--- /dev/null
+/*
+ * Copyright (C) 2013, 2014 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef FTLOutput_h
+#define FTLOutput_h
+
+#if ENABLE(FTL_JIT)
+
+#include "DFGCommon.h"
+#include "FTLAbbreviations.h"
+#include "FTLAbstractHeapRepository.h"
+#include "FTLCommonValues.h"
+#include "FTLIntrinsicRepository.h"
+#include "FTLState.h"
+#include "FTLSwitchCase.h"
+#include "FTLTypedPointer.h"
+#include "FTLWeight.h"
+#include "FTLWeightedTarget.h"
+#include <wtf/StringPrintStream.h>
+
+namespace JSC { namespace FTL {
+
+// Idiomatic LLVM IR builder specifically designed for FTL. This uses our own lowering
+// terminology, and has some of its own notions:
+//
+// We say that a "reference" is what LLVM considers to be a "pointer". That is, it has
+// an element type and can be passed directly to memory access instructions. Note that
+// broadly speaking the users of FTL::Output should only use references for alloca'd
+// slots for mutable local variables.
+//
+// We say that a "pointer" is what LLVM considers to be a pointer-width integer.
+//
+// We say that a "typed pointer" is a pointer that carries TBAA meta-data (i.e. an
+// AbstractHeap). These should usually not have further computation performed on them
+// prior to access, though there are exceptions (like offsetting into the payload of
+// a typed pointer to a JSValue).
+//
+// We say that "get" and "set" are what LLVM considers to be "load" and "store". Get
+// and set take references.
+//
+// We say that "load" and "store" are operations that take a typed pointer. These
+// operations translate the pointer into a reference (or, a pointer in LLVM-speak),
+// emit get or set on the reference (or, load and store in LLVM-speak), and apply the
+// TBAA meta-data to the get or set.
+
+enum Scale { ScaleOne, ScaleTwo, ScaleFour, ScaleEight, ScalePtr };
+
+class Output : public IntrinsicRepository {
+public:
+ Output(LContext);
+ ~Output();
+
+ void initialize(LModule, LValue, AbstractHeapRepository&);
+
+ LBasicBlock insertNewBlocksBefore(LBasicBlock nextBlock)
+ {
+ LBasicBlock lastNextBlock = m_nextBlock;
+ m_nextBlock = nextBlock;
+ return lastNextBlock;
+ }
+
+ LBasicBlock appendTo(LBasicBlock, LBasicBlock nextBlock);
+
+ void appendTo(LBasicBlock);
+
+ LBasicBlock newBlock(const char* name = "");
+
+ LValue param(unsigned index) { return getParam(m_function, index); }
+ LValue constBool(bool value) { return constInt(boolean, value); }
+ LValue constInt8(int8_t value) { return constInt(int8, value); }
+ LValue constInt32(int32_t value) { return constInt(int32, value); }
+ template<typename T>
+ LValue constIntPtr(T* value) { return constInt(intPtr, bitwise_cast<intptr_t>(value)); }
+ template<typename T>
+ LValue constIntPtr(T value) { return constInt(intPtr, static_cast<intptr_t>(value)); }
+ LValue constInt64(int64_t value) { return constInt(int64, value); }
+ LValue constDouble(double value) { return constReal(doubleType, value); }
+
+ LValue phi(LType type) { return buildPhi(m_builder, type); }
+ template<typename... Params>
+ LValue phi(LType type, ValueFromBlock value, Params... theRest)
+ {
+ LValue result = phi(type, theRest...);
+ addIncoming(result, value);
+ return result;
+ }
+ template<typename VectorType>
+ LValue phi(LType type, const VectorType& vector)
+ {
+ LValue result = phi(type);
+ for (unsigned i = 0; i < vector.size(); ++i)
+ addIncoming(result, vector[i]);
+ return result;
+ }
+
+ LValue add(LValue left, LValue right) { return buildAdd(m_builder, left, right); }
+ LValue sub(LValue left, LValue right) { return buildSub(m_builder, left, right); }
+ LValue mul(LValue left, LValue right) { return buildMul(m_builder, left, right); }
+ LValue div(LValue left, LValue right) { return buildDiv(m_builder, left, right); }
+ LValue rem(LValue left, LValue right) { return buildRem(m_builder, left, right); }
+ LValue neg(LValue value) { return buildNeg(m_builder, value); }
+
+ LValue doubleAdd(LValue left, LValue right) { return buildFAdd(m_builder, left, right); }
+ LValue doubleSub(LValue left, LValue right) { return buildFSub(m_builder, left, right); }
+ LValue doubleMul(LValue left, LValue right) { return buildFMul(m_builder, left, right); }
+ LValue doubleDiv(LValue left, LValue right) { return buildFDiv(m_builder, left, right); }
+ LValue doubleRem(LValue left, LValue right) { return buildFRem(m_builder, left, right); }
+ LValue doubleNeg(LValue value) { return buildFNeg(m_builder, value); }
+
+ LValue bitAnd(LValue left, LValue right) { return buildAnd(m_builder, left, right); }
+ LValue bitOr(LValue left, LValue right) { return buildOr(m_builder, left, right); }
+ LValue bitXor(LValue left, LValue right) { return buildXor(m_builder, left, right); }
+ LValue shl(LValue left, LValue right) { return buildShl(m_builder, left, right); }
+ LValue aShr(LValue left, LValue right) { return buildAShr(m_builder, left, right); }
+ LValue lShr(LValue left, LValue right) { return buildLShr(m_builder, left, right); }
+ LValue bitNot(LValue value) { return buildNot(m_builder, value); }
+
+ LValue insertElement(LValue vector, LValue element, LValue index) { return buildInsertElement(m_builder, vector, element, index); }
+
+ LValue addWithOverflow32(LValue left, LValue right)
+ {
+ return call(addWithOverflow32Intrinsic(), left, right);
+ }
+ LValue subWithOverflow32(LValue left, LValue right)
+ {
+ return call(subWithOverflow32Intrinsic(), left, right);
+ }
+ LValue mulWithOverflow32(LValue left, LValue right)
+ {
+ return call(mulWithOverflow32Intrinsic(), left, right);
+ }
+ LValue addWithOverflow64(LValue left, LValue right)
+ {
+ return call(addWithOverflow64Intrinsic(), left, right);
+ }
+ LValue subWithOverflow64(LValue left, LValue right)
+ {
+ return call(subWithOverflow64Intrinsic(), left, right);
+ }
+ LValue mulWithOverflow64(LValue left, LValue right)
+ {
+ return call(mulWithOverflow64Intrinsic(), left, right);
+ }
+ LValue doubleAbs(LValue value)
+ {
+ return call(doubleAbsIntrinsic(), value);
+ }
+
+ LValue doubleSin(LValue value)
+ {
+ return call(doubleSinIntrinsic(), value);
+ }
+ LValue doubleCos(LValue value)
+ {
+ return call(doubleCosIntrinsic(), value);
+ }
+
+ LValue doubleSqrt(LValue value)
+ {
+ return call(doubleSqrtIntrinsic(), value);
+ }
+
+ static bool hasSensibleDoubleToInt() { return isX86(); }
+ LValue sensibleDoubleToInt(LValue);
+
+ LValue signExt(LValue value, LType type) { return buildSExt(m_builder, value, type); }
+ LValue zeroExt(LValue value, LType type) { return buildZExt(m_builder, value, type); }
+ LValue fpToInt(LValue value, LType type) { return buildFPToSI(m_builder, value, type); }
+ LValue fpToUInt(LValue value, LType type) { return buildFPToUI(m_builder, value, type); }
+ LValue fpToInt32(LValue value) { return fpToInt(value, int32); }
+ LValue fpToUInt32(LValue value) { return fpToUInt(value, int32); }
+ LValue intToFP(LValue value, LType type) { return buildSIToFP(m_builder, value, type); }
+ LValue intToDouble(LValue value) { return intToFP(value, doubleType); }
+ LValue unsignedToFP(LValue value, LType type) { return buildUIToFP(m_builder, value, type); }
+ LValue unsignedToDouble(LValue value) { return unsignedToFP(value, doubleType); }
+ LValue intCast(LValue value, LType type) { return buildIntCast(m_builder, value, type); }
+ LValue castToInt32(LValue value) { return intCast(value, int32); }
+ LValue fpCast(LValue value, LType type) { return buildFPCast(m_builder, value, type); }
+ LValue intToPtr(LValue value, LType type) { return buildIntToPtr(m_builder, value, type); }
+ LValue ptrToInt(LValue value, LType type) { return buildPtrToInt(m_builder, value, type); }
+ LValue bitCast(LValue value, LType type) { return buildBitCast(m_builder, value, type); }
+
+ LValue alloca(LType type) { return buildAlloca(m_builder, type); }
+
+ // Access the value of an alloca. Also used as a low-level implementation primitive for
+ // load(). Never use this to load from "pointers" in the FTL sense, since FTL pointers
+ // are actually integers. This requires an LLVM pointer. Broadly speaking, you don't
+ // have any LLVM pointers even if you really think you do. A TypedPointer is not an
+ // LLVM pointer. See comment block at top of this file to understand the distinction
+ // between LLVM pointers, FTL pointers, and FTL references.
+ LValue get(LValue reference) { return buildLoad(m_builder, reference); }
+ // Similar to get() but for storing to the value in an alloca.
+ LValue set(LValue value, LValue reference) { return buildStore(m_builder, value, reference); }
+
+ LValue load(TypedPointer, LType refType);
+ void store(LValue, TypedPointer, LType refType);
+
+ LValue load8(TypedPointer pointer) { return load(pointer, ref8); }
+ LValue load16(TypedPointer pointer) { return load(pointer, ref16); }
+ LValue load32(TypedPointer pointer) { return load(pointer, ref32); }
+ LValue load64(TypedPointer pointer) { return load(pointer, ref64); }
+ LValue loadPtr(TypedPointer pointer) { return load(pointer, refPtr); }
+ LValue loadFloat(TypedPointer pointer) { return load(pointer, refFloat); }
+ LValue loadDouble(TypedPointer pointer) { return load(pointer, refDouble); }
+ void store8(LValue value, TypedPointer pointer) { store(value, pointer, ref8); }
+ void store16(LValue value, TypedPointer pointer) { store(value, pointer, ref16); }
+ void store32(LValue value, TypedPointer pointer) { store(value, pointer, ref32); }
+ void store64(LValue value, TypedPointer pointer) { store(value, pointer, ref64); }
+ void storePtr(LValue value, TypedPointer pointer) { store(value, pointer, refPtr); }
+ void storeFloat(LValue value, TypedPointer pointer) { store(value, pointer, refFloat); }
+ void storeDouble(LValue value, TypedPointer pointer) { store(value, pointer, refDouble); }
+
+ LValue addPtr(LValue value, ptrdiff_t immediate = 0)
+ {
+ if (!immediate)
+ return value;
+ return add(value, constIntPtr(immediate));
+ }
+
+ // Construct an address by offsetting base by the requested amount and ascribing
+ // the requested abstract heap to it.
+ TypedPointer address(const AbstractHeap& heap, LValue base, ptrdiff_t offset = 0)
+ {
+ return TypedPointer(heap, addPtr(base, offset));
+ }
+ // Construct an address by offsetting base by the amount specified by the field,
+ // and optionally an additional amount (use this with care), and then creating
+ // a TypedPointer with the given field as the heap.
+ TypedPointer address(LValue base, const AbstractField& field, ptrdiff_t offset = 0)
+ {
+ return address(field, base, offset + field.offset());
+ }
+
+ LValue baseIndex(LValue base, LValue index, Scale, ptrdiff_t offset = 0);
+
+ TypedPointer baseIndex(const AbstractHeap& heap, LValue base, LValue index, Scale scale, ptrdiff_t offset = 0)
+ {
+ return TypedPointer(heap, baseIndex(base, index, scale, offset));
+ }
+ TypedPointer baseIndex(IndexedAbstractHeap& heap, LValue base, LValue index, JSValue indexAsConstant = JSValue(), ptrdiff_t offset = 0)
+ {
+ return heap.baseIndex(*this, base, index, indexAsConstant, offset);
+ }
+
+ TypedPointer absolute(void* address)
+ {
+ return TypedPointer(m_heaps->absolute[address], constIntPtr(address));
+ }
+
+ LValue load8(LValue base, const AbstractField& field) { return load8(address(base, field)); }
+ LValue load16(LValue base, const AbstractField& field) { return load16(address(base, field)); }
+ LValue load32(LValue base, const AbstractField& field) { return load32(address(base, field)); }
+ LValue load64(LValue base, const AbstractField& field) { return load64(address(base, field)); }
+ LValue loadPtr(LValue base, const AbstractField& field) { return loadPtr(address(base, field)); }
+ LValue loadDouble(LValue base, const AbstractField& field) { return loadDouble(address(base, field)); }
+ void store8(LValue value, LValue base, const AbstractField& field) { store8(value, address(base, field)); }
+ void store32(LValue value, LValue base, const AbstractField& field) { store32(value, address(base, field)); }
+ void store64(LValue value, LValue base, const AbstractField& field) { store64(value, address(base, field)); }
+ void storePtr(LValue value, LValue base, const AbstractField& field) { storePtr(value, address(base, field)); }
+ void storeDouble(LValue value, LValue base, const AbstractField& field) { storeDouble(value, address(base, field)); }
+
+ void ascribeRange(LValue loadInstruction, const ValueRange& range)
+ {
+ range.decorateInstruction(m_context, loadInstruction, rangeKind);
+ }
+
+ LValue nonNegative32(LValue loadInstruction)
+ {
+ ascribeRange(loadInstruction, nonNegativeInt32);
+ return loadInstruction;
+ }
+
+ LValue load32NonNegative(TypedPointer pointer) { return nonNegative32(load32(pointer)); }
+ LValue load32NonNegative(LValue base, const AbstractField& field) { return nonNegative32(load32(base, field)); }
+
+ LValue icmp(LIntPredicate cond, LValue left, LValue right) { return buildICmp(m_builder, cond, left, right); }
+ LValue equal(LValue left, LValue right) { return icmp(LLVMIntEQ, left, right); }
+ LValue notEqual(LValue left, LValue right) { return icmp(LLVMIntNE, left, right); }
+ LValue above(LValue left, LValue right) { return icmp(LLVMIntUGT, left, right); }
+ LValue aboveOrEqual(LValue left, LValue right) { return icmp(LLVMIntUGE, left, right); }
+ LValue below(LValue left, LValue right) { return icmp(LLVMIntULT, left, right); }
+ LValue belowOrEqual(LValue left, LValue right) { return icmp(LLVMIntULE, left, right); }
+ LValue greaterThan(LValue left, LValue right) { return icmp(LLVMIntSGT, left, right); }
+ LValue greaterThanOrEqual(LValue left, LValue right) { return icmp(LLVMIntSGE, left, right); }
+ LValue lessThan(LValue left, LValue right) { return icmp(LLVMIntSLT, left, right); }
+ LValue lessThanOrEqual(LValue left, LValue right) { return icmp(LLVMIntSLE, left, right); }
+
+ LValue fcmp(LRealPredicate cond, LValue left, LValue right) { return buildFCmp(m_builder, cond, left, right); }
+ LValue doubleEqual(LValue left, LValue right) { return fcmp(LLVMRealOEQ, left, right); }
+ LValue doubleNotEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUNE, left, right); }
+ LValue doubleLessThan(LValue left, LValue right) { return fcmp(LLVMRealOLT, left, right); }
+ LValue doubleLessThanOrEqual(LValue left, LValue right) { return fcmp(LLVMRealOLE, left, right); }
+ LValue doubleGreaterThan(LValue left, LValue right) { return fcmp(LLVMRealOGT, left, right); }
+ LValue doubleGreaterThanOrEqual(LValue left, LValue right) { return fcmp(LLVMRealOGE, left, right); }
+ LValue doubleEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUEQ, left, right); }
+ LValue doubleNotEqual(LValue left, LValue right) { return fcmp(LLVMRealONE, left, right); }
+ LValue doubleLessThanOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealULT, left, right); }
+ LValue doubleLessThanOrEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealULE, left, right); }
+ LValue doubleGreaterThanOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUGT, left, right); }
+ LValue doubleGreaterThanOrEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUGE, left, right); }
+
+ LValue isZero8(LValue value) { return equal(value, int8Zero); }
+ LValue notZero8(LValue value) { return notEqual(value, int8Zero); }
+ LValue isZero32(LValue value) { return equal(value, int32Zero); }
+ LValue notZero32(LValue value) { return notEqual(value, int32Zero); }
+ LValue isZero64(LValue value) { return equal(value, int64Zero); }
+ LValue notZero64(LValue value) { return notEqual(value, int64Zero); }
+ LValue isNull(LValue value) { return equal(value, intPtrZero); }
+ LValue notNull(LValue value) { return notEqual(value, intPtrZero); }
+
+ LValue testIsZero8(LValue value, LValue mask) { return isZero8(bitAnd(value, mask)); }
+ LValue testNonZero8(LValue value, LValue mask) { return notZero8(bitAnd(value, mask)); }
+ LValue testIsZero32(LValue value, LValue mask) { return isZero32(bitAnd(value, mask)); }
+ LValue testNonZero32(LValue value, LValue mask) { return notZero32(bitAnd(value, mask)); }
+ LValue testIsZero64(LValue value, LValue mask) { return isZero64(bitAnd(value, mask)); }
+ LValue testNonZero64(LValue value, LValue mask) { return notZero64(bitAnd(value, mask)); }
+
+ LValue select(LValue value, LValue taken, LValue notTaken) { return buildSelect(m_builder, value, taken, notTaken); }
+ LValue extractValue(LValue aggVal, unsigned index) { return buildExtractValue(m_builder, aggVal, index); }
+
+ LValue fence(LAtomicOrdering ordering = LLVMAtomicOrderingSequentiallyConsistent, SynchronizationScope scope = CrossThread) { return buildFence(m_builder, ordering, scope); }
+ LValue fenceAcqRel() { return fence(LLVMAtomicOrderingAcquireRelease); }
+
+ template<typename VectorType>
+ LValue call(LValue function, const VectorType& vector) { return buildCall(m_builder, function, vector); }
+ LValue call(LValue function) { return buildCall(m_builder, function); }
+ LValue call(LValue function, LValue arg1) { return buildCall(m_builder, function, arg1); }
+ LValue call(LValue function, LValue arg1, LValue arg2) { return buildCall(m_builder, function, arg1, arg2); }
+ LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3) { return buildCall(m_builder, function, arg1, arg2, arg3); }
+ LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4); }
+ LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5); }
+ LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6); }
+ LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6, LValue arg7) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6, arg7); }
+ LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6, LValue arg7, LValue arg8) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); }
+
+ template<typename FunctionType>
+ LValue operation(FunctionType function)
+ {
+ return intToPtr(constIntPtr(function), pointerType(operationType(function)));
+ }
+
+ void jump(LBasicBlock destination) { buildBr(m_builder, destination); }
+ void branch(LValue condition, LBasicBlock taken, Weight takenWeight, LBasicBlock notTaken, Weight notTakenWeight);
+ void branch(LValue condition, WeightedTarget taken, WeightedTarget notTaken)
+ {
+ branch(condition, taken.target(), taken.weight(), notTaken.target(), notTaken.weight());
+ }
+
+ template<typename VectorType>
+ void switchInstruction(LValue value, const VectorType& cases, LBasicBlock fallThrough, Weight fallThroughWeight)
+ {
+ LValue inst = buildSwitch(m_builder, value, cases, fallThrough);
+
+ double total = 0;
+ if (!fallThroughWeight)
+ return;
+ total += fallThroughWeight.value();
+ for (unsigned i = cases.size(); i--;) {
+ if (!cases[i].weight())
+ return;
+ total += cases[i].weight().value();
+ }
+
+ Vector<LValue> mdArgs;
+ mdArgs.append(branchWeights);
+ mdArgs.append(constInt32(fallThroughWeight.scaleToTotal(total)));
+ for (unsigned i = 0; i < cases.size(); ++i)
+ mdArgs.append(constInt32(cases[i].weight().scaleToTotal(total)));
+
+ setMetadata(inst, profKind, mdNode(m_context, mdArgs));
+ }
+
+ void ret(LValue value) { buildRet(m_builder, value); }
+
+ void unreachable() { buildUnreachable(m_builder); }
+
+ void trap()
+ {
+ call(trapIntrinsic());
+ }
+
+ void crashNonTerminal();
+
+ void crash()
+ {
+ crashNonTerminal();
+ unreachable();
+ }
+
+ ValueFromBlock anchor(LValue value)
+ {
+ return ValueFromBlock(value, m_block);
+ }
+
+ LValue m_function;
+ AbstractHeapRepository* m_heaps;
+ LBuilder m_builder;
+ LBasicBlock m_block;
+ LBasicBlock m_nextBlock;
+};
+
+#define FTL_NEW_BLOCK(output, nameArguments) \
+ (LIKELY(!verboseCompilationEnabled()) \
+ ? (output).newBlock() \
+ : (output).newBlock((toCString nameArguments).data()))
+
+} } // namespace JSC::FTL
+
+#endif // ENABLE(FTL_JIT)
+
+#endif // FTLOutput_h
+