namespace JSC {
-ASSERT_CLASS_FITS_IN_CELL(MathObject);
+ASSERT_HAS_TRIVIAL_DESTRUCTOR(MathObject);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*);
+static EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState*);
}
namespace JSC {
-ASSERT_HAS_TRIVIAL_DESTRUCTOR(MathObject);
-
-const ClassInfo MathObject::s_info = { "Math", &JSNonFinalObject::s_info, 0, ExecState::mathTable, CREATE_METHOD_TABLE(MathObject) };
+const ClassInfo MathObject::s_info = { "Math", &Base::s_info, 0, ExecState::mathTable, CREATE_METHOD_TABLE(MathObject) };
/* Source for MathObject.lut.h
@begin mathTable
sin mathProtoFuncSin DontEnum|Function 1
sqrt mathProtoFuncSqrt DontEnum|Function 1
tan mathProtoFuncTan DontEnum|Function 1
+ imul mathProtoFuncIMul DontEnum|Function 2
@end
*/
MathObject::MathObject(JSGlobalObject* globalObject, Structure* structure)
- : JSNonFinalObject(globalObject->globalData(), structure)
+ : JSNonFinalObject(globalObject->vm(), structure)
{
}
void MathObject::finishCreation(ExecState* exec, JSGlobalObject* globalObject)
{
- Base::finishCreation(globalObject->globalData());
+ Base::finishCreation(globalObject->vm());
ASSERT(inherits(&s_info));
- putDirectWithoutTransition(exec->globalData(), Identifier(exec, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly);
- putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly);
- putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly);
- putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly);
- putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); // See ECMA-262 15.8.1.5
- putDirectWithoutTransition(exec->globalData(), Identifier(exec, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly);
- putDirectWithoutTransition(exec->globalData(), Identifier(exec, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly);
- putDirectWithoutTransition(exec->globalData(), Identifier(exec, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly);
+ putDirectWithoutTransition(exec->vm(), Identifier(exec, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly);
+ putDirectWithoutTransition(exec->vm(), Identifier(exec, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly);
+ putDirectWithoutTransition(exec->vm(), Identifier(exec, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly);
+ putDirectWithoutTransition(exec->vm(), Identifier(exec, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly);
+ putDirectWithoutTransition(exec->vm(), Identifier(exec, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); // See ECMA-262 15.8.1.5
+ putDirectWithoutTransition(exec->vm(), Identifier(exec, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly);
+ putDirectWithoutTransition(exec->vm(), Identifier(exec, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly);
+ putDirectWithoutTransition(exec->vm(), Identifier(exec, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly);
}
-bool MathObject::getOwnPropertySlot(JSCell* cell, ExecState* exec, const Identifier& propertyName, PropertySlot &slot)
+bool MathObject::getOwnPropertySlot(JSCell* cell, ExecState* exec, PropertyName propertyName, PropertySlot &slot)
{
return getStaticFunctionSlot<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(cell), propertyName, slot);
}
-bool MathObject::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
+bool MathObject::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor)
{
return getStaticFunctionDescriptor<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(object), propertyName, descriptor);
}
double result = -std::numeric_limits<double>::infinity();
for (unsigned k = 0; k < argsCount; ++k) {
double val = exec->argument(k).toNumber(exec);
- if (isnan(val)) {
- result = std::numeric_limits<double>::quiet_NaN();
+ if (std::isnan(val)) {
+ result = QNaN;
break;
}
- if (val > result || (val == 0 && result == 0 && !signbit(val)))
+ if (val > result || (!val && !result && !std::signbit(val)))
result = val;
}
return JSValue::encode(jsNumber(result));
double result = +std::numeric_limits<double>::infinity();
for (unsigned k = 0; k < argsCount; ++k) {
double val = exec->argument(k).toNumber(exec);
- if (isnan(val)) {
- result = std::numeric_limits<double>::quiet_NaN();
+ if (std::isnan(val)) {
+ result = QNaN;
break;
}
- if (val < result || (val == 0 && result == 0 && signbit(val)))
+ if (val < result || (!val && !result && std::signbit(val)))
result = val;
}
return JSValue::encode(jsNumber(result));
}
-#if CPU(ARM_THUMB2)
+#if PLATFORM(IOS) && CPU(ARM_THUMB2)
static double fdlibmPow(double x, double y);
double arg = exec->argument(0).toNumber(exec);
double arg2 = exec->argument(1).toNumber(exec);
- if (isnan(arg2))
+ if (std::isnan(arg2))
return JSValue::encode(jsNaN());
- if (isinf(arg2) && fabs(arg) == 1)
+ if (std::isinf(arg2) && fabs(arg) == 1)
return JSValue::encode(jsNaN());
return JSValue::encode(jsNumber(mathPow(arg, arg2)));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec)
{
- return JSValue::encode(exec->globalData().cachedSin(exec->argument(0).toNumber(exec)));
+ return JSValue::encode(exec->vm().cachedSin(exec->argument(0).toNumber(exec)));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec)
return JSValue::encode(jsDoubleNumber(tan(exec->argument(0).toNumber(exec))));
}
-#if CPU(ARM_THUMB2)
+EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState* exec)
+{
+ int32_t left = exec->argument(0).toInt32(exec);
+ if (exec->hadException())
+ return JSValue::encode(jsNull());
+ int32_t right = exec->argument(1).toInt32(exec);
+ return JSValue::encode(jsNumber(left * right));
+}
+
+#if PLATFORM(IOS) && CPU(ARM_THUMB2)
// The following code is taken from netlib.org:
// http://www.netlib.org/fdlibm/fdlibm.h
/* __ieee754_pow(x,y) return x**y
*
- * n
+ * n
* Method: Let x = 2 * (1+f)
- * 1. Compute and return log2(x) in two pieces:
- * log2(x) = w1 + w2,
- * where w1 has 53-24 = 29 bit trailing zeros.
- * 2. Perform y*log2(x) = n+y' by simulating muti-precision
- * arithmetic, where |y'|<=0.5.
- * 3. Return x**y = 2**n*exp(y'*log2)
+ * 1. Compute and return log2(x) in two pieces:
+ * log2(x) = w1 + w2,
+ * where w1 has 53-24 = 29 bit trailing zeros.
+ * 2. Perform y*log2(x) = n+y' by simulating muti-precision
+ * arithmetic, where |y'|<=0.5.
+ * 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
- * 1. (anything) ** 0 is 1
- * 2. (anything) ** 1 is itself
- * 3. (anything) ** NAN is NAN
- * 4. NAN ** (anything except 0) is NAN
- * 5. +-(|x| > 1) ** +INF is +INF
- * 6. +-(|x| > 1) ** -INF is +0
- * 7. +-(|x| < 1) ** +INF is +0
- * 8. +-(|x| < 1) ** -INF is +INF
- * 9. +-1 ** +-INF is NAN
- * 10. +0 ** (+anything except 0, NAN) is +0
- * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
- * 12. +0 ** (-anything except 0, NAN) is +INF
- * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
- * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
- * 15. +INF ** (+anything except 0,NAN) is +INF
- * 16. +INF ** (-anything except 0,NAN) is +0
- * 17. -INF ** (anything) = -0 ** (-anything)
- * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
- * 19. (-anything except 0 and inf) ** (non-integer) is NAN
+ * 1. (anything) ** 0 is 1
+ * 2. (anything) ** 1 is itself
+ * 3. (anything) ** NAN is NAN
+ * 4. NAN ** (anything except 0) is NAN
+ * 5. +-(|x| > 1) ** +INF is +INF
+ * 6. +-(|x| > 1) ** -INF is +0
+ * 7. +-(|x| < 1) ** +INF is +0
+ * 8. +-(|x| < 1) ** -INF is +INF
+ * 9. +-1 ** +-INF is NAN
+ * 10. +0 ** (+anything except 0, NAN) is +0
+ * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
+ * 12. +0 ** (-anything except 0, NAN) is +INF
+ * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
+ * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
+ * 15. +INF ** (+anything except 0,NAN) is +INF
+ * 16. +INF ** (-anything except 0,NAN) is +0
+ * 17. -INF ** (anything) = -0 ** (-anything)
+ * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+ * 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
- * pow(x,y) returns x**y nearly rounded. In particular
- * pow(integer,integer)
- * always returns the correct integer provided it is
- * representable.
+ * pow(x,y) returns x**y nearly rounded. In particular
+ * pow(integer,integer)
+ * always returns the correct integer provided it is
+ * representable.
*
* Constants :
* The hexadecimal values are the intended ones for the following
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero = 0.0,
-one = 1.0,
-two = 2.0,
-two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
-huge = 1.0e300,
+one = 1.0,
+two = 2.0,
+two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
+huge = 1.0e300,
tiny = 1.0e-300,
/* for scalbn */
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
- /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+ /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
inline double fdlibmScalbn (double x, int n)
{
- int k,hx,lx;
- hx = __HI(x);
- lx = __LO(x);
- k = (hx&0x7ff00000)>>20; /* extract exponent */
- if (k==0) { /* 0 or subnormal x */
+ int k,hx,lx;
+ hx = __HI(x);
+ lx = __LO(x);
+ k = (hx&0x7ff00000)>>20; /* extract exponent */
+ if (k==0) { /* 0 or subnormal x */
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
- x *= two54;
- hx = __HI(x);
- k = ((hx&0x7ff00000)>>20) - 54;
- if (n< -50000) return tiny*x; /*underflow*/
- }
- if (k==0x7ff) return x+x; /* NaN or Inf */
+ x *= two54;
+ hx = __HI(x);
+ k = ((hx&0x7ff00000)>>20) - 54;
+ if (n< -50000) return tiny*x; /*underflow*/
+ }
+ if (k==0x7ff) return x+x; /* NaN or Inf */
k = k+n;
if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
- if (k > 0) /* normal result */
- {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
+ if (k > 0) /* normal result */
+ {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
if (k <= -54) {
- if (n > 50000) /* in case integer overflow in n+k */
- return huge*copysign(huge,x); /*overflow*/
- else return tiny*copysign(tiny,x); /*underflow*/
+ if (n > 50000) /* in case integer overflow in n+k */
+ return huge*copysign(huge,x); /*overflow*/
+ else return tiny*copysign(tiny,x); /*underflow*/
}
- k += 54; /* subnormal result */
+ k += 54; /* subnormal result */
__HI(x) = (hx&0x800fffff)|(k<<20);
return x*twom54;
}
double fdlibmPow(double x, double y)
{
- double z,ax,z_h,z_l,p_h,p_l;
- double y1,t1,t2,r,s,t,u,v,w;
- int i0,i1,i,j,k,yisint,n;
- int hx,hy,ix,iy;
- unsigned lx,ly;
+ double z,ax,z_h,z_l,p_h,p_l;
+ double y1,t1,t2,r,s,t,u,v,w;
+ int i0,i1,i,j,k,yisint,n;
+ int hx,hy,ix,iy;
+ unsigned lx,ly;
- i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
- hx = __HI(x); lx = __LO(x);
- hy = __HI(y); ly = __LO(y);
- ix = hx&0x7fffffff; iy = hy&0x7fffffff;
+ i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
+ hx = __HI(x); lx = __LO(x);
+ hy = __HI(y); ly = __LO(y);
+ ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
- if((iy|ly)==0) return one;
+ if((iy|ly)==0) return one;
/* +-NaN return x+y */
- if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
- iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
- return x+y;
+ if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
+ iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
+ return x+y;
/* determine if y is an odd int when x < 0
- * yisint = 0 ... y is not an integer
- * yisint = 1 ... y is an odd int
- * yisint = 2 ... y is an even int
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
*/
- yisint = 0;
- if(hx<0) {
- if(iy>=0x43400000) yisint = 2; /* even integer y */
- else if(iy>=0x3ff00000) {
- k = (iy>>20)-0x3ff; /* exponent */
- if(k>20) {
- j = ly>>(52-k);
- if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1);
- } else if(ly==0) {
- j = iy>>(20-k);
- if((j<<(20-k))==iy) yisint = 2-(j&1);
- }
- }
- }
+ yisint = 0;
+ if(hx<0) {
+ if(iy>=0x43400000) yisint = 2; /* even integer y */
+ else if(iy>=0x3ff00000) {
+ k = (iy>>20)-0x3ff; /* exponent */
+ if(k>20) {
+ j = ly>>(52-k);
+ if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1);
+ } else if(ly==0) {
+ j = iy>>(20-k);
+ if((j<<(20-k))==iy) yisint = 2-(j&1);
+ }
+ }
+ }
/* special value of y */
- if(ly==0) {
- if (iy==0x7ff00000) { /* y is +-inf */
- if(((ix-0x3ff00000)|lx)==0)
- return y - y; /* inf**+-1 is NaN */
- else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
- return (hy>=0)? y: zero;
- else /* (|x|<1)**-,+inf = inf,0 */
- return (hy<0)?-y: zero;
- }
- if(iy==0x3ff00000) { /* y is +-1 */
- if(hy<0) return one/x; else return x;
- }
- if(hy==0x40000000) return x*x; /* y is 2 */
- if(hy==0x3fe00000) { /* y is 0.5 */
- if(hx>=0) /* x >= +0 */
- return sqrt(x);
- }
- }
-
- ax = fabs(x);
+ if(ly==0) {
+ if (iy==0x7ff00000) { /* y is +-inf */
+ if(((ix-0x3ff00000)|lx)==0)
+ return y - y; /* inf**+-1 is NaN */
+ else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
+ return (hy>=0)? y: zero;
+ else /* (|x|<1)**-,+inf = inf,0 */
+ return (hy<0)?-y: zero;
+ }
+ if(iy==0x3ff00000) { /* y is +-1 */
+ if(hy<0) return one/x; else return x;
+ }
+ if(hy==0x40000000) return x*x; /* y is 2 */
+ if(hy==0x3fe00000) { /* y is 0.5 */
+ if(hx>=0) /* x >= +0 */
+ return sqrt(x);
+ }
+ }
+
+ ax = fabs(x);
/* special value of x */
- if(lx==0) {
- if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
- z = ax; /*x is +-0,+-inf,+-1*/
- if(hy<0) z = one/z; /* z = (1/|x|) */
- if(hx<0) {
- if(((ix-0x3ff00000)|yisint)==0) {
- z = (z-z)/(z-z); /* (-1)**non-int is NaN */
- } else if(yisint==1)
- z = -z; /* (x<0)**odd = -(|x|**odd) */
- }
- return z;
- }
- }
+ if(lx==0) {
+ if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
+ z = ax; /*x is +-0,+-inf,+-1*/
+ if(hy<0) z = one/z; /* z = (1/|x|) */
+ if(hx<0) {
+ if(((ix-0x3ff00000)|yisint)==0) {
+ z = (z-z)/(z-z); /* (-1)**non-int is NaN */
+ } else if(yisint==1)
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ return z;
+ }
+ }
- n = (hx>>31)+1;
+ n = (hx>>31)+1;
/* (x<0)**(non-int) is NaN */
- if((n|yisint)==0) return (x-x)/(x-x);
+ if((n|yisint)==0) return (x-x)/(x-x);
- s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
- if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
+ s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
+ if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
/* |y| is huge */
- if(iy>0x41e00000) { /* if |y| > 2**31 */
- if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
- if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
- if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
- }
- /* over/underflow if x is not close to one */
- if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
- if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
- /* now |1-x| is tiny <= 2**-20, suffice to compute
- log(x) by x-x^2/2+x^3/3-x^4/4 */
- t = ax-one; /* t has 20 trailing zeros */
- w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
- u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
- v = t*ivln2_l-w*ivln2;
- t1 = u+v;
- __LO(t1) = 0;
- t2 = v-(t1-u);
- } else {
- double ss,s2,s_h,s_l,t_h,t_l;
- n = 0;
- /* take care subnormal number */
- if(ix<0x00100000)
- {ax *= two53; n -= 53; ix = __HI(ax); }
- n += ((ix)>>20)-0x3ff;
- j = ix&0x000fffff;
- /* determine interval */
- ix = j|0x3ff00000; /* normalize ix */
- if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
- else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
- else {k=0;n+=1;ix -= 0x00100000;}
- __HI(ax) = ix;
-
- /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
- u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
- v = one/(ax+bp[k]);
- ss = u*v;
- s_h = ss;
- __LO(s_h) = 0;
- /* t_h=ax+bp[k] High */
- t_h = zero;
- __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
- t_l = ax - (t_h-bp[k]);
- s_l = v*((u-s_h*t_h)-s_h*t_l);
- /* compute log(ax) */
- s2 = ss*ss;
- r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
- r += s_l*(s_h+ss);
- s2 = s_h*s_h;
- t_h = 3.0+s2+r;
- __LO(t_h) = 0;
- t_l = r-((t_h-3.0)-s2);
- /* u+v = ss*(1+...) */
- u = s_h*t_h;
- v = s_l*t_h+t_l*ss;
- /* 2/(3log2)*(ss+...) */
- p_h = u+v;
- __LO(p_h) = 0;
- p_l = v-(p_h-u);
- z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
- z_l = cp_l*p_h+p_l*cp+dp_l[k];
- /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
- t = (double)n;
- t1 = (((z_h+z_l)+dp_h[k])+t);
- __LO(t1) = 0;
- t2 = z_l-(((t1-t)-dp_h[k])-z_h);
- }
+ if(iy>0x41e00000) { /* if |y| > 2**31 */
+ if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
+ if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
+ if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
+ }
+ /* over/underflow if x is not close to one */
+ if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
+ if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = ax-one; /* t has 20 trailing zeros */
+ w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
+ u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
+ v = t*ivln2_l-w*ivln2;
+ t1 = u+v;
+ __LO(t1) = 0;
+ t2 = v-(t1-u);
+ } else {
+ double ss,s2,s_h,s_l,t_h,t_l;
+ n = 0;
+ /* take care subnormal number */
+ if(ix<0x00100000)
+ {ax *= two53; n -= 53; ix = __HI(ax); }
+ n += ((ix)>>20)-0x3ff;
+ j = ix&0x000fffff;
+ /* determine interval */
+ ix = j|0x3ff00000; /* normalize ix */
+ if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
+ else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
+ else {k=0;n+=1;ix -= 0x00100000;}
+ __HI(ax) = ix;
+
+ /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+ v = one/(ax+bp[k]);
+ ss = u*v;
+ s_h = ss;
+ __LO(s_h) = 0;
+ /* t_h=ax+bp[k] High */
+ t_h = zero;
+ __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
+ t_l = ax - (t_h-bp[k]);
+ s_l = v*((u-s_h*t_h)-s_h*t_l);
+ /* compute log(ax) */
+ s2 = ss*ss;
+ r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
+ r += s_l*(s_h+ss);
+ s2 = s_h*s_h;
+ t_h = 3.0+s2+r;
+ __LO(t_h) = 0;
+ t_l = r-((t_h-3.0)-s2);
+ /* u+v = ss*(1+...) */
+ u = s_h*t_h;
+ v = s_l*t_h+t_l*ss;
+ /* 2/(3log2)*(ss+...) */
+ p_h = u+v;
+ __LO(p_h) = 0;
+ p_l = v-(p_h-u);
+ z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = cp_l*p_h+p_l*cp+dp_l[k];
+ /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = (double)n;
+ t1 = (((z_h+z_l)+dp_h[k])+t);
+ __LO(t1) = 0;
+ t2 = z_l-(((t1-t)-dp_h[k])-z_h);
+ }
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
- y1 = y;
- __LO(y1) = 0;
- p_l = (y-y1)*t1+y*t2;
- p_h = y1*t1;
- z = p_l+p_h;
- j = __HI(z);
- i = __LO(z);
- if (j>=0x40900000) { /* z >= 1024 */
- if(((j-0x40900000)|i)!=0) /* if z > 1024 */
- return s*huge*huge; /* overflow */
- else {
- if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
- }
- } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
- if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
- return s*tiny*tiny; /* underflow */
- else {
- if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
- }
- }
+ y1 = y;
+ __LO(y1) = 0;
+ p_l = (y-y1)*t1+y*t2;
+ p_h = y1*t1;
+ z = p_l+p_h;
+ j = __HI(z);
+ i = __LO(z);
+ if (j>=0x40900000) { /* z >= 1024 */
+ if(((j-0x40900000)|i)!=0) /* if z > 1024 */
+ return s*huge*huge; /* overflow */
+ else {
+ if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
+ }
+ } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
+ if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
+ return s*tiny*tiny; /* underflow */
+ else {
+ if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
+ }
+ }
/*
* compute 2**(p_h+p_l)
*/
- i = j&0x7fffffff;
- k = (i>>20)-0x3ff;
- n = 0;
- if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
- n = j+(0x00100000>>(k+1));
- k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
- t = zero;
- __HI(t) = (n&~(0x000fffff>>k));
- n = ((n&0x000fffff)|0x00100000)>>(20-k);
- if(j<0) n = -n;
- p_h -= t;
- }
- t = p_l+p_h;
- __LO(t) = 0;
- u = t*lg2_h;
- v = (p_l-(t-p_h))*lg2+t*lg2_l;
- z = u+v;
- w = v-(z-u);
- t = z*z;
- t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
- r = (z*t1)/(t1-two)-(w+z*w);
- z = one-(r-z);
- j = __HI(z);
- j += (n<<20);
- if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */
- else __HI(z) += (n<<20);
- return s*z;
+ i = j&0x7fffffff;
+ k = (i>>20)-0x3ff;
+ n = 0;
+ if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
+ n = j+(0x00100000>>(k+1));
+ k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
+ t = zero;
+ __HI(t) = (n&~(0x000fffff>>k));
+ n = ((n&0x000fffff)|0x00100000)>>(20-k);
+ if(j<0) n = -n;
+ p_h -= t;
+ }
+ t = p_l+p_h;
+ __LO(t) = 0;
+ u = t*lg2_h;
+ v = (p_l-(t-p_h))*lg2+t*lg2_l;
+ z = u+v;
+ w = v-(z-u);
+ t = z*z;
+ t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+ r = (z*t1)/(t1-two)-(w+z*w);
+ z = one-(r-z);
+ j = __HI(z);
+ j += (n<<20);
+ if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */
+ else __HI(z) += (n<<20);
+ return s*z;
}
#endif