#include "JIT.h"
#include "CodeBlock.h"
-#include "JITInlineMethods.h"
-#include "JITStubCall.h"
+#include "JITInlines.h"
+#include "JITOperations.h"
#include "JITStubs.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "Interpreter.h"
+#include "JSCInlines.h"
#include "ResultType.h"
#include "SamplingTool.h"
+#include "SlowPathCall.h"
-#ifndef NDEBUG
-#include <stdio.h>
-#endif
-
-using namespace std;
namespace JSC {
void JIT::emit_op_jless(Instruction* currentInstruction)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jless, op1, op2, target, LessThan);
void JIT::emit_op_jlesseq(Instruction* currentInstruction)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual);
void JIT::emit_op_jgreater(Instruction* currentInstruction)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan);
void JIT::emit_op_jgreatereq(Instruction* currentInstruction)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual);
void JIT::emit_op_jnless(Instruction* currentInstruction)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual);
void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan);
void JIT::emit_op_jngreater(Instruction* currentInstruction)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual);
void JIT::emit_op_jngreatereq(Instruction* currentInstruction)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan);
void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
- emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, cti_op_jless, false, iter);
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, operationCompareLess, false, iter);
}
void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
- emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, cti_op_jlesseq, false, iter);
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, operationCompareLessEq, false, iter);
}
void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
- emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, cti_op_jgreater, false, iter);
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, operationCompareGreater, false, iter);
}
void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
- emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, cti_op_jgreatereq, false, iter);
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, operationCompareGreaterEq, false, iter);
}
void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
- emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, cti_op_jless, true, iter);
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, operationCompareLess, true, iter);
}
void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
- emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, cti_op_jlesseq, true, iter);
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, operationCompareLessEq, true, iter);
}
void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
- emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, cti_op_jgreater, true, iter);
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, operationCompareGreater, true, iter);
}
void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
- emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, cti_op_jgreatereq, true, iter);
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, operationCompareGreaterEq, true, iter);
}
#if USE(JSVALUE64)
void JIT::emit_op_negate(Instruction* currentInstruction)
{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned src = currentInstruction[2].u.operand;
+ int dst = currentInstruction[1].u.operand;
+ int src = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
srcNotInt.link(this);
emitJumpSlowCaseIfNotImmediateNumber(regT0);
- move(TrustedImmPtr(reinterpret_cast<void*>(0x8000000000000000ull)), regT1);
- xorPtr(regT1, regT0);
+ move(TrustedImm64((int64_t)0x8000000000000000ull), regT1);
+ xor64(regT1, regT0);
end.link(this);
emitPutVirtualRegister(dst);
void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned dst = currentInstruction[1].u.operand;
-
linkSlowCase(iter); // 0x7fffffff check
linkSlowCase(iter); // double check
- JITStubCall stubCall(this, cti_op_negate);
- stubCall.addArgument(regT1, regT0);
- stubCall.call(dst);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_negate);
+ slowPathCall.call();
}
void JIT::emit_op_lshift(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
emitGetVirtualRegisters(op1, regT0, op2, regT2);
// FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent.
void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
- UNUSED_PARAM(op1);
- UNUSED_PARAM(op2);
linkSlowCase(iter);
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_lshift);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT2);
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_lshift);
+ slowPathCall.call();
}
void JIT::emit_op_rshift(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
// isOperandConstantImmediateInt(op2) => 1 SlowCase
Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
// supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
addSlowCase(emitJumpIfNotImmediateNumber(regT0));
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
lhsIsInt.link(this);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
- JITStubCall stubCall(this, cti_op_rshift);
+ int op2 = currentInstruction[3].u.operand;
- if (isOperandConstantImmediateInt(op2)) {
+ if (isOperandConstantImmediateInt(op2))
linkSlowCase(iter);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- } else {
+
+ else {
if (supportsFloatingPointTruncate()) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
- // We're reloading op1 to regT0 as we can no longer guarantee that
- // we have not munged the operand. It may have already been shifted
- // correctly, but it still will not have been tagged.
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(regT2);
} else {
linkSlowCase(iter);
linkSlowCase(iter);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT2);
}
}
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_rshift);
+ slowPathCall.call();
}
void JIT::emit_op_urshift(Instruction* currentInstruction)
{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
- // Slow case of urshift makes assumptions about what registers hold the
- // shift arguments, so any changes must be updated there as well.
if (isOperandConstantImmediateInt(op2)) {
+ // isOperandConstantImmediateInt(op2) => 1 SlowCase
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitFastArithImmToInt(regT0);
- int shift = getConstantOperand(op2).asInt32();
- if (shift)
- urshift32(Imm32(shift & 0x1f), regT0);
- // unsigned shift < 0 or shift = k*2^32 may result in (essentially)
- // a toUint conversion, which can result in a value we can represent
- // as an immediate int.
- if (shift < 0 || !(shift & 31))
- addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(dst, regT0);
- return;
+ // Mask with 0x1f as per ecma-262 11.7.2 step 7.
+ urshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
+ } else {
+ emitGetVirtualRegisters(op1, regT0, op2, regT2);
+ if (supportsFloatingPointTruncate()) {
+ Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
+ // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
+ addSlowCase(emitJumpIfNotImmediateNumber(regT0));
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
+ addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+ lhsIsInt.link(this);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+ } else {
+ // !supportsFloatingPoint() => 2 SlowCases
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+ }
+ emitFastArithImmToInt(regT2);
+ urshift32(regT2, regT0);
}
- emitGetVirtualRegisters(op1, regT0, op2, regT1);
- if (!isOperandConstantImmediateInt(op1))
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
- emitFastArithImmToInt(regT0);
- emitFastArithImmToInt(regT1);
- urshift32(regT1, regT0);
- addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(dst, regT0);
+ emitFastArithIntToImmNoCheck(regT0, regT0);
+ emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
- if (isOperandConstantImmediateInt(op2)) {
- int shift = getConstantOperand(op2).asInt32();
- // op1 = regT0
- linkSlowCase(iter); // int32 check
+ int op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter);
+
+ else {
if (supportsFloatingPointTruncate()) {
- JumpList failures;
- failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
- failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
- if (shift)
- urshift32(Imm32(shift & 0x1f), regT0);
- if (shift < 0 || !(shift & 31))
- failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(dst, regT0);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
- failures.link(this);
- }
- if (shift < 0 || !(shift & 31))
- linkSlowCase(iter); // failed to box in hot path
- } else {
- // op1 = regT0
- // op2 = regT1
- if (!isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter); // int32 check -- op1 is not an int
- if (supportsFloatingPointTruncate()) {
- JumpList failures;
- failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
- failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
- failures.append(emitJumpIfNotImmediateInteger(regT1)); // op2 is not an int
- emitFastArithImmToInt(regT1);
- urshift32(regT1, regT0);
- failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(dst, regT0);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
- failures.link(this);
- }
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ } else {
+ linkSlowCase(iter);
+ linkSlowCase(iter);
}
-
- linkSlowCase(iter); // int32 check - op2 is not an int
- linkSlowCase(iter); // Can't represent unsigned result as an immediate
}
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_urshift);
+ slowPathCall.call();
+}
+
+void JIT::emit_op_unsigned(Instruction* currentInstruction)
+{
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
+ emitFastArithReTagImmediate(regT0, regT0);
+ emitPutVirtualRegister(result, regT0);
+}
+
+void JIT::emitSlow_op_unsigned(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ linkSlowCase(iter);
+ linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_urshift);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call(dst);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_unsigned);
+ slowPathCall.call();
}
-void JIT::emit_compareAndJump(OpcodeID, unsigned op1, unsigned op2, unsigned target, RelationalCondition condition)
+void JIT::emit_compareAndJump(OpcodeID, int op1, int op2, unsigned target, RelationalCondition condition)
{
// We generate inline code for the following cases in the fast path:
// - int immediate to constant int immediate
}
}
-void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition condition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emit_compareAndJumpSlow(int op1, int op2, unsigned target, DoubleCondition condition, size_t (JIT_OPERATION *operation)(ExecState*, EncodedJSValue, EncodedJSValue), bool invert, Vector<SlowCaseEntry>::iterator& iter)
{
COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless);
COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
- JITStubCall stubCall(this, stub);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
+
+ emitGetVirtualRegister(op1, argumentGPR0);
+ emitGetVirtualRegister(op2, argumentGPR1);
+ callOperation(operation, argumentGPR0, argumentGPR1);
+ emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
return;
}
if (supportsFloatingPoint()) {
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
int32_t op2imm = getConstantOperand(op2).asInt32();
fail1.link(this);
}
- JITStubCall stubCall(this, stub);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
-
+ emitGetVirtualRegister(op2, regT1);
+ callOperation(operation, regT0, regT1);
+ emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
} else if (isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT1, fpRegT1);
int32_t op1imm = getConstantOperand(op1).asInt32();
fail1.link(this);
}
- JITStubCall stubCall(this, stub);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
+ emitGetVirtualRegister(op1, regT2);
+ callOperation(operation, regT2, regT1);
+ emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
} else {
linkSlowCase(iter);
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
Jump fail3 = emitJumpIfImmediateInteger(regT1);
- addPtr(tagTypeNumberRegister, regT0);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT0, fpRegT0);
- movePtrToDouble(regT1, fpRegT1);
+ add64(tagTypeNumberRegister, regT0);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT0, fpRegT0);
+ move64ToDouble(regT1, fpRegT1);
emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
}
linkSlowCase(iter);
- JITStubCall stubCall(this, stub);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
+ callOperation(operation, regT0, regT1);
+ emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
}
}
void JIT::emit_op_bitand(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
int32_t imm = getConstantOperandImmediateInt(op1);
- andPtr(Imm32(imm), regT0);
+ and64(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
int32_t imm = getConstantOperandImmediateInt(op2);
- andPtr(Imm32(imm), regT0);
+ and64(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
- andPtr(regT1, regT0);
+ and64(regT1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
}
emitPutVirtualRegister(result);
void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
linkSlowCase(iter);
- if (isOperandConstantImmediateInt(op1)) {
- JITStubCall stubCall(this, cti_op_bitand);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT0);
- stubCall.call(result);
- } else if (isOperandConstantImmediateInt(op2)) {
- JITStubCall stubCall(this, cti_op_bitand);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
- } else {
- JITStubCall stubCall(this, cti_op_bitand);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call(result);
- }
-}
-
-void JIT::emit_op_post_inc(Instruction* currentInstruction)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- emitGetVirtualRegister(srcDst, regT0);
- move(regT0, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT1));
- emitFastArithIntToImmNoCheck(regT1, regT1);
- emitPutVirtualRegister(srcDst, regT1);
- emitPutVirtualRegister(result);
-}
-void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_post_inc);
- stubCall.addArgument(regT0);
- stubCall.addArgument(Imm32(srcDst));
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitand);
+ slowPathCall.call();
}
-void JIT::emit_op_post_dec(Instruction* currentInstruction)
+void JIT::emit_op_inc(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- emitGetVirtualRegister(srcDst, regT0);
- move(regT0, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT1));
- emitFastArithIntToImmNoCheck(regT1, regT1);
- emitPutVirtualRegister(srcDst, regT1);
- emitPutVirtualRegister(result);
-}
-
-void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_post_dec);
- stubCall.addArgument(regT0);
- stubCall.addArgument(Imm32(srcDst));
- stubCall.call(result);
-}
-
-void JIT::emit_op_pre_inc(Instruction* currentInstruction)
-{
- unsigned srcDst = currentInstruction[1].u.operand;
+ int srcDst = currentInstruction[1].u.operand;
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitPutVirtualRegister(srcDst);
}
-void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned srcDst = currentInstruction[1].u.operand;
-
- Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
- emitGetVirtualRegister(srcDst, regT0);
- notImm.link(this);
- JITStubCall stubCall(this, cti_op_pre_inc);
- stubCall.addArgument(regT0);
- stubCall.call(srcDst);
+ linkSlowCase(iter);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_inc);
+ slowPathCall.call();
}
-void JIT::emit_op_pre_dec(Instruction* currentInstruction)
+void JIT::emit_op_dec(Instruction* currentInstruction)
{
- unsigned srcDst = currentInstruction[1].u.operand;
+ int srcDst = currentInstruction[1].u.operand;
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitPutVirtualRegister(srcDst);
}
-void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned srcDst = currentInstruction[1].u.operand;
-
- Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
- emitGetVirtualRegister(srcDst, regT0);
- notImm.link(this);
- JITStubCall stubCall(this, cti_op_pre_dec);
- stubCall.addArgument(regT0);
- stubCall.call(srcDst);
+ linkSlowCase(iter);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_dec);
+ slowPathCall.call();
}
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
void JIT::emit_op_mod(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
// Make sure registers are correct for x86 IDIV instructions.
ASSERT(regT0 == X86Registers::eax);
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
-
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(regT3);
- stubCall.addArgument(regT2);
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod);
+ slowPathCall.call();
}
#else // CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
- JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod);
+ slowPathCall.call();
}
-void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&)
{
- ASSERT_NOT_REACHED();
+ UNREACHABLE_FOR_PLATFORM();
}
#endif // CPU(X86) || CPU(X86_64)
/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
-void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes)
+void JIT::compileBinaryArithOp(OpcodeID opcodeID, int, int op1, int op2, OperandTypes)
{
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
-#if ENABLE(VALUE_PROFILER)
RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
-#endif
if (opcodeID == op_add)
addSlowCase(branchAdd32(Overflow, regT1, regT0));
else if (opcodeID == op_sub)
addSlowCase(branchSub32(Overflow, regT1, regT0));
else {
ASSERT(opcodeID == op_mul);
-#if ENABLE(VALUE_PROFILER)
- if (m_canBeOptimized) {
+ if (shouldEmitProfiling()) {
// We want to be able to measure if this is taking the slow case just
// because of negative zero. If this produces positive zero, then we
// don't want the slow case to be taken because that will throw off
addSlowCase(branchMul32(Overflow, regT1, regT0));
addSlowCase(branchTest32(Zero, regT0));
}
-#else
- addSlowCase(branchMul32(Overflow, regT1, regT0));
- addSlowCase(branchTest32(Zero, regT0));
-#endif
}
emitFastArithIntToImmNoCheck(regT0, regT0);
}
-void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
+void JIT::compileBinaryArithOpSlowCase(Instruction* currentInstruction, OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, int result, int op1, int op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
{
// We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset.
COMPILE_ASSERT(((TagTypeNumber + DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare.
if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number.
linkSlowCase(iter);
- emitGetVirtualRegister(op1, regT0);
Label stubFunctionCall(this);
- JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
- if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) {
- emitGetVirtualRegister(op1, regT0);
- emitGetVirtualRegister(op2, regT1);
- }
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call(result);
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, opcodeID == op_add ? slow_path_add : opcodeID == op_sub ? slow_path_sub : slow_path_mul);
+ slowPathCall.call();
Jump end = jump();
if (op1HasImmediateIntFastCase) {
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
emitGetVirtualRegister(op1, regT1);
convertInt32ToDouble(regT1, fpRegT1);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT2);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT2);
} else if (op2HasImmediateIntFastCase) {
notImm1.link(this);
if (!types.first().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
emitGetVirtualRegister(op2, regT1);
convertInt32ToDouble(regT1, fpRegT1);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT2);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT2);
} else {
// if we get here, eax is not an int32, edx not yet checked.
notImm1.link(this);
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
if (!types.second().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT1);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT1);
Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1);
convertInt32ToDouble(regT1, fpRegT2);
Jump op2wasInteger = jump();
emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
convertInt32ToDouble(regT0, fpRegT1);
op2isDouble.link(this);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT2);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT1, fpRegT2);
op2wasInteger.link(this);
}
ASSERT(opcodeID == op_div);
divDouble(fpRegT2, fpRegT1);
}
- moveDoubleToPtr(fpRegT1, regT0);
- subPtr(tagTypeNumberRegister, regT0);
+ moveDoubleTo64(fpRegT1, regT0);
+ sub64(tagTypeNumberRegister, regT0);
emitPutVirtualRegister(result, regT0);
end.link(this);
void JIT::emit_op_add(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
addSlowCase();
- JITStubCall stubCall(this, cti_op_add);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_add);
+ slowPathCall.call();
return;
}
void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
- compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+ compileBinaryArithOpSlowCase(currentInstruction, op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_mul(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
// For now, only plant a fast int case if the constant operand is greater than zero.
int32_t value;
if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
-#if ENABLE(VALUE_PROFILER)
// Add a special fast case profile because the DFG JIT will expect one.
m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
-#endif
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
emitFastArithReTagImmediate(regT1, regT0);
} else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
-#if ENABLE(VALUE_PROFILER)
// Add a special fast case profile because the DFG JIT will expect one.
m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
-#endif
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0;
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0;
- compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+ compileBinaryArithOpSlowCase(currentInstruction, op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_div(Instruction* currentInstruction)
{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (isOperandConstantImmediateDouble(op1)) {
emitGetVirtualRegister(op1, regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
} else if (isOperandConstantImmediateInt(op1)) {
emitLoadInt32ToDouble(op1, fpRegT0);
} else {
convertInt32ToDouble(regT0, fpRegT0);
Jump skipDoubleLoad = jump();
notInt.link(this);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
skipDoubleLoad.link(this);
}
if (isOperandConstantImmediateDouble(op2)) {
emitGetVirtualRegister(op2, regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT1, fpRegT1);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoadInt32ToDouble(op2, fpRegT1);
} else {
convertInt32ToDouble(regT1, fpRegT1);
Jump skipDoubleLoad = jump();
notInt.link(this);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT1, fpRegT1);
skipDoubleLoad.link(this);
}
divDouble(fpRegT1, fpRegT0);
-#if ENABLE(VALUE_PROFILER)
// Is the result actually an integer? The DFG JIT would really like to know. If it's
// not an integer, we increment a count. If this together with the slow case counter
// are below threshold then the DFG JIT will compile this division with a specualtion
// access). So if we are DFG compiling anything in the program, we want this code to
// ensure that it produces integers whenever possible.
- // FIXME: This will fail to convert to integer if the result is zero. We should
- // distinguish between positive zero and negative zero here.
-
JumpList notInteger;
branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1);
// If we've got an integer, we might as well make that the result of the division.
emitFastArithReTagImmediate(regT0, regT0);
Jump isInteger = jump();
notInteger.link(this);
+ moveDoubleTo64(fpRegT0, regT0);
+ Jump doubleZero = branchTest64(Zero, regT0);
add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter));
- moveDoubleToPtr(fpRegT0, regT0);
- subPtr(tagTypeNumberRegister, regT0);
+ sub64(tagTypeNumberRegister, regT0);
+ Jump trueDouble = jump();
+ doubleZero.link(this);
+ move(tagTypeNumberRegister, regT0);
+ trueDouble.link(this);
isInteger.link(this);
-#else
- // Double result.
- moveDoubleToPtr(fpRegT0, regT0);
- subPtr(tagTypeNumberRegister, regT0);
-#endif
emitPutVirtualRegister(dst, regT0);
}
void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) {
-#ifndef NDEBUG
- breakpoint();
-#endif
+ if (!ASSERT_DISABLED)
+ abortWithReason(JITDivOperandsAreNotNumbers);
return;
}
if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
}
// There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
- JITStubCall stubCall(this, cti_op_div);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_div);
+ slowPathCall.call();
}
void JIT::emit_op_sub(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
compileBinaryArithOp(op_sub, result, op1, op2, types);
void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false);
+ compileBinaryArithOpSlowCase(currentInstruction, op_sub, iter, result, op1, op2, types, false, false);
}
/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */