*/
#include "config.h"
-#include "JIT.h"
#if ENABLE(JIT)
+#include "JIT.h"
#include "CodeBlock.h"
#include "JITInlineMethods.h"
namespace JSC {
-#if !USE(JSVALUE32_64)
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jless, op1, op2, target, LessThan);
+}
+
+void JIT::emit_op_jlesseq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual);
+}
+
+void JIT::emit_op_jgreater(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan);
+}
+
+void JIT::emit_op_jgreatereq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual);
+}
+
+void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan);
+}
+
+void JIT::emit_op_jngreater(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual);
+}
+
+void JIT::emit_op_jngreatereq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan);
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, cti_op_jless, false, iter);
+}
+
+void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, cti_op_jlesseq, false, iter);
+}
+
+void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, cti_op_jgreater, false, iter);
+}
+
+void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, cti_op_jgreatereq, false, iter);
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, cti_op_jless, true, iter);
+}
+
+void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, cti_op_jlesseq, true, iter);
+}
+
+void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, cti_op_jgreater, true, iter);
+}
+
+void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, cti_op_jgreatereq, true, iter);
+}
+
+#if USE(JSVALUE64)
+
+void JIT::emit_op_negate(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned src = currentInstruction[2].u.operand;
+
+ emitGetVirtualRegister(src, regT0);
+
+ Jump srcNotInt = emitJumpIfNotImmediateInteger(regT0);
+ addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff)));
+ neg32(regT0);
+ emitFastArithReTagImmediate(regT0, regT0);
+
+ Jump end = jump();
+
+ srcNotInt.link(this);
+ emitJumpSlowCaseIfNotImmediateNumber(regT0);
+
+ move(TrustedImmPtr(reinterpret_cast<void*>(0x8000000000000000ull)), regT1);
+ xorPtr(regT1, regT0);
+
+ end.link(this);
+ emitPutVirtualRegister(dst);
+}
+
+void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // 0x7fffffff check
+ linkSlowCase(iter); // double check
+
+ JITStubCall stubCall(this, cti_op_negate);
+ stubCall.addArgument(regT1, regT0);
+ stubCall.call(dst);
+}
void JIT::emit_op_lshift(Instruction* currentInstruction)
{
emitFastArithImmToInt(regT0);
emitFastArithImmToInt(regT2);
lshift32(regT2, regT0);
-#if USE(JSVALUE32)
- addSlowCase(branchAdd32(Overflow, regT0, regT0));
- signExtend32ToPtr(regT0, regT0);
-#endif
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(result);
}
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
-#if USE(JSVALUE64)
UNUSED_PARAM(op1);
UNUSED_PARAM(op2);
linkSlowCase(iter);
linkSlowCase(iter);
-#else
- // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded.
- Jump notImm1 = getSlowCase(iter);
- Jump notImm2 = getSlowCase(iter);
- linkSlowCase(iter);
- emitGetVirtualRegisters(op1, regT0, op2, regT2);
- notImm1.link(this);
- notImm2.link(this);
-#endif
JITStubCall stubCall(this, cti_op_lshift);
stubCall.addArgument(regT0);
stubCall.addArgument(regT2);
emitGetVirtualRegisters(op1, regT0, op2, regT2);
if (supportsFloatingPointTruncate()) {
Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
-#if USE(JSVALUE64)
// supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
addSlowCase(emitJumpIfNotImmediateNumber(regT0));
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT0);
addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
-#else
- // supportsFloatingPoint() && !USE(JSVALUE64) => 5 SlowCases (of which 1 IfNotJSCell)
- emitJumpSlowCaseIfNotJSCell(regT0, op1);
- addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get()));
- loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
- addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
- addSlowCase(branchAdd32(Overflow, regT0, regT0));
-#endif
lhsIsInt.link(this);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
} else {
}
emitFastArithImmToInt(regT2);
rshift32(regT2, regT0);
-#if USE(JSVALUE32)
- signExtend32ToPtr(regT0, regT0);
-#endif
}
-#if USE(JSVALUE64)
emitFastArithIntToImmNoCheck(regT0, regT0);
-#else
- orPtr(Imm32(JSImmediate::TagTypeNumber), regT0);
-#endif
emitPutVirtualRegister(result);
}
stubCall.addArgument(op2, regT2);
} else {
if (supportsFloatingPointTruncate()) {
-#if USE(JSVALUE64)
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
-#else
- linkSlowCaseIfNotJSCell(iter, op1);
- linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
-#endif
// We're reloading op1 to regT0 as we can no longer guarantee that
// we have not munged the operand. It may have already been shifted
// correctly, but it still will not have been tagged.
// a toUint conversion, which can result in a value we can represent
// as an immediate int.
if (shift < 0 || !(shift & 31))
- addSlowCase(branch32(LessThan, regT0, Imm32(0)));
-#if USE(JSVALUE32)
- addSlowCase(branchAdd32(Overflow, regT0, regT0));
- signExtend32ToPtr(regT0, regT0);
-#endif
+ addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(dst, regT0);
return;
emitFastArithImmToInt(regT0);
emitFastArithImmToInt(regT1);
urshift32(regT1, regT0);
- addSlowCase(branch32(LessThan, regT0, Imm32(0)));
-#if USE(JSVALUE32)
- addSlowCase(branchAdd32(Overflow, regT0, regT0));
- signExtend32ToPtr(regT0, regT0);
-#endif
+ addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(dst, regT0);
}
int shift = getConstantOperand(op2).asInt32();
// op1 = regT0
linkSlowCase(iter); // int32 check
-#if USE(JSVALUE64)
if (supportsFloatingPointTruncate()) {
JumpList failures;
failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
if (shift)
urshift32(Imm32(shift & 0x1f), regT0);
if (shift < 0 || !(shift & 31))
- failures.append(branch32(LessThan, regT0, Imm32(0)));
+ failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(dst, regT0);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
failures.link(this);
}
-#endif // JSVALUE64
if (shift < 0 || !(shift & 31))
linkSlowCase(iter); // failed to box in hot path
-#if USE(JSVALUE32)
- linkSlowCase(iter); // Couldn't box result
-#endif
} else {
// op1 = regT0
// op2 = regT1
if (!isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter); // int32 check -- op1 is not an int
-#if USE(JSVALUE64)
if (supportsFloatingPointTruncate()) {
JumpList failures;
failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
failures.append(emitJumpIfNotImmediateInteger(regT1)); // op2 is not an int
emitFastArithImmToInt(regT1);
urshift32(regT1, regT0);
- failures.append(branch32(LessThan, regT0, Imm32(0)));
+ failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(dst, regT0);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
failures.link(this);
}
-#endif
}
linkSlowCase(iter); // int32 check - op2 is not an int
linkSlowCase(iter); // Can't represent unsigned result as an immediate
-#if USE(JSVALUE32)
- linkSlowCase(iter); // Couldn't box result
-#endif
}
JITStubCall stubCall(this, cti_op_urshift);
stubCall.call(dst);
}
-void JIT::emit_op_jnless(Instruction* currentInstruction)
+void JIT::emit_compareAndJump(OpcodeID, unsigned op1, unsigned op2, unsigned target, RelationalCondition condition)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
// We generate inline code for the following cases in the fast path:
// - int immediate to constant int immediate
// - constant int immediate to int immediate
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
- addJump(branch32(LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
+ addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateChar(op2)) {
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
+ addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
-#if USE(JSVALUE64)
int32_t op2imm = getConstantOperandImmediateInt(op2);
-#else
- int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
-#endif
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target);
+ addJump(branch32(condition, regT0, Imm32(op2imm)), target);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
-#if USE(JSVALUE64)
int32_t op1imm = getConstantOperandImmediateInt(op1);
-#else
- int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
-#endif
- addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target);
+ addJump(branch32(commute(condition), regT1, Imm32(op1imm)), target);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
- addJump(branch32(GreaterThanOrEqual, regT0, regT1), target);
+ addJump(branch32(condition, regT0, regT1), target);
}
}
-void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition condition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnlesseq), OPCODE_LENGTH_op_jnlesseq_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreater), OPCODE_LENGTH_op_jgreater_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreatereq), OPCODE_LENGTH_op_jgreatereq_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreater), OPCODE_LENGTH_op_jngreater_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreatereq), OPCODE_LENGTH_op_jngreatereq_equals_op_jless);
+
// We generate inline code for the following cases in the slow path:
// - floating-point number to constant int immediate
// - constant int immediate to floating-point number
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
+ JITStubCall stubCall(this, stub);
stubCall.addArgument(op1, regT0);
stubCall.addArgument(op2, regT1);
stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+ emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
return;
}
linkSlowCase(iter);
if (supportsFloatingPoint()) {
-#if USE(JSVALUE64)
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
-#else
- Jump fail1;
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1 = emitJumpIfNotJSCell(regT0);
-
- Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
- loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
-#endif
-
- int32_t op2imm = getConstantOperand(op2).asInt32();;
-
- move(Imm32(op2imm), regT1);
- convertInt32ToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
-#if USE(JSVALUE64)
- fail1.link(this);
-#else
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1.link(this);
- fail2.link(this);
-#endif
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
-
- } else if (isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
-#if USE(JSVALUE64)
- Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
-#else
- Jump fail1;
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail1 = emitJumpIfNotJSCell(regT1);
-
- Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
- loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
-#endif
-
- int32_t op1imm = getConstantOperand(op1).asInt32();;
-
- move(Imm32(op1imm), regT0);
- convertInt32ToDouble(regT0, fpRegT0);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
-#if USE(JSVALUE64)
- fail1.link(this);
-#else
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail1.link(this);
- fail2.link(this);
-#endif
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
-
- } else {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
-#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
- Jump fail3 = emitJumpIfImmediateInteger(regT1);
addPtr(tagTypeNumberRegister, regT0);
- addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT0, fpRegT0);
- movePtrToDouble(regT1, fpRegT1);
-#else
- Jump fail1;
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1 = emitJumpIfNotJSCell(regT0);
-
- Jump fail2;
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail2 = emitJumpIfNotJSCell(regT1);
-
- Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
- Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
- loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
- loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
-#endif
-
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
-#if USE(JSVALUE64)
- fail1.link(this);
- fail2.link(this);
- fail3.link(this);
-#else
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1.link(this);
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail2.link(this);
- fail3.link(this);
- fail4.link(this);
-#endif
- }
-
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
- }
-}
-
-void JIT::emit_op_jless(Instruction* currentInstruction)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the fast path:
- // - int immediate to constant int immediate
- // - constant int immediate to int immediate
- // - int immediate to int immediate
-
- if (isOperandConstantImmediateChar(op1)) {
- emitGetVirtualRegister(op2, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(GreaterThan, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateChar(op2)) {
- emitGetVirtualRegister(op1, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(LessThan, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
-#if USE(JSVALUE64)
- int32_t op2imm = getConstantOperandImmediateInt(op2);
-#else
- int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
-#endif
- addJump(branch32(LessThan, regT0, Imm32(op2imm)), target);
- } else if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
-#if USE(JSVALUE64)
- int32_t op1imm = getConstantOperandImmediateInt(op1);
-#else
- int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
-#endif
- addJump(branch32(GreaterThan, regT1, Imm32(op1imm)), target);
- } else {
- emitGetVirtualRegisters(op1, regT0, op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
-
- addJump(branch32(LessThan, regT0, regT1), target);
- }
-}
-
-void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the slow path:
- // - floating-point number to constant int immediate
- // - constant int immediate to floating-point number
- // - floating-point number to floating-point number.
- if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
- return;
- }
-
- if (isOperandConstantImmediateInt(op2)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
-#if USE(JSVALUE64)
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
-#else
- Jump fail1;
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1 = emitJumpIfNotJSCell(regT0);
-
- Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
- loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
-#endif
-
- int32_t op2imm = getConstantOperand(op2).asInt32();
-
- move(Imm32(op2imm), regT1);
- convertInt32ToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
-#if USE(JSVALUE64)
- fail1.link(this);
-#else
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1.link(this);
- fail2.link(this);
-#endif
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
-
- } else if (isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
-#if USE(JSVALUE64)
- Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
-#else
- Jump fail1;
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail1 = emitJumpIfNotJSCell(regT1);
-
- Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
- loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
-#endif
-
- int32_t op1imm = getConstantOperand(op1).asInt32();
-
- move(Imm32(op1imm), regT0);
- convertInt32ToDouble(regT0, fpRegT0);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
-#if USE(JSVALUE64)
- fail1.link(this);
-#else
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail1.link(this);
- fail2.link(this);
-#endif
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
-
- } else {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
-#if USE(JSVALUE64)
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
- Jump fail3 = emitJumpIfImmediateInteger(regT1);
- addPtr(tagTypeNumberRegister, regT0);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT0, fpRegT0);
- movePtrToDouble(regT1, fpRegT1);
-#else
- Jump fail1;
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1 = emitJumpIfNotJSCell(regT0);
-
- Jump fail2;
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail2 = emitJumpIfNotJSCell(regT1);
-
- Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
- Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
- loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
- loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
-#endif
-
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
-#if USE(JSVALUE64)
- fail1.link(this);
- fail2.link(this);
- fail3.link(this);
-#else
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1.link(this);
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail2.link(this);
- fail3.link(this);
- fail4.link(this);
-#endif
- }
-
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
- }
-}
-
-void JIT::emit_op_jlesseq(Instruction* currentInstruction, bool invert)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the fast path:
- // - int immediate to constant int immediate
- // - constant int immediate to int immediate
- // - int immediate to int immediate
-
- if (isOperandConstantImmediateChar(op1)) {
- emitGetVirtualRegister(op2, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateChar(op2)) {
- emitGetVirtualRegister(op1, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
-#if USE(JSVALUE64)
- int32_t op2imm = getConstantOperandImmediateInt(op2);
-#else
- int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
-#endif
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(op2imm)), target);
- } else if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
-#if USE(JSVALUE64)
- int32_t op1imm = getConstantOperandImmediateInt(op1);
-#else
- int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
-#endif
- addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT1, Imm32(op1imm)), target);
- } else {
- emitGetVirtualRegisters(op1, regT0, op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
-
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, regT1), target);
- }
-}
-
-void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool invert)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the slow path:
- // - floating-point number to constant int immediate
- // - constant int immediate to floating-point number
- // - floating-point number to floating-point number.
-
- if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jlesseq);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
- return;
- }
-
- if (isOperandConstantImmediateInt(op2)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
-#if USE(JSVALUE64)
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
-#else
- Jump fail1;
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1 = emitJumpIfNotJSCell(regT0);
-
- Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
- loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
-#endif
- int32_t op2imm = getConstantOperand(op2).asInt32();;
+ int32_t op2imm = getConstantOperand(op2).asInt32();
move(Imm32(op2imm), regT1);
convertInt32ToDouble(regT1, fpRegT1);
- emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+ emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
-#if USE(JSVALUE64)
fail1.link(this);
-#else
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1.link(this);
- fail2.link(this);
-#endif
}
- JITStubCall stubCall(this, cti_op_jlesseq);
+ JITStubCall stubCall(this, stub);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call();
linkSlowCase(iter);
if (supportsFloatingPoint()) {
-#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT1, fpRegT1);
-#else
- Jump fail1;
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail1 = emitJumpIfNotJSCell(regT1);
-
- Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
- loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
-#endif
- int32_t op1imm = getConstantOperand(op1).asInt32();;
+ int32_t op1imm = getConstantOperand(op1).asInt32();
move(Imm32(op1imm), regT0);
convertInt32ToDouble(regT0, fpRegT0);
- emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+ emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
-#if USE(JSVALUE64)
fail1.link(this);
-#else
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail1.link(this);
- fail2.link(this);
-#endif
}
- JITStubCall stubCall(this, cti_op_jlesseq);
+ JITStubCall stubCall(this, stub);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
-
} else {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
-#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
Jump fail3 = emitJumpIfImmediateInteger(regT1);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT0, fpRegT0);
movePtrToDouble(regT1, fpRegT1);
-#else
- Jump fail1;
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1 = emitJumpIfNotJSCell(regT0);
-
- Jump fail2;
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail2 = emitJumpIfNotJSCell(regT1);
-
- Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
- Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
- loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
- loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
-#endif
- emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+ emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
-#if USE(JSVALUE64)
fail1.link(this);
fail2.link(this);
fail3.link(this);
-#else
- if (!m_codeBlock->isKnownNotImmediate(op1))
- fail1.link(this);
- if (!m_codeBlock->isKnownNotImmediate(op2))
- fail2.link(this);
- fail3.link(this);
- fail4.link(this);
-#endif
}
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jlesseq);
+ JITStubCall stubCall(this, stub);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
}
}
-void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
-{
- emit_op_jlesseq(currentInstruction, true);
-}
-
-void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- emitSlow_op_jlesseq(currentInstruction, iter, true);
-}
-
void JIT::emit_op_bitand(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
-#if USE(JSVALUE64)
int32_t imm = getConstantOperandImmediateInt(op1);
andPtr(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
-#else
- andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)))), regT0);
-#endif
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
-#if USE(JSVALUE64)
int32_t imm = getConstantOperandImmediateInt(op2);
andPtr(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
-#else
- andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)))), regT0);
-#endif
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
andPtr(regT1, regT0);
emitGetVirtualRegister(srcDst, regT0);
move(regT0, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
-#if USE(JSVALUE64)
- addSlowCase(branchAdd32(Overflow, Imm32(1), regT1));
+ addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT1));
emitFastArithIntToImmNoCheck(regT1, regT1);
-#else
- addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
- signExtend32ToPtr(regT1, regT1);
-#endif
emitPutVirtualRegister(srcDst, regT1);
emitPutVirtualRegister(result);
}
emitGetVirtualRegister(srcDst, regT0);
move(regT0, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
-#if USE(JSVALUE64)
- addSlowCase(branchSub32(Zero, Imm32(1), regT1));
+ addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT1));
emitFastArithIntToImmNoCheck(regT1, regT1);
-#else
- addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
- signExtend32ToPtr(regT1, regT1);
-#endif
emitPutVirtualRegister(srcDst, regT1);
emitPutVirtualRegister(result);
}
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
-#if USE(JSVALUE64)
- addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+ addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
-#else
- addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
- signExtend32ToPtr(regT0, regT0);
-#endif
emitPutVirtualRegister(srcDst);
}
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
-#if USE(JSVALUE64)
- addSlowCase(branchSub32(Zero, Imm32(1), regT0));
+ addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
-#else
- addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
- signExtend32ToPtr(regT0, regT0);
-#endif
emitPutVirtualRegister(srcDst);
}
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
- emitGetVirtualRegisters(op1, X86Registers::eax, op2, X86Registers::ecx);
- emitJumpSlowCaseIfNotImmediateInteger(X86Registers::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86Registers::ecx);
-#if USE(JSVALUE64)
- addSlowCase(branchPtr(Equal, X86Registers::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))));
- m_assembler.cdq();
- m_assembler.idivl_r(X86Registers::ecx);
-#else
- emitFastArithDeTagImmediate(X86Registers::eax);
- addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86Registers::ecx));
+ // Make sure registers are correct for x86 IDIV instructions.
+ ASSERT(regT0 == X86Registers::eax);
+ ASSERT(regT1 == X86Registers::edx);
+ ASSERT(regT2 == X86Registers::ecx);
+
+ emitGetVirtualRegisters(op1, regT3, op2, regT2);
+ emitJumpSlowCaseIfNotImmediateInteger(regT3);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+
+ move(regT3, regT0);
+ addSlowCase(branchTest32(Zero, regT2));
+ Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1));
+ addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1)));
+ denominatorNotNeg1.link(this);
m_assembler.cdq();
- m_assembler.idivl_r(X86Registers::ecx);
- signExtend32ToPtr(X86Registers::edx, X86Registers::edx);
-#endif
- emitFastArithReTagImmediate(X86Registers::edx, X86Registers::eax);
+ m_assembler.idivl_r(regT2);
+ Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0));
+ addSlowCase(branchTest32(Zero, regT1));
+ numeratorPositive.link(this);
+ emitFastArithReTagImmediate(regT1, regT0);
emitPutVirtualRegister(result);
}
{
unsigned result = currentInstruction[1].u.operand;
-#if USE(JSVALUE64)
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
-#else
- Jump notImm1 = getSlowCase(iter);
- Jump notImm2 = getSlowCase(iter);
linkSlowCase(iter);
- emitFastArithReTagImmediate(X86Registers::eax, X86Registers::eax);
- emitFastArithReTagImmediate(X86Registers::ecx, X86Registers::ecx);
- notImm1.link(this);
- notImm2.link(this);
-#endif
+ linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(X86Registers::eax);
- stubCall.addArgument(X86Registers::ecx);
+ stubCall.addArgument(regT3);
+ stubCall.addArgument(regT2);
stubCall.call(result);
}
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
-#if ENABLE(JIT_OPTIMIZE_MOD)
- emitGetVirtualRegisters(op1, regT0, op2, regT2);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT2);
-
- addSlowCase(branch32(Equal, regT2, Imm32(1)));
-
- emitNakedCall(m_globalData->jitStubs.ctiSoftModulo());
-
- emitPutVirtualRegister(result, regT0);
-#else
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
-#endif
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
-#if ENABLE(JIT_OPTIMIZE_MOD)
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
-#else
ASSERT_NOT_REACHED();
-#endif
}
#endif // CPU(X86) || CPU(X86_64)
/* ------------------------------ END: OP_MOD ------------------------------ */
-#if USE(JSVALUE64)
-
/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes)
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if ENABLE(VALUE_PROFILER)
+ RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+#endif
if (opcodeID == op_add)
addSlowCase(branchAdd32(Overflow, regT1, regT0));
else if (opcodeID == op_sub)
addSlowCase(branchSub32(Overflow, regT1, regT0));
else {
ASSERT(opcodeID == op_mul);
+#if ENABLE(VALUE_PROFILER)
+ if (m_canBeOptimized) {
+ // We want to be able to measure if this is taking the slow case just
+ // because of negative zero. If this produces positive zero, then we
+ // don't want the slow case to be taken because that will throw off
+ // speculative compilation.
+ move(regT0, regT2);
+ addSlowCase(branchMul32(Overflow, regT1, regT2));
+ JumpList done;
+ done.append(branchTest32(NonZero, regT2));
+ Jump negativeZero = branch32(LessThan, regT0, TrustedImm32(0));
+ done.append(branch32(GreaterThanOrEqual, regT1, TrustedImm32(0)));
+ negativeZero.link(this);
+ // We only get here if we have a genuine negative zero. Record this,
+ // so that the speculative JIT knows that we failed speculation
+ // because of a negative zero.
+ add32(TrustedImm32(1), AbsoluteAddress(&profile->m_counter));
+ addSlowCase(jump());
+ done.link(this);
+ move(regT2, regT0);
+ } else {
+ addSlowCase(branchMul32(Overflow, regT1, regT0));
+ addSlowCase(branchTest32(Zero, regT0));
+ }
+#else
addSlowCase(branchMul32(Overflow, regT1, regT0));
addSlowCase(branchTest32(Zero, regT0));
+#endif
}
emitFastArithIntToImmNoCheck(regT0, regT0);
}
void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
{
// We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset.
- COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
+ COMPILE_ASSERT(((TagTypeNumber + DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
Jump notImm1;
Jump notImm2;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ addSlowCase();
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0));
- emitFastArithIntToImmNoCheck(regT0, regT0);
+ addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op1)), regT1));
+ emitFastArithIntToImmNoCheck(regT1, regT0);
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0));
- emitFastArithIntToImmNoCheck(regT0, regT0);
+ addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op2)), regT1));
+ emitFastArithIntToImmNoCheck(regT1, regT0);
} else
compileBinaryArithOp(op_add, result, op1, op2, types);
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ linkDummySlowCase(iter);
return;
+ }
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
- compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+ compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_mul(Instruction* currentInstruction)
// For now, only plant a fast int case if the constant operand is greater than zero.
int32_t value;
if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
+#if ENABLE(VALUE_PROFILER)
+ // Add a special fast case profile because the DFG JIT will expect one.
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+#endif
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
- emitFastArithReTagImmediate(regT0, regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
+ emitFastArithReTagImmediate(regT1, regT0);
} else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
+#if ENABLE(VALUE_PROFILER)
+ // Add a special fast case profile because the DFG JIT will expect one.
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+#endif
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
- emitFastArithReTagImmediate(regT0, regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
+ emitFastArithReTagImmediate(regT1, regT0);
} else
compileBinaryArithOp(op_mul, result, op1, op2, types);
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0;
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0;
- compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+ compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_div(Instruction* currentInstruction)
skipDoubleLoad.link(this);
}
divDouble(fpRegT1, fpRegT0);
-
+
+#if ENABLE(VALUE_PROFILER)
+ // Is the result actually an integer? The DFG JIT would really like to know. If it's
+ // not an integer, we increment a count. If this together with the slow case counter
+ // are below threshold then the DFG JIT will compile this division with a specualtion
+ // that the remainder is zero.
+
+ // As well, there are cases where a double result here would cause an important field
+ // in the heap to sometimes have doubles in it, resulting in double predictions getting
+ // propagated to a use site where it might cause damage (such as the index to an array
+ // access). So if we are DFG compiling anything in the program, we want this code to
+ // ensure that it produces integers whenever possible.
+
+ // FIXME: This will fail to convert to integer if the result is zero. We should
+ // distinguish between positive zero and negative zero here.
+
+ JumpList notInteger;
+ branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1);
+ // If we've got an integer, we might as well make that the result of the division.
+ emitFastArithReTagImmediate(regT0, regT0);
+ Jump isInteger = jump();
+ notInteger.link(this);
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter));
+ moveDoubleToPtr(fpRegT0, regT0);
+ subPtr(tagTypeNumberRegister, regT0);
+ isInteger.link(this);
+#else
// Double result.
moveDoubleToPtr(fpRegT0, regT0);
subPtr(tagTypeNumberRegister, regT0);
+#endif
emitPutVirtualRegister(dst, regT0);
}
compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false);
}
-#else // USE(JSVALUE64)
-
-/* ------------------------------ BEGIN: !USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
-
-void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
-{
- Structure* numberStructure = m_globalData->numberStructure.get();
- Jump wasJSNumberCell1;
- Jump wasJSNumberCell2;
-
- emitGetVirtualRegisters(src1, regT0, src2, regT1);
-
- if (types.second().isReusable() && supportsFloatingPoint()) {
- ASSERT(types.second().mightBeNumber());
-
- // Check op2 is a number
- Jump op2imm = emitJumpIfImmediateInteger(regT1);
- if (!types.second().definitelyIsNumber()) {
- emitJumpSlowCaseIfNotJSCell(regT1, src2);
- addSlowCase(checkStructure(regT1, numberStructure));
- }
-
- // (1) In this case src2 is a reusable number cell.
- // Slow case if src1 is not a number type.
- Jump op1imm = emitJumpIfImmediateInteger(regT0);
- if (!types.first().definitelyIsNumber()) {
- emitJumpSlowCaseIfNotJSCell(regT0, src1);
- addSlowCase(checkStructure(regT0, numberStructure));
- }
-
- // (1a) if we get here, src1 is also a number cell
- loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
- Jump loadedDouble = jump();
- // (1b) if we get here, src1 is an immediate
- op1imm.link(this);
- emitFastArithImmToInt(regT0);
- convertInt32ToDouble(regT0, fpRegT0);
- // (1c)
- loadedDouble.link(this);
- if (opcodeID == op_add)
- addDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
- else if (opcodeID == op_sub)
- subDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
- else {
- ASSERT(opcodeID == op_mul);
- mulDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
- }
-
- // Store the result to the JSNumberCell and jump.
- storeDouble(fpRegT0, Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)));
- move(regT1, regT0);
- emitPutVirtualRegister(dst);
- wasJSNumberCell2 = jump();
-
- // (2) This handles cases where src2 is an immediate number.
- // Two slow cases - either src1 isn't an immediate, or the subtract overflows.
- op2imm.link(this);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- } else if (types.first().isReusable() && supportsFloatingPoint()) {
- ASSERT(types.first().mightBeNumber());
-
- // Check op1 is a number
- Jump op1imm = emitJumpIfImmediateInteger(regT0);
- if (!types.first().definitelyIsNumber()) {
- emitJumpSlowCaseIfNotJSCell(regT0, src1);
- addSlowCase(checkStructure(regT0, numberStructure));
- }
-
- // (1) In this case src1 is a reusable number cell.
- // Slow case if src2 is not a number type.
- Jump op2imm = emitJumpIfImmediateInteger(regT1);
- if (!types.second().definitelyIsNumber()) {
- emitJumpSlowCaseIfNotJSCell(regT1, src2);
- addSlowCase(checkStructure(regT1, numberStructure));
- }
-
- // (1a) if we get here, src2 is also a number cell
- loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
- Jump loadedDouble = jump();
- // (1b) if we get here, src2 is an immediate
- op2imm.link(this);
- emitFastArithImmToInt(regT1);
- convertInt32ToDouble(regT1, fpRegT1);
- // (1c)
- loadedDouble.link(this);
- loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
- if (opcodeID == op_add)
- addDouble(fpRegT1, fpRegT0);
- else if (opcodeID == op_sub)
- subDouble(fpRegT1, fpRegT0);
- else {
- ASSERT(opcodeID == op_mul);
- mulDouble(fpRegT1, fpRegT0);
- }
- storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
- emitPutVirtualRegister(dst);
-
- // Store the result to the JSNumberCell and jump.
- storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
- emitPutVirtualRegister(dst);
- wasJSNumberCell1 = jump();
-
- // (2) This handles cases where src1 is an immediate number.
- // Two slow cases - either src2 isn't an immediate, or the subtract overflows.
- op1imm.link(this);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
- } else
- emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
-
- if (opcodeID == op_add) {
- emitFastArithDeTagImmediate(regT0);
- addSlowCase(branchAdd32(Overflow, regT1, regT0));
- } else if (opcodeID == op_sub) {
- addSlowCase(branchSub32(Overflow, regT1, regT0));
- signExtend32ToPtr(regT0, regT0);
- emitFastArithReTagImmediate(regT0, regT0);
- } else {
- ASSERT(opcodeID == op_mul);
- // convert eax & edx from JSImmediates to ints, and check if either are zero
- emitFastArithImmToInt(regT1);
- Jump op1Zero = emitFastArithDeTagImmediateJumpIfZero(regT0);
- Jump op2NonZero = branchTest32(NonZero, regT1);
- op1Zero.link(this);
- // if either input is zero, add the two together, and check if the result is < 0.
- // If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate.
- move(regT0, regT2);
- addSlowCase(branchAdd32(Signed, regT1, regT2));
- // Skip the above check if neither input is zero
- op2NonZero.link(this);
- addSlowCase(branchMul32(Overflow, regT1, regT0));
- signExtend32ToPtr(regT0, regT0);
- emitFastArithReTagImmediate(regT0, regT0);
- }
- emitPutVirtualRegister(dst);
-
- if (types.second().isReusable() && supportsFloatingPoint())
- wasJSNumberCell2.link(this);
- else if (types.first().isReusable() && supportsFloatingPoint())
- wasJSNumberCell1.link(this);
-}
-
-void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
-{
- linkSlowCase(iter);
- if (types.second().isReusable() && supportsFloatingPoint()) {
- if (!types.first().definitelyIsNumber()) {
- linkSlowCaseIfNotJSCell(iter, src1);
- linkSlowCase(iter);
- }
- if (!types.second().definitelyIsNumber()) {
- linkSlowCaseIfNotJSCell(iter, src2);
- linkSlowCase(iter);
- }
- } else if (types.first().isReusable() && supportsFloatingPoint()) {
- if (!types.first().definitelyIsNumber()) {
- linkSlowCaseIfNotJSCell(iter, src1);
- linkSlowCase(iter);
- }
- if (!types.second().definitelyIsNumber()) {
- linkSlowCaseIfNotJSCell(iter, src2);
- linkSlowCase(iter);
- }
- }
- linkSlowCase(iter);
-
- // additional entry point to handle -0 cases.
- if (opcodeID == op_mul)
- linkSlowCase(iter);
-
- JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
- stubCall.addArgument(src1, regT2);
- stubCall.addArgument(src2, regT2);
- stubCall.call(dst);
-}
-
-void JIT::emit_op_add(Instruction* currentInstruction)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
- OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
-
- if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
- JITStubCall stubCall(this, cti_op_add);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
- return;
- }
-
- if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0));
- signExtend32ToPtr(regT0, regT0);
- emitPutVirtualRegister(result);
- } else if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0));
- signExtend32ToPtr(regT0, regT0);
- emitPutVirtualRegister(result);
- } else {
- compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
- }
-}
-
-void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
- OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
- return;
-
- if (isOperandConstantImmediateInt(op1)) {
- Jump notImm = getSlowCase(iter);
- linkSlowCase(iter);
- sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0);
- notImm.link(this);
- JITStubCall stubCall(this, cti_op_add);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT0);
- stubCall.call(result);
- } else if (isOperandConstantImmediateInt(op2)) {
- Jump notImm = getSlowCase(iter);
- linkSlowCase(iter);
- sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0);
- notImm.link(this);
- JITStubCall stubCall(this, cti_op_add);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
- } else {
- OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber());
- compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types);
- }
-}
-
-void JIT::emit_op_mul(Instruction* currentInstruction)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
- // For now, only plant a fast int case if the constant operand is greater than zero.
- int32_t value;
- if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
- emitGetVirtualRegister(op2, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitFastArithDeTagImmediate(regT0);
- addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
- signExtend32ToPtr(regT0, regT0);
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(result);
- } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
- emitGetVirtualRegister(op1, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitFastArithDeTagImmediate(regT0);
- addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
- signExtend32ToPtr(regT0, regT0);
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(result);
- } else
- compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
-}
-
-void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
- if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0))
- || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
- JITStubCall stubCall(this, cti_op_mul);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
- } else
- compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
-}
-
-void JIT::emit_op_sub(Instruction* currentInstruction)
-{
- compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
-}
-
-void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
-}
-
-#endif // USE(JSVALUE64)
-
/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */
-#endif // !USE(JSVALUE32_64)
+#endif // USE(JSVALUE64)
} // namespace JSC