/*
- * Copyright (C) 2011 Apple Inc. All rights reserved.
+ * Copyright (C) 2011, 2013, 2014 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
#if ENABLE(DFG_JIT) && USE(JSVALUE64)
#include "DFGOperations.h"
+#include "DFGOSRExitCompilerCommon.h"
+#include "DFGSpeculativeJIT.h"
+#include "JSCInlines.h"
+#include "VirtualRegister.h"
+
+#include <wtf/DataLog.h>
namespace JSC { namespace DFG {
-void OSRExitCompiler::compileExit(const OSRExit& exit, SpeculationRecovery* recovery)
+void OSRExitCompiler::compileExit(const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery)
{
+ m_jit.jitAssertTagsInPlace();
+
// 1) Pro-forma stuff.
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLog("OSR exit for Node @%d (", (int)exit.m_nodeIndex);
- for (CodeOrigin codeOrigin = exit.m_codeOrigin; ; codeOrigin = codeOrigin.inlineCallFrame->caller) {
- dataLog("bc#%u", codeOrigin.bytecodeIndex);
- if (!codeOrigin.inlineCallFrame)
- break;
- dataLog(" -> %p ", codeOrigin.inlineCallFrame->executable.get());
+ if (Options::printEachOSRExit()) {
+ SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
+ debugInfo->codeBlock = m_jit.codeBlock();
+ debugInfo->kind = exit.m_kind;
+ debugInfo->bytecodeOffset = exit.m_codeOrigin.bytecodeIndex;
+
+ m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo);
}
- dataLog(") ");
- exit.dump(WTF::dataFile());
-#endif
-#if DFG_ENABLE(VERBOSE_SPECULATION_FAILURE)
- SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
- debugInfo->codeBlock = m_jit.codeBlock();
- debugInfo->nodeIndex = exit.m_nodeIndex;
- m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo);
-#endif
-
-#if DFG_ENABLE(JIT_BREAK_ON_SPECULATION_FAILURE)
- m_jit.breakpoint();
-#endif
-
-#if DFG_ENABLE(SUCCESS_STATS)
- static SamplingCounter counter("SpeculationFailure");
- m_jit.emitCount(counter);
-#endif
+ // Need to ensure that the stack pointer accounts for the worst-case stack usage at exit.
+ m_jit.addPtr(
+ CCallHelpers::TrustedImm32(
+ -m_jit.codeBlock()->jitCode()->dfgCommon()->requiredRegisterCountForExit * sizeof(Register)),
+ CCallHelpers::framePointerRegister, CCallHelpers::stackPointerRegister);
// 2) Perform speculation recovery. This only comes into play when an operation
// starts mutating state before verifying the speculation it has already made.
- GPRReg alreadyBoxed = InvalidGPRReg;
-
if (recovery) {
switch (recovery->type()) {
case SpeculativeAdd:
m_jit.sub32(recovery->src(), recovery->dest());
- m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery->dest());
- alreadyBoxed = recovery->dest();
+ m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery->dest());
break;
case BooleanSpeculationCheck:
- m_jit.xorPtr(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse)), recovery->dest());
+ m_jit.xor64(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse)), recovery->dest());
break;
default:
}
}
- // 3) Refine some value profile, if appropriate.
-
- if (!!exit.m_jsValueSource && !!exit.m_valueProfile) {
- EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0);
-
-#if DFG_ENABLE(VERBOSE_SPECULATION_FAILURE)
- dataLog(" (have exit profile, bucket %p) ", bucket);
-#endif
-
- if (exit.m_jsValueSource.isAddress()) {
- // We can't be sure that we have a spare register. So use the tagTypeNumberRegister,
- // since we know how to restore it.
- m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister);
- m_jit.storePtr(GPRInfo::tagTypeNumberRegister, bucket);
- m_jit.move(AssemblyHelpers::TrustedImmPtr(bitwise_cast<void*>(TagTypeNumber)), GPRInfo::tagTypeNumberRegister);
- } else
- m_jit.storePtr(exit.m_jsValueSource.gpr(), bucket);
- }
-
- // 4) Figure out how many scratch slots we'll need. We need one for every GPR/FPR
- // whose destination is now occupied by a DFG virtual register, and we need
- // one for every displaced virtual register if there are more than
- // GPRInfo::numberOfRegisters of them. Also see if there are any constants,
- // any undefined slots, any FPR slots, and any unboxed ints.
+ // 3) Refine some array and/or value profile, if appropriate.
+
+ if (!!exit.m_jsValueSource) {
+ if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
+ // If the instruction that this originated from has an array profile, then
+ // refine it. If it doesn't, then do nothing. The latter could happen for
+ // hoisted checks, or checks emitted for operations that didn't have array
+ // profiling - either ops that aren't array accesses at all, or weren't
+ // known to be array acceses in the bytecode. The latter case is a FIXME
+ // while the former case is an outcome of a CheckStructure not knowing why
+ // it was emitted (could be either due to an inline cache of a property
+ // property access, or due to an array profile).
- Vector<bool> poisonedVirtualRegisters(exit.m_variables.size());
- for (unsigned i = 0; i < poisonedVirtualRegisters.size(); ++i)
- poisonedVirtualRegisters[i] = false;
-
- unsigned numberOfPoisonedVirtualRegisters = 0;
- unsigned numberOfDisplacedVirtualRegisters = 0;
-
- // Booleans for fast checks. We expect that most OSR exits do not have to rebox
- // Int32s, have no FPRs, and have no constants. If there are constants, we
- // expect most of them to be jsUndefined(); if that's true then we handle that
- // specially to minimize code size and execution time.
- bool haveUnboxedInt32s = false;
- bool haveUnboxedDoubles = false;
- bool haveFPRs = false;
- bool haveConstants = false;
- bool haveUndefined = false;
- bool haveUInt32s = false;
-
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- switch (recovery.technique()) {
- case Int32DisplacedInRegisterFile:
- case DoubleDisplacedInRegisterFile:
- case DisplacedInRegisterFile:
- numberOfDisplacedVirtualRegisters++;
- ASSERT((int)recovery.virtualRegister() >= 0);
-
- // See if we might like to store to this virtual register before doing
- // virtual register shuffling. If so, we say that the virtual register
- // is poisoned: it cannot be stored to until after displaced virtual
- // registers are handled. We track poisoned virtual register carefully
- // to ensure this happens efficiently. Note that we expect this case
- // to be rare, so the handling of it is optimized for the cases in
- // which it does not happen.
- if (recovery.virtualRegister() < (int)exit.m_variables.size()) {
- switch (exit.m_variables[recovery.virtualRegister()].technique()) {
- case InGPR:
- case UnboxedInt32InGPR:
- case UInt32InGPR:
- case InFPR:
- if (!poisonedVirtualRegisters[recovery.virtualRegister()]) {
- poisonedVirtualRegisters[recovery.virtualRegister()] = true;
- numberOfPoisonedVirtualRegisters++;
- }
- break;
- default:
- break;
- }
- }
- break;
-
- case UnboxedInt32InGPR:
- case AlreadyInRegisterFileAsUnboxedInt32:
- haveUnboxedInt32s = true;
- break;
-
- case AlreadyInRegisterFileAsUnboxedDouble:
- haveUnboxedDoubles = true;
- break;
-
- case UInt32InGPR:
- haveUInt32s = true;
- break;
-
- case InFPR:
- haveFPRs = true;
- break;
-
- case Constant:
- haveConstants = true;
- if (recovery.constant().isUndefined())
- haveUndefined = true;
- break;
-
- default:
- break;
- }
- }
-
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLog(" ");
- if (numberOfPoisonedVirtualRegisters)
- dataLog("Poisoned=%u ", numberOfPoisonedVirtualRegisters);
- if (numberOfDisplacedVirtualRegisters)
- dataLog("Displaced=%u ", numberOfDisplacedVirtualRegisters);
- if (haveUnboxedInt32s)
- dataLog("UnboxedInt32 ");
- if (haveUnboxedDoubles)
- dataLog("UnboxedDoubles ");
- if (haveUInt32s)
- dataLog("UInt32 ");
- if (haveFPRs)
- dataLog("FPR ");
- if (haveConstants)
- dataLog("Constants ");
- if (haveUndefined)
- dataLog("Undefined ");
- dataLog(" ");
-#endif
-
- ScratchBuffer* scratchBuffer = m_jit.globalData()->scratchBufferForSize(sizeof(EncodedJSValue) * std::max(haveUInt32s ? 2u : 0u, numberOfPoisonedVirtualRegisters + (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters ? 0 : numberOfDisplacedVirtualRegisters)));
- EncodedJSValue* scratchDataBuffer = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
-
- // From here on, the code assumes that it is profitable to maximize the distance
- // between when something is computed and when it is stored.
-
- // 5) Perform all reboxing of integers.
-
- if (haveUnboxedInt32s || haveUInt32s) {
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- switch (recovery.technique()) {
- case UnboxedInt32InGPR:
- if (recovery.gpr() != alreadyBoxed)
- m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery.gpr());
- break;
-
- case AlreadyInRegisterFileAsUnboxedInt32:
- m_jit.store32(AssemblyHelpers::TrustedImm32(static_cast<uint32_t>(TagTypeNumber >> 32)), AssemblyHelpers::tagFor(static_cast<VirtualRegister>(exit.operandForIndex(index))));
- break;
+ CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
+ if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
+ GPRReg usedRegister;
+ if (exit.m_jsValueSource.isAddress())
+ usedRegister = exit.m_jsValueSource.base();
+ else
+ usedRegister = exit.m_jsValueSource.gpr();
- case UInt32InGPR: {
- // This occurs when the speculative JIT left an unsigned 32-bit integer
- // in a GPR. If it's positive, we can just box the int. Otherwise we
- // need to turn it into a boxed double.
+ GPRReg scratch1;
+ GPRReg scratch2;
+ scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister);
+ scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister, scratch1);
- // We don't try to be clever with register allocation here; we assume
- // that the program is using FPRs and we don't try to figure out which
- // ones it is using. Instead just temporarily save fpRegT0 and then
- // restore it. This makes sense because this path is not cheap to begin
- // with, and should happen very rarely.
-
- GPRReg addressGPR = GPRInfo::regT0;
- if (addressGPR == recovery.gpr())
- addressGPR = GPRInfo::regT1;
-
- m_jit.storePtr(addressGPR, scratchDataBuffer);
- m_jit.move(AssemblyHelpers::TrustedImmPtr(scratchDataBuffer + 1), addressGPR);
- m_jit.storeDouble(FPRInfo::fpRegT0, addressGPR);
-
- AssemblyHelpers::Jump positive = m_jit.branch32(AssemblyHelpers::GreaterThanOrEqual, recovery.gpr(), AssemblyHelpers::TrustedImm32(0));
-
- m_jit.convertInt32ToDouble(recovery.gpr(), FPRInfo::fpRegT0);
- m_jit.addDouble(AssemblyHelpers::AbsoluteAddress(&AssemblyHelpers::twoToThe32), FPRInfo::fpRegT0);
- m_jit.boxDouble(FPRInfo::fpRegT0, recovery.gpr());
-
- AssemblyHelpers::Jump done = m_jit.jump();
-
- positive.link(&m_jit);
+#if CPU(ARM64)
+ m_jit.pushToSave(scratch1);
+ m_jit.pushToSave(scratch2);
+#else
+ m_jit.push(scratch1);
+ m_jit.push(scratch2);
+#endif
- m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery.gpr());
+ GPRReg value;
+ if (exit.m_jsValueSource.isAddress()) {
+ value = scratch1;
+ m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value);
+ } else
+ value = exit.m_jsValueSource.gpr();
- done.link(&m_jit);
+ m_jit.load32(AssemblyHelpers::Address(value, JSCell::structureIDOffset()), scratch1);
+ m_jit.store32(scratch1, arrayProfile->addressOfLastSeenStructureID());
+ m_jit.load8(AssemblyHelpers::Address(value, JSCell::indexingTypeOffset()), scratch1);
+ m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2);
+ m_jit.lshift32(scratch1, scratch2);
+ m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
- m_jit.loadDouble(addressGPR, FPRInfo::fpRegT0);
- m_jit.loadPtr(scratchDataBuffer, addressGPR);
- break;
- }
-
- default:
- break;
+#if CPU(ARM64)
+ m_jit.popToRestore(scratch2);
+ m_jit.popToRestore(scratch1);
+#else
+ m_jit.pop(scratch2);
+ m_jit.pop(scratch1);
+#endif
}
}
+
+ if (!!exit.m_valueProfile) {
+ EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0);
+
+ if (exit.m_jsValueSource.isAddress()) {
+ // We can't be sure that we have a spare register. So use the tagTypeNumberRegister,
+ // since we know how to restore it.
+ m_jit.load64(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister);
+ m_jit.store64(GPRInfo::tagTypeNumberRegister, bucket);
+ m_jit.move(AssemblyHelpers::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
+ } else
+ m_jit.store64(exit.m_jsValueSource.gpr(), bucket);
+ }
}
- // 6) Dump all non-poisoned GPRs. For poisoned GPRs, save them into the scratch storage.
- // Note that GPRs do not have a fast change (like haveFPRs) because we expect that
- // most OSR failure points will have at least one GPR that needs to be dumped.
+ // What follows is an intentionally simple OSR exit implementation that generates
+ // fairly poor code but is very easy to hack. In particular, it dumps all state that
+ // needs conversion into a scratch buffer so that in step 6, where we actually do the
+ // conversions, we know that all temp registers are free to use and the variable is
+ // definitely in a well-known spot in the scratch buffer regardless of whether it had
+ // originally been in a register or spilled. This allows us to decouple "where was
+ // the variable" from "how was it represented". Consider that the
+ // Int32DisplacedInJSStack recovery: it tells us that the value is in a
+ // particular place and that that place holds an unboxed int32. We have two different
+ // places that a value could be (displaced, register) and a bunch of different
+ // ways of representing a value. The number of recoveries is two * a bunch. The code
+ // below means that we have to have two + a bunch cases rather than two * a bunch.
+ // Once we have loaded the value from wherever it was, the reboxing is the same
+ // regardless of its location. Likewise, before we do the reboxing, the way we get to
+ // the value (i.e. where we load it from) is the same regardless of its type. Because
+ // the code below always dumps everything into a scratch buffer first, the two
+ // questions become orthogonal, which simplifies adding new types and adding new
+ // locations.
+ //
+ // This raises the question: does using such a suboptimal implementation of OSR exit,
+ // where we always emit code to dump all state into a scratch buffer only to then
+ // dump it right back into the stack, hurt us in any way? The asnwer is that OSR exits
+ // are rare. Our tiering strategy ensures this. This is because if an OSR exit is
+ // taken more than ~100 times, we jettison the DFG code block along with all of its
+ // exits. It is impossible for an OSR exit - i.e. the code we compile below - to
+ // execute frequently enough for the codegen to matter that much. It probably matters
+ // enough that we don't want to turn this into some super-slow function call, but so
+ // long as we're generating straight-line code, that code can be pretty bad. Also
+ // because we tend to exit only along one OSR exit from any DFG code block - that's an
+ // empirical result that we're extremely confident about - the code size of this
+ // doesn't matter much. Hence any attempt to optimize the codegen here is just purely
+ // harmful to the system: it probably won't reduce either net memory usage or net
+ // execution time. It will only prevent us from cleanly decoupling "where was the
+ // variable" from "how was it represented", which will make it more difficult to add
+ // features in the future and it will make it harder to reason about bugs.
+
+ // 4) Save all state from GPRs into the scratch buffer.
- initializePoisoned(exit.m_variables.size());
- unsigned currentPoisonIndex = 0;
+ ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(sizeof(EncodedJSValue) * operands.size());
+ EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- int operand = exit.operandForIndex(index);
+ for (size_t index = 0; index < operands.size(); ++index) {
+ const ValueRecovery& recovery = operands[index];
+
switch (recovery.technique()) {
case InGPR:
case UnboxedInt32InGPR:
- case UInt32InGPR:
- if (exit.isVariable(index) && poisonedVirtualRegisters[exit.variableForIndex(index)]) {
- m_jit.storePtr(recovery.gpr(), scratchDataBuffer + currentPoisonIndex);
- m_poisonScratchIndices[exit.variableForIndex(index)] = currentPoisonIndex;
- currentPoisonIndex++;
- } else
- m_jit.storePtr(recovery.gpr(), AssemblyHelpers::addressFor((VirtualRegister)operand));
+ case UnboxedInt52InGPR:
+ case UnboxedStrictInt52InGPR:
+ case UnboxedCellInGPR:
+ m_jit.store64(recovery.gpr(), scratch + index);
break;
+
default:
break;
}
}
- // At this point all GPRs are available for scratch use.
-
- if (haveFPRs) {
- // 7) Box all doubles (relies on there being more GPRs than FPRs)
-
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- if (recovery.technique() != InFPR)
- continue;
- FPRReg fpr = recovery.fpr();
- GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(fpr));
- m_jit.boxDouble(fpr, gpr);
- }
-
- // 8) Dump all doubles into the register file, or to the scratch storage if
- // the destination virtual register is poisoned.
-
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- if (recovery.technique() != InFPR)
- continue;
- GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(recovery.fpr()));
- if (exit.isVariable(index) && poisonedVirtualRegisters[exit.variableForIndex(index)]) {
- m_jit.storePtr(gpr, scratchDataBuffer + currentPoisonIndex);
- m_poisonScratchIndices[exit.variableForIndex(index)] = currentPoisonIndex;
- currentPoisonIndex++;
- } else
- m_jit.storePtr(gpr, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
- }
- }
+ // And voila, all GPRs are free to reuse.
- // At this point all GPRs and FPRs are available for scratch use.
+ // 5) Save all state from FPRs into the scratch buffer.
- // 9) Box all unboxed doubles in the register file.
- if (haveUnboxedDoubles) {
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- if (recovery.technique() != AlreadyInRegisterFileAsUnboxedDouble)
- continue;
- m_jit.loadDouble(AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)), FPRInfo::fpRegT0);
- m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0);
- m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
+ for (size_t index = 0; index < operands.size(); ++index) {
+ const ValueRecovery& recovery = operands[index];
+
+ switch (recovery.technique()) {
+ case InFPR:
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
+ m_jit.storeDouble(recovery.fpr(), MacroAssembler::Address(GPRInfo::regT0));
+ break;
+
+ default:
+ break;
}
}
- ASSERT(currentPoisonIndex == numberOfPoisonedVirtualRegisters);
-
- // 10) Reshuffle displaced virtual registers. Optimize for the case that
- // the number of displaced virtual registers is not more than the number
- // of available physical registers.
+ // Now, all FPRs are also free.
- if (numberOfDisplacedVirtualRegisters) {
- if (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters) {
- // So far this appears to be the case that triggers all the time, but
- // that is far from guaranteed.
-
- unsigned displacementIndex = 0;
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- switch (recovery.technique()) {
- case DisplacedInRegisterFile:
- m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::toRegister(displacementIndex++));
- break;
-
- case Int32DisplacedInRegisterFile: {
- GPRReg gpr = GPRInfo::toRegister(displacementIndex++);
- m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr);
- m_jit.orPtr(GPRInfo::tagTypeNumberRegister, gpr);
- break;
- }
-
- case DoubleDisplacedInRegisterFile: {
- GPRReg gpr = GPRInfo::toRegister(displacementIndex++);
- m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr);
- m_jit.subPtr(GPRInfo::tagTypeNumberRegister, gpr);
- break;
- }
-
- default:
- break;
- }
- }
-
- displacementIndex = 0;
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- switch (recovery.technique()) {
- case DisplacedInRegisterFile:
- case Int32DisplacedInRegisterFile:
- case DoubleDisplacedInRegisterFile:
- m_jit.storePtr(GPRInfo::toRegister(displacementIndex++), AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
- break;
-
- default:
- break;
- }
- }
- } else {
- // FIXME: This should use the shuffling algorithm that we use
- // for speculative->non-speculative jumps, if we ever discover that
- // some hot code with lots of live values that get displaced and
- // spilled really enjoys frequently failing speculation.
-
- // For now this code is engineered to be correct but probably not
- // super. In particular, it correctly handles cases where for example
- // the displacements are a permutation of the destination values, like
- //
- // 1 -> 2
- // 2 -> 1
- //
- // It accomplishes this by simply lifting all of the virtual registers
- // from their old (DFG JIT) locations and dropping them in a scratch
- // location in memory, and then transferring from that scratch location
- // to their new (old JIT) locations.
-
- unsigned scratchIndex = numberOfPoisonedVirtualRegisters;
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
-
- switch (recovery.technique()) {
- case DisplacedInRegisterFile:
- m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
- m_jit.storePtr(GPRInfo::regT0, scratchDataBuffer + scratchIndex++);
- break;
-
- case Int32DisplacedInRegisterFile: {
- m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
- m_jit.orPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
- m_jit.storePtr(GPRInfo::regT0, scratchDataBuffer + scratchIndex++);
- break;
- }
-
- case DoubleDisplacedInRegisterFile: {
- m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
- m_jit.subPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
- m_jit.storePtr(GPRInfo::regT0, scratchDataBuffer + scratchIndex++);
- break;
- }
-
- default:
- break;
- }
- }
-
- scratchIndex = numberOfPoisonedVirtualRegisters;
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- switch (recovery.technique()) {
- case DisplacedInRegisterFile:
- case Int32DisplacedInRegisterFile:
- case DoubleDisplacedInRegisterFile:
- m_jit.loadPtr(scratchDataBuffer + scratchIndex++, GPRInfo::regT0);
- m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
- break;
-
- default:
- break;
- }
- }
+ // 6) Save all state from the stack into the scratch buffer. For simplicity we
+ // do this even for state that's already in the right place on the stack.
+ // It makes things simpler later.
+
+ for (size_t index = 0; index < operands.size(); ++index) {
+ const ValueRecovery& recovery = operands[index];
- ASSERT(scratchIndex == numberOfPoisonedVirtualRegisters + numberOfDisplacedVirtualRegisters);
+ switch (recovery.technique()) {
+ case DisplacedInJSStack:
+ case CellDisplacedInJSStack:
+ case BooleanDisplacedInJSStack:
+ case Int32DisplacedInJSStack:
+ case DoubleDisplacedInJSStack:
+ case Int52DisplacedInJSStack:
+ case StrictInt52DisplacedInJSStack:
+ m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
+ m_jit.store64(GPRInfo::regT0, scratch + index);
+ break;
+
+ default:
+ break;
}
}
- // 11) Dump all poisoned virtual registers.
+ // 7) Do all data format conversions and store the results into the stack.
- if (numberOfPoisonedVirtualRegisters) {
- for (int virtualRegister = 0; virtualRegister < (int)exit.m_variables.size(); ++virtualRegister) {
- if (!poisonedVirtualRegisters[virtualRegister])
- continue;
-
- const ValueRecovery& recovery = exit.m_variables[virtualRegister];
- switch (recovery.technique()) {
- case InGPR:
- case UnboxedInt32InGPR:
- case UInt32InGPR:
- case InFPR:
- m_jit.loadPtr(scratchDataBuffer + poisonIndex(virtualRegister), GPRInfo::regT0);
- m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)virtualRegister));
- break;
-
- default:
- break;
- }
- }
- }
+ bool haveArguments = false;
- // 12) Dump all constants. Optimize for Undefined, since that's a constant we see
- // often.
-
- if (haveConstants) {
- if (haveUndefined)
- m_jit.move(AssemblyHelpers::TrustedImmPtr(JSValue::encode(jsUndefined())), GPRInfo::regT0);
+ for (size_t index = 0; index < operands.size(); ++index) {
+ const ValueRecovery& recovery = operands[index];
+ int operand = operands.operandForIndex(index);
- for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
- const ValueRecovery& recovery = exit.valueRecovery(index);
- if (recovery.technique() != Constant)
- continue;
- if (recovery.constant().isUndefined())
- m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
- else
- m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(JSValue::encode(recovery.constant())), AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
+ switch (recovery.technique()) {
+ case InGPR:
+ case UnboxedCellInGPR:
+ case DisplacedInJSStack:
+ case CellDisplacedInJSStack:
+ case BooleanDisplacedInJSStack:
+ m_jit.load64(scratch + index, GPRInfo::regT0);
+ m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
+ break;
+
+ case UnboxedInt32InGPR:
+ case Int32DisplacedInJSStack:
+ m_jit.load64(scratch + index, GPRInfo::regT0);
+ m_jit.zeroExtend32ToPtr(GPRInfo::regT0, GPRInfo::regT0);
+ m_jit.or64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
+ m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
+ break;
+
+ case UnboxedInt52InGPR:
+ case Int52DisplacedInJSStack:
+ m_jit.load64(scratch + index, GPRInfo::regT0);
+ m_jit.rshift64(
+ AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), GPRInfo::regT0);
+ m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
+ m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
+ break;
+
+ case UnboxedStrictInt52InGPR:
+ case StrictInt52DisplacedInJSStack:
+ m_jit.load64(scratch + index, GPRInfo::regT0);
+ m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
+ m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
+ break;
+
+ case InFPR:
+ case DoubleDisplacedInJSStack:
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
+ m_jit.loadDouble(MacroAssembler::Address(GPRInfo::regT0), FPRInfo::fpRegT0);
+ m_jit.purifyNaN(FPRInfo::fpRegT0);
+ m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0);
+ m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
+ break;
+
+ case Constant:
+ m_jit.store64(
+ AssemblyHelpers::TrustedImm64(JSValue::encode(recovery.constant())),
+ AssemblyHelpers::addressFor(operand));
+ break;
+
+ case ArgumentsThatWereNotCreated:
+ haveArguments = true;
+ // We can't restore this yet but we can make sure that the stack appears
+ // sane.
+ m_jit.store64(
+ AssemblyHelpers::TrustedImm64(JSValue::encode(JSValue())),
+ AssemblyHelpers::addressFor(operand));
+ break;
+
+ default:
+ break;
}
}
- // 13) Adjust the old JIT's execute counter. Since we are exiting OSR, we know
- // that all new calls into this code will go to the new JIT, so the execute
- // counter only affects call frames that performed OSR exit and call frames
- // that were still executing the old JIT at the time of another call frame's
- // OSR exit. We want to ensure that the following is true:
+ // 8) Adjust the old JIT's execute counter. Since we are exiting OSR, we know
+ // that all new calls into this code will go to the new JIT, so the execute
+ // counter only affects call frames that performed OSR exit and call frames
+ // that were still executing the old JIT at the time of another call frame's
+ // OSR exit. We want to ensure that the following is true:
//
- // (a) Code the performs an OSR exit gets a chance to reenter optimized
- // code eventually, since optimized code is faster. But we don't
- // want to do such reentery too aggressively (see (c) below).
+ // (a) Code the performs an OSR exit gets a chance to reenter optimized
+ // code eventually, since optimized code is faster. But we don't
+ // want to do such reentery too aggressively (see (c) below).
//
- // (b) If there is code on the call stack that is still running the old
- // JIT's code and has never OSR'd, then it should get a chance to
- // perform OSR entry despite the fact that we've exited.
+ // (b) If there is code on the call stack that is still running the old
+ // JIT's code and has never OSR'd, then it should get a chance to
+ // perform OSR entry despite the fact that we've exited.
//
- // (c) Code the performs an OSR exit should not immediately retry OSR
- // entry, since both forms of OSR are expensive. OSR entry is
- // particularly expensive.
+ // (c) Code the performs an OSR exit should not immediately retry OSR
+ // entry, since both forms of OSR are expensive. OSR entry is
+ // particularly expensive.
//
- // (d) Frequent OSR failures, even those that do not result in the code
- // running in a hot loop, result in recompilation getting triggered.
+ // (d) Frequent OSR failures, even those that do not result in the code
+ // running in a hot loop, result in recompilation getting triggered.
//
- // To ensure (c), we'd like to set the execute counter to
- // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
- // (a) and (b), since then every OSR exit would delay the opportunity for
- // every call frame to perform OSR entry. Essentially, if OSR exit happens
- // frequently and the function has few loops, then the counter will never
- // become non-negative and OSR entry will never be triggered. OSR entry
- // will only happen if a loop gets hot in the old JIT, which does a pretty
- // good job of ensuring (a) and (b). But that doesn't take care of (d),
- // since each speculation failure would reset the execute counter.
- // So we check here if the number of speculation failures is significantly
- // larger than the number of successes (we want 90% success rate), and if
- // there have been a large enough number of failures. If so, we set the
- // counter to 0; otherwise we set the counter to
- // counterValueForOptimizeAfterWarmUp().
-
- handleExitCounts(exit);
-
- // 14) Load the result of the last bytecode operation into regT0.
-
- if (exit.m_lastSetOperand != std::numeric_limits<int>::max())
- m_jit.loadPtr(AssemblyHelpers::addressFor((VirtualRegister)exit.m_lastSetOperand), GPRInfo::cachedResultRegister);
-
- // 15) Fix call frame(s).
-
- ASSERT(m_jit.baselineCodeBlock()->getJITType() == JITCode::BaselineJIT);
- m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(m_jit.baselineCodeBlock()), AssemblyHelpers::addressFor((VirtualRegister)RegisterFile::CodeBlock));
-
- for (CodeOrigin codeOrigin = exit.m_codeOrigin; codeOrigin.inlineCallFrame; codeOrigin = codeOrigin.inlineCallFrame->caller) {
- InlineCallFrame* inlineCallFrame = codeOrigin.inlineCallFrame;
- CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(codeOrigin);
- CodeBlock* baselineCodeBlockForCaller = m_jit.baselineCodeBlockFor(inlineCallFrame->caller);
- Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlockForCaller);
- unsigned returnBytecodeIndex = inlineCallFrame->caller.bytecodeIndex + OPCODE_LENGTH(op_call);
- BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned, BytecodeAndMachineOffset::getBytecodeIndex>(decodedCodeMap.begin(), decodedCodeMap.size(), returnBytecodeIndex);
-
- ASSERT(mapping);
- ASSERT(mapping->m_bytecodeIndex == returnBytecodeIndex);
-
- void* jumpTarget = baselineCodeBlockForCaller->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset);
+ // To ensure (c), we'd like to set the execute counter to
+ // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
+ // (a) and (b), since then every OSR exit would delay the opportunity for
+ // every call frame to perform OSR entry. Essentially, if OSR exit happens
+ // frequently and the function has few loops, then the counter will never
+ // become non-negative and OSR entry will never be triggered. OSR entry
+ // will only happen if a loop gets hot in the old JIT, which does a pretty
+ // good job of ensuring (a) and (b). But that doesn't take care of (d),
+ // since each speculation failure would reset the execute counter.
+ // So we check here if the number of speculation failures is significantly
+ // larger than the number of successes (we want 90% success rate), and if
+ // there have been a large enough number of failures. If so, we set the
+ // counter to 0; otherwise we set the counter to
+ // counterValueForOptimizeAfterWarmUp().
+
+ handleExitCounts(m_jit, exit);
+
+ // 9) Reify inlined call frames.
+
+ reifyInlinedCallFrames(m_jit, exit);
+
+ // 10) Create arguments if necessary and place them into the appropriate aliased
+ // registers.
+
+ if (haveArguments) {
+ ArgumentsRecoveryGenerator argumentsRecovery;
- GPRReg callerFrameGPR;
- if (inlineCallFrame->caller.inlineCallFrame) {
- m_jit.addPtr(AssemblyHelpers::TrustedImm32(inlineCallFrame->caller.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT3);
- callerFrameGPR = GPRInfo::regT3;
- } else
- callerFrameGPR = GPRInfo::callFrameRegister;
-
- m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(baselineCodeBlock), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::CodeBlock)));
- m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(inlineCallFrame->callee->scope()), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ScopeChain)));
- m_jit.storePtr(callerFrameGPR, AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::CallerFrame)));
- m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(jumpTarget), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ReturnPC)));
- m_jit.store32(AssemblyHelpers::TrustedImm32(inlineCallFrame->arguments.size()), AssemblyHelpers::payloadFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ArgumentCount)));
- m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(inlineCallFrame->callee.get()), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::Callee)));
+ for (size_t index = 0; index < operands.size(); ++index) {
+ const ValueRecovery& recovery = operands[index];
+ if (recovery.technique() != ArgumentsThatWereNotCreated)
+ continue;
+ argumentsRecovery.generateFor(
+ operands.operandForIndex(index), exit.m_codeOrigin, m_jit);
+ }
}
-
- if (exit.m_codeOrigin.inlineCallFrame)
- m_jit.addPtr(AssemblyHelpers::TrustedImm32(exit.m_codeOrigin.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister);
-
- // 16) Jump into the corresponding baseline JIT code.
-
- CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(exit.m_codeOrigin);
- Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlock);
-
- BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned, BytecodeAndMachineOffset::getBytecodeIndex>(decodedCodeMap.begin(), decodedCodeMap.size(), exit.m_codeOrigin.bytecodeIndex);
-
- ASSERT(mapping);
- ASSERT(mapping->m_bytecodeIndex == exit.m_codeOrigin.bytecodeIndex);
-
- void* jumpTarget = baselineCodeBlock->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset);
-
- ASSERT(GPRInfo::regT1 != GPRInfo::cachedResultRegister);
-
- m_jit.move(AssemblyHelpers::TrustedImmPtr(jumpTarget), GPRInfo::regT1);
-
- m_jit.jump(GPRInfo::regT1);
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLog("-> %p\n", jumpTarget);
-#endif
+ // 12) And finish.
+ adjustAndJumpToTarget(m_jit, exit);
}
} } // namespace JSC::DFG