/*
- * Copyright (C) 2013, 2014 Apple Inc. All rights reserved.
+ * Copyright (C) 2013-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
+#include "DFGSSACalculator.h"
+#include "DFGVariableAccessDataDump.h"
#include "JSCInlines.h"
namespace JSC { namespace DFG {
class SSAConversionPhase : public Phase {
static const bool verbose = false;
- static const bool dumpGraph = false;
public:
SSAConversionPhase(Graph& graph)
: Phase(graph, "SSA conversion")
+ , m_calculator(graph)
, m_insertionSet(graph)
- , m_changed(false)
{
}
{
RELEASE_ASSERT(m_graph.m_form == ThreadedCPS);
- if (dumpGraph) {
- dataLog("Graph dump at top of SSA conversion:\n");
+ m_graph.clearReplacements();
+ m_graph.m_dominators.computeIfNecessary(m_graph);
+
+ if (verbose) {
+ dataLog("Graph before SSA transformation:\n");
m_graph.dump();
}
+
+ // Create a SSACalculator::Variable for every root VariableAccessData.
+ for (VariableAccessData& variable : m_graph.m_variableAccessData) {
+ if (!variable.isRoot())
+ continue;
+
+ SSACalculator::Variable* ssaVariable = m_calculator.newVariable();
+ ASSERT(ssaVariable->index() == m_variableForSSAIndex.size());
+ m_variableForSSAIndex.append(&variable);
+ m_ssaVariableForVariable.add(&variable, ssaVariable);
+ }
- // Eliminate all duplicate or self-pointing Phi edges. This means that
- // we transform:
- //
- // p: Phi(@n1, @n2, @n3)
- //
- // into:
- //
- // p: Phi(@x)
- //
- // if each @ni in {@n1, @n2, @n3} is either equal to @p to is equal
- // to @x, for exactly one other @x. Additionally, trivial Phis (i.e.
- // p: Phi(@x)) are forwarded, so that if have an edge to such @p, we
- // replace it with @x. This loop does this for Phis only; later we do
- // such forwarding for Phi references found in other nodes.
- //
- // See Aycock and Horspool in CC'00 for a better description of what
- // we're doing here.
- do {
- m_changed = false;
- for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
- BasicBlock* block = m_graph.block(blockIndex);
- if (!block)
- continue;
- for (unsigned phiIndex = block->phis.size(); phiIndex--;) {
- Node* phi = block->phis[phiIndex];
- if (phi->variableAccessData()->isCaptured())
- continue;
- forwardPhiChildren(phi);
- deduplicateChildren(phi);
- }
- }
- } while (m_changed);
-
- // For each basic block, for each local live at the head of that block,
- // figure out what node we should be referring to instead of that local.
- // If it turns out to be a non-trivial Phi, make sure that we create an
- // SSA Phi and Upsilons in predecessor blocks. We reuse
- // BasicBlock::variablesAtHead for tracking which nodes to refer to.
- Operands<bool> nonTrivialPhis(OperandsLike, m_graph.block(0)->variablesAtHead);
+ // Find all SetLocals and create Defs for them. We handle SetArgument by creating a
+ // GetLocal, and recording the flush format.
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
-
- nonTrivialPhis.fill(false);
- for (unsigned i = block->phis.size(); i--;) {
- Node* phi = block->phis[i];
- if (!phi->children.justOneChild())
- nonTrivialPhis.operand(phi->local()) = true;
- }
-
- for (unsigned i = block->variablesAtHead.size(); i--;) {
- Node* node = block->variablesAtHead[i];
- if (!node)
+
+ // Must process the block in forward direction because we want to see the last
+ // assignment for every local.
+ for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
+ Node* node = block->at(nodeIndex);
+ if (node->op() != SetLocal && node->op() != SetArgument)
continue;
- if (verbose)
- dataLog("At block #", blockIndex, " for operand r", block->variablesAtHead.operandForIndex(i), " have node ", node, "\n");
-
VariableAccessData* variable = node->variableAccessData();
- if (variable->isCaptured()) {
- // Poison this entry in variablesAtHead because we don't
- // want anyone to try to refer to it, if the variable is
- // captured.
- block->variablesAtHead[i] = 0;
- continue;
- }
-
- switch (node->op()) {
- case Phi:
- case SetArgument:
- break;
- case Flush:
- case GetLocal:
- case PhantomLocal:
- node = node->child1().node();
- break;
- default:
- RELEASE_ASSERT_NOT_REACHED();
- }
- RELEASE_ASSERT(node->op() == Phi || node->op() == SetArgument);
-
- bool isFlushed = !!(node->flags() & NodeIsFlushed);
- if (node->op() == Phi) {
- if (!nonTrivialPhis.operand(node->local())) {
- Edge edge = node->children.justOneChild();
- ASSERT(edge);
- if (verbose)
- dataLog(" One child: ", edge, ", ", RawPointer(edge.node()), "\n");
- node = edge.node(); // It's something from a different basic block.
- } else {
- if (verbose)
- dataLog(" Non-trivial.\n");
- // It's a non-trivial Phi.
- FlushFormat format = variable->flushFormat();
- NodeFlags result = resultFor(format);
- UseKind useKind = useKindFor(format);
-
- node = m_insertionSet.insertNode(0, SpecNone, Phi, NodeOrigin());
- if (verbose)
- dataLog(" Inserted new node: ", node, "\n");
- node->mergeFlags(result);
- RELEASE_ASSERT((node->flags() & NodeResultMask) == result);
-
- for (unsigned j = block->predecessors.size(); j--;) {
- BasicBlock* predecessor = block->predecessors[j];
- predecessor->appendNonTerminal(
- m_graph, SpecNone, Upsilon, predecessor->last()->origin,
- OpInfo(node), Edge(predecessor->variablesAtTail[i], useKind));
- }
-
- if (isFlushed) {
- // Do nothing. For multiple reasons.
-
- // Reason #1: If the local is flushed then we don't need to bother
- // with a MovHint since every path to this point in the code will
- // have flushed the bytecode variable using a SetLocal and hence
- // the Availability::flushedAt() will agree, and that will be
- // sufficient for figuring out how to recover the variable's value.
-
- // Reason #2: If we had inserted a MovHint and the Phi function had
- // died (because the only user of the value was the "flush" - i.e.
- // some asynchronous runtime thingy) then the MovHint would turn
- // into a ZombieHint, which would fool us into thinking that the
- // variable is dead.
-
- // Reason #3: If we had inserted a MovHint then even if the Phi
- // stayed alive, we would still end up generating inefficient code
- // since we would be telling the OSR exit compiler to use some SSA
- // value for the bytecode variable rather than just telling it that
- // the value was already on the stack.
- } else {
- m_insertionSet.insertNode(
- 0, SpecNone, MovHint, NodeOrigin(),
- OpInfo(variable->local().offset()), node->defaultEdge());
- }
- }
+ Node* childNode;
+ if (node->op() == SetLocal)
+ childNode = node->child1().node();
+ else {
+ ASSERT(node->op() == SetArgument);
+ childNode = m_insertionSet.insertNode(
+ nodeIndex, node->variableAccessData()->prediction(),
+ GetStack, node->origin,
+ OpInfo(m_graph.m_stackAccessData.add(variable->local(), variable->flushFormat())));
+ if (!ASSERT_DISABLED)
+ m_argumentGetters.add(childNode);
+ m_argumentMapping.add(node, childNode);
}
- block->variablesAtHead[i] = node;
+ m_calculator.newDef(
+ m_ssaVariableForVariable.get(variable), block, childNode);
}
-
+
m_insertionSet.execute(block);
}
+ // Decide where Phis are to be inserted. This creates the Phi's but doesn't insert them
+ // yet. We will later know where to insert them because SSACalculator is such a bro.
+ m_calculator.computePhis(
+ [&] (SSACalculator::Variable* ssaVariable, BasicBlock* block) -> Node* {
+ VariableAccessData* variable = m_variableForSSAIndex[ssaVariable->index()];
+
+ // Prune by liveness. This doesn't buy us much other than compile times.
+ Node* headNode = block->variablesAtHead.operand(variable->local());
+ if (!headNode)
+ return nullptr;
+
+ // There is the possibiltiy of "rebirths". The SSA calculator will already prune
+ // rebirths for the same VariableAccessData. But it will not be able to prune
+ // rebirths that arose from the same local variable number but a different
+ // VariableAccessData. We do that pruning here.
+ //
+ // Here's an example of a rebirth that this would catch:
+ //
+ // var x;
+ // if (foo) {
+ // if (bar) {
+ // x = 42;
+ // } else {
+ // x = 43;
+ // }
+ // print(x);
+ // x = 44;
+ // } else {
+ // x = 45;
+ // }
+ // print(x); // Without this check, we'd have a Phi for x = 42|43 here.
+ //
+ // FIXME: Consider feeding local variable numbers, not VariableAccessData*'s, as
+ // the "variables" for SSACalculator. That would allow us to eliminate this
+ // special case.
+ // https://bugs.webkit.org/show_bug.cgi?id=136641
+ if (headNode->variableAccessData() != variable)
+ return nullptr;
+
+ Node* phiNode = m_graph.addNode(
+ variable->prediction(), Phi, NodeOrigin());
+ FlushFormat format = variable->flushFormat();
+ NodeFlags result = resultFor(format);
+ phiNode->mergeFlags(result);
+ return phiNode;
+ });
+
if (verbose) {
- dataLog("Variables at head after SSA Phi insertion:\n");
- for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
- BasicBlock* block = m_graph.block(blockIndex);
- if (!block)
- continue;
- dataLog(" ", *block, ": ", block->variablesAtHead, "\n");
- }
+ dataLog("Computed Phis, about to transform the graph.\n");
+ dataLog("\n");
+ dataLog("Graph:\n");
+ m_graph.dump();
+ dataLog("\n");
+ dataLog("Mappings:\n");
+ for (unsigned i = 0; i < m_variableForSSAIndex.size(); ++i)
+ dataLog(" ", i, ": ", VariableAccessDataDump(m_graph, m_variableForSSAIndex[i]), "\n");
+ dataLog("\n");
+ dataLog("SSA calculator: ", m_calculator, "\n");
}
- // At this point variablesAtHead in each block refers to either:
+ // Do the bulk of the SSA conversion. For each block, this tracks the operand->Node
+ // mapping based on a combination of what the SSACalculator tells us, and us walking over
+ // the block in forward order. We use our own data structure, valueForOperand, for
+ // determining the local mapping, but we rely on SSACalculator for the non-local mapping.
//
- // 1) A new SSA phi in the current block.
- // 2) A SetArgument, which will soon get converted into a GetArgument.
- // 3) An old CPS phi in a different block.
+ // This does three things at once:
//
- // We don't have to do anything for (1) and (2), but we do need to
- // do a replacement for (3).
-
- // Clear all replacements, since other phases may have used them.
- m_graph.clearReplacements();
-
- if (dumpGraph) {
- dataLog("Graph just before identifying replacements:\n");
- m_graph.dump();
- }
-
- // For all of the old CPS Phis, figure out what they correspond to in SSA.
- for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
- BasicBlock* block = m_graph.block(blockIndex);
- if (!block)
- continue;
- if (verbose)
- dataLog("Dealing with block #", blockIndex, "\n");
- for (unsigned phiIndex = block->phis.size(); phiIndex--;) {
- Node* phi = block->phis[phiIndex];
- if (verbose) {
- dataLog(
- "Considering ", phi, " (", RawPointer(phi), "), for r",
- phi->local(), ", and its replacement in ", *block, ", ",
- block->variablesAtHead.operand(phi->local()), "\n");
- }
- ASSERT(phi != block->variablesAtHead.operand(phi->local()));
- phi->misc.replacement = block->variablesAtHead.operand(phi->local());
- }
- }
-
- // Now make sure that all variablesAtHead in each block points to the
- // canonical SSA value. Prior to this, variablesAtHead[local] may point to
- // an old CPS Phi in a different block.
- for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
- BasicBlock* block = m_graph.block(blockIndex);
- if (!block)
- continue;
- for (size_t i = block->variablesAtHead.size(); i--;) {
- Node* node = block->variablesAtHead[i];
- if (!node)
- continue;
- while (node->misc.replacement) {
- ASSERT(node != node->misc.replacement);
- node = node->misc.replacement;
+ // - Inserts the Phis in all of the places where they need to go. We've already created
+ // them and they are accounted for in the SSACalculator's data structures, but we
+ // haven't inserted them yet, mostly because we want to insert all of a block's Phis in
+ // one go to amortize the cost of node insertion.
+ //
+ // - Create and insert Upsilons.
+ //
+ // - Convert all of the preexisting SSA nodes (other than the old CPS Phi nodes) into SSA
+ // form by replacing as follows:
+ //
+ // - MovHint has KillLocal prepended to it.
+ //
+ // - GetLocal die and get replaced with references to the node specified by
+ // valueForOperand.
+ //
+ // - SetLocal turns into PutStack if it's flushed, or turns into a Check otherwise.
+ //
+ // - Flush loses its children and turns into a Phantom.
+ //
+ // - PhantomLocal becomes Phantom, and its child is whatever is specified by
+ // valueForOperand.
+ //
+ // - SetArgument is removed. Note that GetStack nodes have already been inserted.
+ Operands<Node*> valueForOperand(OperandsLike, m_graph.block(0)->variablesAtHead);
+ for (BasicBlock* block : m_graph.blocksInPreOrder()) {
+ valueForOperand.clear();
+
+ // CPS will claim that the root block has all arguments live. But we have already done
+ // the first step of SSA conversion: argument locals are no longer live at head;
+ // instead we have GetStack nodes for extracting the values of arguments. So, we
+ // skip the at-head available value calculation for the root block.
+ if (block != m_graph.block(0)) {
+ for (size_t i = valueForOperand.size(); i--;) {
+ Node* nodeAtHead = block->variablesAtHead[i];
+ if (!nodeAtHead)
+ continue;
+
+ VariableAccessData* variable = nodeAtHead->variableAccessData();
+
+ if (verbose)
+ dataLog("Considering live variable ", VariableAccessDataDump(m_graph, variable), " at head of block ", *block, "\n");
+
+ SSACalculator::Variable* ssaVariable = m_ssaVariableForVariable.get(variable);
+ SSACalculator::Def* def = m_calculator.reachingDefAtHead(block, ssaVariable);
+ if (!def) {
+ // If we are required to insert a Phi, then we won't have a reaching def
+ // at head.
+ continue;
+ }
+
+ Node* node = def->value();
+ if (node->replacement()) {
+ // This will occur when a SetLocal had a GetLocal as its source. The
+ // GetLocal would get replaced with an actual SSA value by the time we get
+ // here. Note that the SSA value with which the GetLocal got replaced
+ // would not in turn have a replacement.
+ node = node->replacement();
+ ASSERT(!node->replacement());
+ }
+ if (verbose)
+ dataLog("Mapping: ", VirtualRegister(valueForOperand.operandForIndex(i)), " -> ", node, "\n");
+ valueForOperand[i] = node;
}
- block->variablesAtHead[i] = node;
}
- }
-
- if (verbose) {
- dataLog("Variables at head after convergence:\n");
- for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
- BasicBlock* block = m_graph.block(blockIndex);
- if (!block)
- continue;
- dataLog(" ", *block, ": ", block->variablesAtHead, "\n");
- }
- }
-
- // Convert operations over locals into operations over SSA nodes.
- // - GetLocal over captured variables lose their phis.
- // - GetLocal over uncaptured variables die and get replaced with references
- // to the node specified by variablesAtHead.
- // - SetLocal gets NodeMustGenerate if it's flushed, or turns into a
- // Check otherwise.
- // - Flush loses its children and turns into a Phantom.
- // - PhantomLocal becomes Phantom, and its child is whatever is specified
- // by variablesAtHead.
- // - SetArgument turns into GetArgument unless it's a captured variable.
- // - Upsilons get their children fixed to refer to the true value of that local
- // at the end of the block. Prior to this loop, Upsilons will refer to
- // variableAtTail[operand], which may be any of Flush, PhantomLocal, GetLocal,
- // SetLocal, SetArgument, or Phi. We accomplish this by setting the
- // replacement pointers of all of those nodes to refer to either
- // variablesAtHead[operand], or the child of the SetLocal.
- for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
- BasicBlock* block = m_graph.block(blockIndex);
- if (!block)
- continue;
- for (unsigned phiIndex = block->phis.size(); phiIndex--;) {
- block->phis[phiIndex]->misc.replacement =
- block->variablesAtHead.operand(block->phis[phiIndex]->local());
+ // Insert Phis by asking the calculator what phis there are in this block. Also update
+ // valueForOperand with those Phis. For Phis associated with variables that are not
+ // flushed, we also insert a MovHint.
+ size_t phiInsertionPoint = 0;
+ for (SSACalculator::Def* phiDef : m_calculator.phisForBlock(block)) {
+ VariableAccessData* variable = m_variableForSSAIndex[phiDef->variable()->index()];
+
+ m_insertionSet.insert(phiInsertionPoint, phiDef->value());
+ valueForOperand.operand(variable->local()) = phiDef->value();
+
+ m_insertionSet.insertNode(
+ phiInsertionPoint, SpecNone, MovHint, NodeOrigin(),
+ OpInfo(variable->local().offset()), phiDef->value()->defaultEdge());
}
- for (unsigned nodeIndex = block->size(); nodeIndex--;)
- ASSERT(!block->at(nodeIndex)->misc.replacement);
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
Node* node = block->at(nodeIndex);
+ if (verbose) {
+ dataLog("Processing node ", node, ":\n");
+ m_graph.dump(WTF::dataFile(), " ", node);
+ }
+
m_graph.performSubstitution(node);
switch (node->op()) {
+ case MovHint: {
+ m_insertionSet.insertNode(
+ nodeIndex, SpecNone, KillStack, node->origin,
+ OpInfo(node->unlinkedLocal().offset()));
+ break;
+ }
+
case SetLocal: {
VariableAccessData* variable = node->variableAccessData();
- if (variable->isCaptured() || !!(node->flags() & NodeIsFlushed))
- node->mergeFlags(NodeMustGenerate);
- else
- node->setOpAndDefaultFlags(Check);
- node->misc.replacement = node->child1().node(); // Only for Upsilons.
+ Node* child = node->child1().node();
+
+ if (!!(node->flags() & NodeIsFlushed)) {
+ node->convertToPutStack(
+ m_graph.m_stackAccessData.add(
+ variable->local(), variable->flushFormat()));
+ } else
+ node->remove();
+
+ if (verbose)
+ dataLog("Mapping: ", variable->local(), " -> ", child, "\n");
+ valueForOperand.operand(variable->local()) = child;
+ break;
+ }
+
+ case GetStack: {
+ ASSERT(m_argumentGetters.contains(node));
+ valueForOperand.operand(node->stackAccessData()->local) = node;
break;
}
case GetLocal: {
- // It seems tempting to just do forwardPhi(GetLocal), except that we
- // could have created a new (SSA) Phi, and the GetLocal could still be
- // referring to an old (CPS) Phi. Uses variablesAtHead to tell us what
- // to refer to.
- node->children.reset();
VariableAccessData* variable = node->variableAccessData();
- if (variable->isCaptured())
- break;
- node->convertToPhantom();
- node->misc.replacement = block->variablesAtHead.operand(variable->local());
+ node->children.reset();
+
+ node->remove();
+ if (verbose)
+ dataLog("Replacing node ", node, " with ", valueForOperand.operand(variable->local()), "\n");
+ node->setReplacement(valueForOperand.operand(variable->local()));
break;
}
case Flush: {
node->children.reset();
- node->convertToPhantom();
- // This is only for Upsilons. An Upsilon will only refer to a Flush if
- // there were no SetLocals or GetLocals in the block.
- node->misc.replacement = block->variablesAtHead.operand(node->local());
+ node->remove();
break;
}
case PhantomLocal: {
ASSERT(node->child1().useKind() == UntypedUse);
VariableAccessData* variable = node->variableAccessData();
- if (variable->isCaptured()) {
- // This is a fun case. We could have a captured variable that had some
- // or all of its uses strength reduced to phantoms rather than flushes.
- // SSA conversion will currently still treat it as flushed, in the sense
- // that it will just keep the SetLocal. Therefore, there is nothing that
- // needs to be done here: we don't need to also keep the source value
- // alive. And even if we did want to keep the source value alive, we
- // wouldn't be able to, because the variablesAtHead value for a captured
- // local wouldn't have been computed by the Phi reduction algorithm
- // above.
- node->children.reset();
- } else {
- node->child1() =
- block->variablesAtHead.operand(variable->local())->defaultEdge();
- }
- node->convertToPhantom();
- // This is only for Upsilons. An Upsilon will only refer to a
- // PhantomLocal if there were no SetLocals or GetLocals in the block.
- node->misc.replacement = block->variablesAtHead.operand(variable->local());
+ node->child1() = valueForOperand.operand(variable->local())->defaultEdge();
+ node->remove();
break;
}
case SetArgument: {
- VariableAccessData* variable = node->variableAccessData();
- if (variable->isCaptured())
- break;
- node->setOpAndDefaultFlags(GetArgument);
- node->setResult(resultFor(node->variableAccessData()->flushFormat()));
+ node->remove();
break;
}
-
+
default:
break;
}
}
+
+ // We want to insert Upsilons just before the end of the block. On the surface this
+ // seems dangerous because the Upsilon will have a checking UseKind. But, we will not
+ // actually be performing the check at the point of the Upsilon; the check will
+ // already have been performed at the point where the original SetLocal was.
+ NodeAndIndex terminal = block->findTerminal();
+ size_t upsilonInsertionPoint = terminal.index;
+ NodeOrigin upsilonOrigin = terminal.node->origin;
+ for (unsigned successorIndex = block->numSuccessors(); successorIndex--;) {
+ BasicBlock* successorBlock = block->successor(successorIndex);
+ for (SSACalculator::Def* phiDef : m_calculator.phisForBlock(successorBlock)) {
+ Node* phiNode = phiDef->value();
+ SSACalculator::Variable* ssaVariable = phiDef->variable();
+ VariableAccessData* variable = m_variableForSSAIndex[ssaVariable->index()];
+ FlushFormat format = variable->flushFormat();
+ UseKind useKind = useKindFor(format);
+
+ m_insertionSet.insertNode(
+ upsilonInsertionPoint, SpecNone, Upsilon, upsilonOrigin,
+ OpInfo(phiNode), Edge(
+ valueForOperand.operand(variable->local()),
+ useKind));
+ }
+ }
+
+ m_insertionSet.execute(block);
}
// Free all CPS phis and reset variables vectors.
block->variablesAtTail.clear();
block->valuesAtHead.clear();
block->valuesAtHead.clear();
- block->ssa = adoptPtr(new BasicBlock::SSAData(block));
+ block->ssa = std::make_unique<BasicBlock::SSAData>(block);
}
- m_graph.m_arguments.clear();
+ m_graph.m_argumentFormats.resize(m_graph.m_arguments.size());
+ for (unsigned i = m_graph.m_arguments.size(); i--;) {
+ FlushFormat format = FlushedJSValue;
+
+ Node* node = m_argumentMapping.get(m_graph.m_arguments[i]);
+
+ RELEASE_ASSERT(node);
+ format = node->stackAccessData()->format;
+
+ m_graph.m_argumentFormats[i] = format;
+ m_graph.m_arguments[i] = node; // Record the load that loads the arguments for the benefit of exit profiling.
+ }
m_graph.m_form = SSA;
- return true;
- }
-private:
- void forwardPhiChildren(Node* node)
- {
- for (unsigned i = 0; i < AdjacencyList::Size; ++i) {
- Edge& edge = node->children.child(i);
- if (!edge)
- break;
- m_changed |= forwardPhiEdge(edge);
- }
- }
-
- Node* forwardPhi(Node* node)
- {
- for (;;) {
- switch (node->op()) {
- case Phi: {
- Edge edge = node->children.justOneChild();
- if (!edge)
- return node;
- node = edge.node();
- break;
- }
- case GetLocal:
- case SetLocal:
- if (node->variableAccessData()->isCaptured())
- return node;
- node = node->child1().node();
- break;
- default:
- return node;
- }
+ if (verbose) {
+ dataLog("Graph after SSA transformation:\n");
+ m_graph.dump();
}
- }
-
- bool forwardPhiEdge(Edge& edge)
- {
- Node* newNode = forwardPhi(edge.node());
- if (newNode == edge.node())
- return false;
- edge.setNode(newNode);
+
return true;
}
-
- void deduplicateChildren(Node* node)
- {
- for (unsigned i = 0; i < AdjacencyList::Size; ++i) {
- Edge edge = node->children.child(i);
- if (!edge)
- break;
- if (edge == node) {
- node->children.removeEdge(i--);
- m_changed = true;
- continue;
- }
- for (unsigned j = i + 1; j < AdjacencyList::Size; ++j) {
- if (node->children.child(j) == edge) {
- node->children.removeEdge(j--);
- m_changed = true;
- }
- }
- }
- }
-
+
+private:
+ SSACalculator m_calculator;
InsertionSet m_insertionSet;
- bool m_changed;
+ HashMap<VariableAccessData*, SSACalculator::Variable*> m_ssaVariableForVariable;
+ HashMap<Node*, Node*> m_argumentMapping;
+ HashSet<Node*> m_argumentGetters;
+ Vector<VariableAccessData*> m_variableForSSAIndex;
};
bool performSSAConversion(Graph& graph)