
- addToGraph(VariableWatchpoint, OpInfo(watchpointSet));
- set(VirtualRegister(dst), inferredConstant(specificValue));
+ SpeculatedType prediction = getPrediction();
+ set(VirtualRegister(dst), addToGraph(GetGlobalVar, OpInfo(operand), OpInfo(prediction)));
break;
}
+ case LocalClosureVar:
case ClosureVar:
case ClosureVarWithVarInjectionChecks: {
Node* scopeNode = get(VirtualRegister(scope));
- if (JSActivation* activation = m_graph.tryGetActivation(scopeNode)) {
- SymbolTable* symbolTable = activation->symbolTable();
- ConcurrentJITLocker locker(symbolTable->m_lock);
- SymbolTable::Map::iterator iter = symbolTable->find(locker, uid);
- ASSERT(iter != symbolTable->end(locker));
- VariableWatchpointSet* watchpointSet = iter->value.watchpointSet();
- if (watchpointSet) {
- if (JSValue value = watchpointSet->inferredValue()) {
- addToGraph(Phantom, scopeNode);
- addToGraph(VariableWatchpoint, OpInfo(watchpointSet));
- set(VirtualRegister(dst), inferredConstant(value));
- break;
- }
- }
+
+ // Ideally we wouldn't have to do this Phantom. But:
+ //
+ // For the constant case: we must do it because otherwise we would have no way of knowing
+ // that the scope is live at OSR here.
+ //
+ // For the non-constant case: GetClosureVar could be DCE'd, but baseline's implementation
+ // won't be able to handle an Undefined scope.
+ addToGraph(Phantom, scopeNode);
+
+ // Constant folding in the bytecode parser is important for performance. This may not
+ // have executed yet. If it hasn't, then we won't have a prediction. Lacking a
+ // prediction, we'd otherwise think that it has to exit. Then when it did execute, we
+ // would recompile. But if we can fold it here, we avoid the exit.
+ if (JSValue value = m_graph.tryGetConstantClosureVar(scopeNode, ScopeOffset(operand))) {
+ set(VirtualRegister(dst), weakJSConstant(value));
+ break;
}
+ SpeculatedType prediction = getPrediction();
set(VirtualRegister(dst),
- addToGraph(GetClosureVar, OpInfo(operand), OpInfo(prediction),
- addToGraph(GetClosureRegisters, scopeNode)));
+ addToGraph(GetClosureVar, OpInfo(operand), OpInfo(prediction), scopeNode));
break;
}
case Dynamic:
case op_put_to_scope: {
unsigned scope = currentInstruction[1].u.operand;
- unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
+ unsigned identifierNumber = currentInstruction[2].u.operand;
+ if (identifierNumber != UINT_MAX)
+ identifierNumber = m_inlineStackTop->m_identifierRemap[identifierNumber];
unsigned value = currentInstruction[3].u.operand;
ResolveType resolveType = ResolveModeAndType(currentInstruction[4].u.operand).type();
- StringImpl* uid = m_graph.identifiers()[identifierNumber];
-
- Structure* structure = 0;
- VariableWatchpointSet* watchpoints = 0;
+ UniquedStringImpl* uid;
+ if (identifierNumber != UINT_MAX)
+ uid = m_graph.identifiers()[identifierNumber];
+ else
+ uid = nullptr;
+
+ Structure* structure = nullptr;
+ WatchpointSet* watchpoints = nullptr;
uintptr_t operand;
{
ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
- if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks)
+ if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks || resolveType == LocalClosureVar)
watchpoints = currentInstruction[5].u.watchpointSet;
else
structure = currentInstruction[5].u.structure.get();
switch (resolveType) {
case GlobalProperty:
case GlobalPropertyWithVarInjectionChecks: {
- PutByIdStatus status = PutByIdStatus::computeFor(*m_vm, globalObject, structure, uid, false);
- if (status.numVariants() != 1 || status[0].kind() != PutByIdVariant::Replace) {
+ PutByIdStatus status;
+ if (uid)
+ status = PutByIdStatus::computeFor(globalObject, structure, uid, false);
+ else
+ status = PutByIdStatus(PutByIdStatus::TakesSlowPath);
+ if (status.numVariants() != 1
+ || status[0].kind() != PutByIdVariant::Replace
+ || status[0].structure().size() != 1) {
addToGraph(PutById, OpInfo(identifierNumber), get(VirtualRegister(scope)), get(VirtualRegister(value)));
break;
}
- Node* base = cellConstantWithStructureCheck(globalObject, status[0].structure());
+ ASSERT(status[0].structure().onlyStructure() == structure);
+ Node* base = cellConstantWithStructureCheck(globalObject, structure);
addToGraph(Phantom, get(VirtualRegister(scope)));
handlePutByOffset(base, identifierNumber, static_cast<PropertyOffset>(operand), get(VirtualRegister(value)));
// Keep scope alive until after put.
}
case GlobalVar:
case GlobalVarWithVarInjectionChecks: {
- SymbolTableEntry entry = globalObject->symbolTable()->get(uid);
- ASSERT(watchpoints == entry.watchpointSet());
+ if (watchpoints) {
+ SymbolTableEntry entry = globalObject->symbolTable()->get(uid);
+ ASSERT_UNUSED(entry, watchpoints == entry.watchpointSet());
+ }
Node* valueNode = get(VirtualRegister(value));
- addToGraph(PutGlobalVar, OpInfo(operand), valueNode);
- if (watchpoints->state() != IsInvalidated)
- addToGraph(NotifyWrite, OpInfo(watchpoints), valueNode);
+ addToGraph(PutGlobalVar, OpInfo(operand), weakJSConstant(globalObject), valueNode);
+ if (watchpoints && watchpoints->state() != IsInvalidated) {
+ // Must happen after the store. See comment for GetGlobalVar.
+ addToGraph(NotifyWrite, OpInfo(watchpoints));
+ }
// Keep scope alive until after put.
addToGraph(Phantom, get(VirtualRegister(scope)));
break;
}
+ case LocalClosureVar:
case ClosureVar:
case ClosureVarWithVarInjectionChecks: {
Node* scopeNode = get(VirtualRegister(scope));
- Node* scopeRegisters = addToGraph(GetClosureRegisters, scopeNode);
- addToGraph(PutClosureVar, OpInfo(operand), scopeNode, scopeRegisters, get(VirtualRegister(value)));
+ Node* valueNode = get(VirtualRegister(value));
+
+ addToGraph(PutClosureVar, OpInfo(operand), scopeNode, valueNode);
+
+ if (watchpoints && watchpoints->state() != IsInvalidated) {
+ // Must happen after the store. See comment for GetGlobalVar.
+ addToGraph(NotifyWrite, OpInfo(watchpoints));
+ }
break;
}
case Dynamic:
NEXT_OPCODE(op_loop_hint);
}
- case op_init_lazy_reg: {
- set(VirtualRegister(currentInstruction[1].u.operand), getJSConstantForValue(JSValue()));
- ASSERT(operandIsLocal(currentInstruction[1].u.operand));
- m_graph.m_lazyVars.set(VirtualRegister(currentInstruction[1].u.operand).toLocal());
- NEXT_OPCODE(op_init_lazy_reg);
+ case op_create_lexical_environment: {
+ FrozenValue* symbolTable = m_graph.freezeStrong(m_graph.symbolTableFor(currentNodeOrigin().semantic));
+ Node* lexicalEnvironment = addToGraph(CreateActivation, OpInfo(symbolTable), get(VirtualRegister(currentInstruction[2].u.operand)));
+ set(VirtualRegister(currentInstruction[1].u.operand), lexicalEnvironment);
+ set(VirtualRegister(currentInstruction[2].u.operand), lexicalEnvironment);
+ NEXT_OPCODE(op_create_lexical_environment);
}
- case op_create_activation: {
- set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CreateActivation, get(VirtualRegister(currentInstruction[1].u.operand))));
- NEXT_OPCODE(op_create_activation);
+ case op_get_scope: {
+ // Help the later stages a bit by doing some small constant folding here. Note that this
+ // only helps for the first basic block. It's extremely important not to constant fold
+ // loads from the scope register later, as that would prevent the DFG from tracking the
+ // bytecode-level liveness of the scope register.
+ Node* callee = get(VirtualRegister(JSStack::Callee));
+ Node* result;
+ if (JSFunction* function = callee->dynamicCastConstant<JSFunction*>())
+ result = weakJSConstant(function->scope());
+ else
+ result = addToGraph(GetScope, callee);
+ set(VirtualRegister(currentInstruction[1].u.operand), result);
+ NEXT_OPCODE(op_get_scope);
}
- case op_create_arguments: {
- m_graph.m_hasArguments = true;
- Node* createArguments = addToGraph(CreateArguments, get(VirtualRegister(currentInstruction[1].u.operand)));
+ case op_create_direct_arguments: {
+ noticeArgumentsUse();
+ Node* createArguments = addToGraph(CreateDirectArguments);
set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
- set(unmodifiedArgumentsRegister(VirtualRegister(currentInstruction[1].u.operand)), createArguments);
- NEXT_OPCODE(op_create_arguments);
+ NEXT_OPCODE(op_create_direct_arguments);
}
- case op_tear_off_activation: {
- addToGraph(TearOffActivation, get(VirtualRegister(currentInstruction[1].u.operand)));
- NEXT_OPCODE(op_tear_off_activation);
+ case op_create_scoped_arguments: {
+ noticeArgumentsUse();
+ Node* createArguments = addToGraph(CreateScopedArguments, get(VirtualRegister(currentInstruction[2].u.operand)));
+ set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
+ NEXT_OPCODE(op_create_scoped_arguments);
}
- case op_tear_off_arguments: {
- m_graph.m_hasArguments = true;
- addToGraph(TearOffArguments, get(unmodifiedArgumentsRegister(VirtualRegister(currentInstruction[1].u.operand))), get(VirtualRegister(currentInstruction[2].u.operand)));
- NEXT_OPCODE(op_tear_off_arguments);
- }
-
- case op_get_arguments_length: {
- m_graph.m_hasArguments = true;
- set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetMyArgumentsLengthSafe));
- NEXT_OPCODE(op_get_arguments_length);
+ case op_create_out_of_band_arguments: {
+ noticeArgumentsUse();
+ Node* createArguments = addToGraph(CreateClonedArguments);
+ set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
+ NEXT_OPCODE(op_create_out_of_band_arguments);
}
- case op_get_argument_by_val: {
- m_graph.m_hasArguments = true;
+ case op_get_from_arguments: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(
- GetMyArgumentByValSafe, OpInfo(0), OpInfo(getPrediction()),
- get(VirtualRegister(currentInstruction[3].u.operand))));
- NEXT_OPCODE(op_get_argument_by_val);
+ GetFromArguments,
+ OpInfo(currentInstruction[3].u.operand),
+ OpInfo(getPrediction()),
+ get(VirtualRegister(currentInstruction[2].u.operand))));
+ NEXT_OPCODE(op_get_from_arguments);
}
- case op_new_func: {
- if (!currentInstruction[3].u.operand) {
- set(VirtualRegister(currentInstruction[1].u.operand),
- addToGraph(NewFunctionNoCheck, OpInfo(currentInstruction[2].u.operand)));
- } else {
- set(VirtualRegister(currentInstruction[1].u.operand),
- addToGraph(
- NewFunction,
- OpInfo(currentInstruction[2].u.operand),
- get(VirtualRegister(currentInstruction[1].u.operand))));
- }
- NEXT_OPCODE(op_new_func);
+ case op_put_to_arguments: {
+ addToGraph(
+ PutToArguments,
+ OpInfo(currentInstruction[2].u.operand),
+ get(VirtualRegister(currentInstruction[1].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand)));
+ NEXT_OPCODE(op_put_to_arguments);
}
- case op_new_captured_func: {
- Node* function = addToGraph(
- NewFunctionNoCheck, OpInfo(currentInstruction[2].u.operand));
- if (VariableWatchpointSet* set = currentInstruction[3].u.watchpointSet)
- addToGraph(NotifyWrite, OpInfo(set), function);
- set(VirtualRegister(currentInstruction[1].u.operand), function);
- NEXT_OPCODE(op_new_captured_func);
+ case op_new_func: {
+ FunctionExecutable* decl = m_inlineStackTop->m_profiledBlock->functionDecl(currentInstruction[3].u.operand);
+ FrozenValue* frozen = m_graph.freezeStrong(decl);
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(NewFunction, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand))));
+ NEXT_OPCODE(op_new_func);
}
-
+
case op_new_func_exp: {
+ FunctionExecutable* expr = m_inlineStackTop->m_profiledBlock->functionExpr(currentInstruction[3].u.operand);
+ FrozenValue* frozen = m_graph.freezeStrong(expr);
set(VirtualRegister(currentInstruction[1].u.operand),
- addToGraph(NewFunctionExpression, OpInfo(currentInstruction[2].u.operand)));
+ addToGraph(NewFunction, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_new_func_exp);
}
set(VirtualRegister(currentInstruction[1].u.operand), node);
NEXT_OPCODE(op_to_number);
}
-
+
+ case op_to_string: {
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToString, value));
+ NEXT_OPCODE(op_to_string);
+ }
+
case op_in: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(In, get(VirtualRegister(currentInstruction[2].u.operand)), get(VirtualRegister(currentInstruction[3].u.operand))));
NEXT_OPCODE(op_in);
}
+ case op_get_enumerable_length: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumerableLength,
+ get(VirtualRegister(currentInstruction[2].u.operand))));
+ NEXT_OPCODE(op_get_enumerable_length);
+ }
+
+ case op_has_generic_property: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasGenericProperty,
+ get(VirtualRegister(currentInstruction[2].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand))));
+ NEXT_OPCODE(op_has_generic_property);
+ }
+
+ case op_has_structure_property: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasStructureProperty,
+ get(VirtualRegister(currentInstruction[2].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand)),
+ get(VirtualRegister(currentInstruction[4].u.operand))));
+ NEXT_OPCODE(op_has_structure_property);
+ }
+
+ case op_has_indexed_property: {
+ Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
+ ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read);
+ Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
+ Node* hasIterableProperty = addToGraph(HasIndexedProperty, OpInfo(arrayMode.asWord()), base, property);
+ set(VirtualRegister(currentInstruction[1].u.operand), hasIterableProperty);
+ NEXT_OPCODE(op_has_indexed_property);
+ }
+
+ case op_get_direct_pname: {
+ SpeculatedType prediction = getPredictionWithoutOSRExit();
+
+ Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
+ Node* index = get(VirtualRegister(currentInstruction[4].u.operand));
+ Node* enumerator = get(VirtualRegister(currentInstruction[5].u.operand));
+
+ addVarArgChild(base);
+ addVarArgChild(property);
+ addVarArgChild(index);
+ addVarArgChild(enumerator);
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(Node::VarArg, GetDirectPname, OpInfo(0), OpInfo(prediction)));
+
+ NEXT_OPCODE(op_get_direct_pname);
+ }
+
+ case op_get_property_enumerator: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetPropertyEnumerator,
+ get(VirtualRegister(currentInstruction[2].u.operand))));
+ NEXT_OPCODE(op_get_property_enumerator);
+ }
+
+ case op_enumerator_structure_pname: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorStructurePname,
+ get(VirtualRegister(currentInstruction[2].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand))));
+ NEXT_OPCODE(op_enumerator_structure_pname);
+ }
+
+ case op_enumerator_generic_pname: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorGenericPname,
+ get(VirtualRegister(currentInstruction[2].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand))));
+ NEXT_OPCODE(op_enumerator_generic_pname);
+ }
+
+ case op_to_index_string: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToIndexString,
+ get(VirtualRegister(currentInstruction[2].u.operand))));
+ NEXT_OPCODE(op_to_index_string);
+ }
+
default:
// Parse failed! This should not happen because the capabilities checker
// should have caught it.
{
ASSERT(!block->isLinked);
ASSERT(!block->isEmpty());
- Node* node = block->last();
+ Node* node = block->terminal();
ASSERT(node->isTerminal());
switch (node->op()) {
break;
}
-#if !ASSERT_DISABLED
- block->isLinked = true;
-#endif
+ if (verbose)
+ dataLog("Marking ", RawPointer(block), " as linked (actually did linking)\n");
+ block->didLink();
}
void ByteCodeParser::linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets)
{
for (size_t i = 0; i < unlinkedBlocks.size(); ++i) {
+ if (verbose)
+ dataLog("Attempting to link ", RawPointer(unlinkedBlocks[i].m_block), "\n");
if (unlinkedBlocks[i].m_needsNormalLinking) {
+ if (verbose)
+ dataLog(" Does need normal linking.\n");
linkBlock(unlinkedBlocks[i].m_block, possibleTargets);
unlinkedBlocks[i].m_needsNormalLinking = false;
}
for (size_t i = 0; i < m_codeBlock->numberOfIdentifiers(); ++i)
m_identifierMap.add(m_codeBlock->identifier(i).impl(), i);
- for (size_t i = 0; i < m_codeBlock->numberOfConstantRegisters(); ++i) {
- JSValue value = m_codeBlock->getConstant(i + FirstConstantRegisterIndex);
- if (!value)
- m_emptyJSValueIndex = i + FirstConstantRegisterIndex;
- else
- m_jsValueMap.add(JSValue::encode(value), i + FirstConstantRegisterIndex);
- }
m_haveBuiltOperandMaps = true;
}
VirtualRegister returnValueVR,
VirtualRegister inlineCallFrameStart,
int argumentCountIncludingThis,
- CodeSpecializationKind kind)
+ InlineCallFrame::Kind kind)
: m_byteCodeParser(byteCodeParser)
, m_codeBlock(codeBlock)
, m_profiledBlock(profiledBlock)
m_argumentPositions[i] = argumentPosition;
}
- // Track the code-block-global exit sites.
- if (m_exitProfile.hasExitSite(ArgumentsEscaped)) {
- byteCodeParser->m_graph.m_executablesWhoseArgumentsEscaped.add(
- codeBlock->ownerExecutable());
- }
-
if (m_caller) {
// Inline case.
ASSERT(codeBlock != byteCodeParser->m_codeBlock);
ASSERT(callsiteBlockHead);
m_inlineCallFrame = byteCodeParser->m_graph.m_plan.inlineCallFrames->add();
+ byteCodeParser->m_graph.freeze(codeBlock->ownerExecutable());
initializeLazyWriteBarrierForInlineCallFrameExecutable(
byteCodeParser->m_graph.m_plan.writeBarriers,
m_inlineCallFrame->executable,
m_inlineCallFrame,
byteCodeParser->m_codeBlock->ownerExecutable(),
codeBlock->ownerExecutable());
- m_inlineCallFrame->stackOffset = inlineCallFrameStart.offset() - JSStack::CallFrameHeaderSize;
+ m_inlineCallFrame->setStackOffset(inlineCallFrameStart.offset() - JSStack::CallFrameHeaderSize);
if (callee) {
m_inlineCallFrame->calleeRecovery = ValueRecovery::constant(callee);
m_inlineCallFrame->isClosureCall = false;
} else
m_inlineCallFrame->isClosureCall = true;
m_inlineCallFrame->caller = byteCodeParser->currentCodeOrigin();
- m_inlineCallFrame->arguments.resize(argumentCountIncludingThis); // Set the number of arguments including this, but don't configure the value recoveries, yet.
- m_inlineCallFrame->isCall = isCall(kind);
+ m_inlineCallFrame->arguments.resizeToFit(argumentCountIncludingThis); // Set the number of arguments including this, but don't configure the value recoveries, yet.
+ m_inlineCallFrame->kind = kind;
- if (m_inlineCallFrame->caller.inlineCallFrame)
- m_inlineCallFrame->capturedVars = m_inlineCallFrame->caller.inlineCallFrame->capturedVars;
- else {
- for (int i = byteCodeParser->m_codeBlock->m_numVars; i--;) {
- if (byteCodeParser->m_codeBlock->isCaptured(virtualRegisterForLocal(i)))
- m_inlineCallFrame->capturedVars.set(i);
- }
- }
-
- for (int i = argumentCountIncludingThis; i--;) {
- VirtualRegister argument = virtualRegisterForArgument(i);
- if (codeBlock->isCaptured(argument))
- m_inlineCallFrame->capturedVars.set(VirtualRegister(argument.offset() + m_inlineCallFrame->stackOffset).toLocal());
- }
- for (size_t i = codeBlock->m_numVars; i--;) {
- VirtualRegister local = virtualRegisterForLocal(i);
- if (codeBlock->isCaptured(local))
- m_inlineCallFrame->capturedVars.set(VirtualRegister(local.offset() + m_inlineCallFrame->stackOffset).toLocal());
- }
-
byteCodeParser->buildOperandMapsIfNecessary();
m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
- m_constantRemap.resize(codeBlock->numberOfConstantRegisters());
m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers());
m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables());
for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i) {
- StringImpl* rep = codeBlock->identifier(i).impl();
+ UniquedStringImpl* rep = codeBlock->identifier(i).impl();
BorrowedIdentifierMap::AddResult result = byteCodeParser->m_identifierMap.add(rep, byteCodeParser->m_graph.identifiers().numberOfIdentifiers());
if (result.isNewEntry)
byteCodeParser->m_graph.identifiers().addLazily(rep);
m_identifierRemap[i] = result.iterator->value;
}
- for (size_t i = 0; i < codeBlock->numberOfConstantRegisters(); ++i) {
- JSValue value = codeBlock->getConstant(i + FirstConstantRegisterIndex);
- if (!value) {
- if (byteCodeParser->m_emptyJSValueIndex == UINT_MAX) {
- byteCodeParser->m_emptyJSValueIndex = byteCodeParser->m_codeBlock->numberOfConstantRegisters() + FirstConstantRegisterIndex;
- byteCodeParser->addConstant(JSValue());
- byteCodeParser->m_constants.append(ConstantRecord());
- }
- m_constantRemap[i] = byteCodeParser->m_emptyJSValueIndex;
- continue;
- }
- JSValueMap::AddResult result = byteCodeParser->m_jsValueMap.add(JSValue::encode(value), byteCodeParser->m_codeBlock->numberOfConstantRegisters() + FirstConstantRegisterIndex);
- if (result.isNewEntry) {
- byteCodeParser->addConstant(value);
- byteCodeParser->m_constants.append(ConstantRecord());
- }
- m_constantRemap[i] = result.iterator->value;
- }
for (unsigned i = 0; i < codeBlock->numberOfConstantBuffers(); ++i) {
// If we inline the same code block multiple times, we don't want to needlessly
// duplicate its constant buffers.
m_inlineCallFrame = 0;
m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
- m_constantRemap.resize(codeBlock->numberOfConstantRegisters());
m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers());
m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables());
for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i)
m_identifierRemap[i] = i;
- for (size_t i = 0; i < codeBlock->numberOfConstantRegisters(); ++i)
- m_constantRemap[i] = i + FirstConstantRegisterIndex;
for (size_t i = 0; i < codeBlock->numberOfConstantBuffers(); ++i)
m_constantBufferRemap[i] = i;
for (size_t i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i)
m_callsiteBlockHeadNeedsLinking = false;
}
- for (size_t i = 0; i < m_constantRemap.size(); ++i)
- ASSERT(m_constantRemap[i] >= static_cast<unsigned>(FirstConstantRegisterIndex));
-
byteCodeParser->m_inlineStackTop = this;
}
void ByteCodeParser::parseCodeBlock()
{
+ clearCaches();
+
CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock;
if (m_graph.compilation()) {
*m_vm->m_perBytecodeProfiler, m_inlineStackTop->m_profiledBlock);
}
- bool shouldDumpBytecode = Options::dumpBytecodeAtDFGTime();
- if (shouldDumpBytecode) {
+ if (UNLIKELY(Options::dumpSourceAtDFGTime())) {
+ Vector<DeferredSourceDump>& deferredSourceDump = m_graph.m_plan.callback->ensureDeferredSourceDump();
+ if (inlineCallFrame()) {
+ DeferredSourceDump dump(codeBlock->baselineVersion(), m_codeBlock, JITCode::DFGJIT, inlineCallFrame()->caller);
+ deferredSourceDump.append(dump);
+ } else
+ deferredSourceDump.append(DeferredSourceDump(codeBlock->baselineVersion()));
+ }
+
+ if (Options::dumpBytecodeAtDFGTime()) {
dataLog("Parsing ", *codeBlock);
if (inlineCallFrame()) {
dataLog(
" ", inlineCallFrame()->caller);
}
dataLog(
- ": captureCount = ", codeBlock->symbolTable() ? codeBlock->symbolTable()->captureCount() : 0,
- ", needsActivation = ", codeBlock->needsActivation(),
+ ": needsActivation = ", codeBlock->needsActivation(),
", isStrictMode = ", codeBlock->ownerExecutable()->isStrictMode(), "\n");
codeBlock->baselineVersion()->dumpBytecode();
}
// 2) If the bytecodeBegin is equal to the currentIndex, then we failed to do
// a peephole coalescing of this block in the if statement above. So, we're
// generating suboptimal code and leaving more work for the CFG simplifier.
- ASSERT(m_inlineStackTop->m_unlinkedBlocks.isEmpty() || m_inlineStackTop->m_unlinkedBlocks.last().m_block->bytecodeBegin < m_currentIndex);
+ if (!m_inlineStackTop->m_unlinkedBlocks.isEmpty()) {
+ unsigned lastBegin =
+ m_inlineStackTop->m_unlinkedBlocks.last().m_block->bytecodeBegin;
+ ASSERT_UNUSED(
+ lastBegin, lastBegin == UINT_MAX || lastBegin < m_currentIndex);
+ }
m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(block.get()));
m_inlineStackTop->m_blockLinkingTargets.append(block.get());
// The first block is definitely an OSR target.
// are at the end of an inline function, or we realized that we
// should stop parsing because there was a return in the first
// basic block.
- ASSERT(m_currentBlock->isEmpty() || m_currentBlock->last()->isTerminal() || (m_currentIndex == codeBlock->instructions().size() && inlineCallFrame()) || !shouldContinueParsing);
+ ASSERT(m_currentBlock->isEmpty() || m_currentBlock->terminal() || (m_currentIndex == codeBlock->instructions().size() && inlineCallFrame()) || !shouldContinueParsing);
- if (!shouldContinueParsing)
+ if (!shouldContinueParsing) {
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog("Done parsing ", *codeBlock, "\n");
return;
+ }
m_currentBlock = 0;
} while (m_currentIndex < limit);
// Should have reached the end of the instructions.
ASSERT(m_currentIndex == codeBlock->instructions().size());
+
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog("Done parsing ", *codeBlock, " (fell off end)\n");
}
bool ByteCodeParser::parse()
m_dfgCodeBlock->getStubInfoMap(m_dfgStubInfos);
}
- if (m_codeBlock->captureCount()) {
- SymbolTable* symbolTable = m_codeBlock->symbolTable();
- ConcurrentJITLocker locker(symbolTable->m_lock);
- SymbolTable::Map::iterator iter = symbolTable->begin(locker);
- SymbolTable::Map::iterator end = symbolTable->end(locker);
- for (; iter != end; ++iter) {
- VariableWatchpointSet* set = iter->value.watchpointSet();
- if (!set)
- continue;
- size_t index = static_cast<size_t>(VirtualRegister(iter->value.getIndex()).toLocal());
- while (m_localWatchpoints.size() <= index)
- m_localWatchpoints.append(nullptr);
- m_localWatchpoints[index] = set;
- }
- }
-
InlineStackEntry inlineStackEntry(
this, m_codeBlock, m_profiledBlock, 0, 0, VirtualRegister(), VirtualRegister(),
- m_codeBlock->numParameters(), CodeForCall);
+ m_codeBlock->numParameters(), InlineCallFrame::Call);
parseCodeBlock();