/*
- * Copyright (C) 2008, 2012, 2014 Apple Inc. All rights reserved.
+ * Copyright (C) 2008, 2012, 2014, 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
namespace JSC {
-inline bool isARMv7s()
+inline bool isARMv7IDIVSupported()
{
-#if CPU(APPLE_ARMV7S)
+#if HAVE(ARM_IDIV_INSTRUCTIONS)
return true;
#else
return false;
#endif
}
-inline bool optimizeForARMv7s()
+inline bool optimizeForARMv7IDIVSupported()
{
- return isARMv7s() && Options::enableArchitectureSpecificOptimizations();
+ return isARMv7IDIVSupported() && Options::enableArchitectureSpecificOptimizations();
}
inline bool optimizeForARM64()
struct OSRExit;
}
-template <class AssemblerType>
+template <class AssemblerType, class MacroAssemblerType>
class AbstractMacroAssembler {
public:
friend class JITWriteBarrierBase;
+ typedef AbstractMacroAssembler<AssemblerType, MacroAssemblerType> AbstractMacroAssemblerType;
typedef AssemblerType AssemblerType_T;
typedef MacroAssemblerCodePtr CodePtr;
RegisterID index;
Scale scale;
int32_t offset;
+
+ BaseIndex withOffset(int32_t additionalOffset)
+ {
+ return BaseIndex(base, index, scale, offset + additionalOffset);
+ }
};
// AbsoluteAddress:
// A Label records a point in the generated instruction stream, typically such that
// it may be used as a destination for a jump.
class Label {
- template<class TemplateAssemblerType>
+ template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
friend class AbstractMacroAssembler;
friend struct DFG::OSRExit;
friend class Jump;
{
}
- Label(AbstractMacroAssembler<AssemblerType>* masm)
+ Label(AbstractMacroAssemblerType* masm)
: m_label(masm->m_assembler.label())
{
masm->invalidateAllTempRegisters();
//
// addPtr(TrustedImmPtr(i), a, b)
class ConvertibleLoadLabel {
- template<class TemplateAssemblerType>
+ template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
friend class AbstractMacroAssembler;
friend class LinkBuffer;
{
}
- ConvertibleLoadLabel(AbstractMacroAssembler<AssemblerType>* masm)
+ ConvertibleLoadLabel(AbstractMacroAssemblerType* masm)
: m_label(masm->m_assembler.labelIgnoringWatchpoints())
{
}
// A DataLabelPtr is used to refer to a location in the code containing a pointer to be
// patched after the code has been generated.
class DataLabelPtr {
- template<class TemplateAssemblerType>
+ template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
friend class AbstractMacroAssembler;
friend class LinkBuffer;
public:
{
}
- DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm)
+ DataLabelPtr(AbstractMacroAssemblerType* masm)
: m_label(masm->m_assembler.label())
{
}
// A DataLabel32 is used to refer to a location in the code containing a 32-bit constant to be
// patched after the code has been generated.
class DataLabel32 {
- template<class TemplateAssemblerType>
+ template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
friend class AbstractMacroAssembler;
friend class LinkBuffer;
public:
{
}
- DataLabel32(AbstractMacroAssembler<AssemblerType>* masm)
+ DataLabel32(AbstractMacroAssemblerType* masm)
: m_label(masm->m_assembler.label())
{
}
// A DataLabelCompact is used to refer to a location in the code containing a
// compact immediate to be patched after the code has been generated.
class DataLabelCompact {
- template<class TemplateAssemblerType>
+ template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
friend class AbstractMacroAssembler;
friend class LinkBuffer;
public:
{
}
- DataLabelCompact(AbstractMacroAssembler<AssemblerType>* masm)
+ DataLabelCompact(AbstractMacroAssemblerType* masm)
: m_label(masm->m_assembler.label())
{
}
// relative offset such that when executed it will call to the desired
// destination.
class Call {
- template<class TemplateAssemblerType>
+ template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
friend class AbstractMacroAssembler;
public:
// relative offset such that when executed it will jump to the desired
// destination.
class Jump {
- template<class TemplateAssemblerType>
+ template<class TemplateAssemblerType, class TemplateMacroAssemblerType>
friend class AbstractMacroAssembler;
friend class Call;
friend struct DFG::OSRExit;
return result;
}
- void link(AbstractMacroAssembler<AssemblerType>* masm) const
+ void link(AbstractMacroAssemblerType* masm) const
{
masm->invalidateAllTempRegisters();
#endif
}
- void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) const
+ void linkTo(Label label, AbstractMacroAssemblerType* masm) const
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset);
append(jump);
}
- void link(AbstractMacroAssembler<AssemblerType>* masm)
+ void link(AbstractMacroAssemblerType* masm)
{
size_t size = m_jumps.size();
for (size_t i = 0; i < size; ++i)
m_jumps.clear();
}
- void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm)
+ void linkTo(Label label, AbstractMacroAssemblerType* masm)
{
size_t size = m_jumps.size();
for (size_t i = 0; i < size; ++i)
AssemblerType::cacheFlush(code, size);
}
+#if ENABLE(MASM_PROBE)
+
+ struct CPUState {
+ #define DECLARE_REGISTER(_type, _regName) \
+ _type _regName;
+ FOR_EACH_CPU_REGISTER(DECLARE_REGISTER)
+ #undef DECLARE_REGISTER
+
+ static const char* registerName(RegisterID regID)
+ {
+ switch (regID) {
+ #define DECLARE_REGISTER(_type, _regName) \
+ case RegisterID::_regName: \
+ return #_regName;
+ FOR_EACH_CPU_GPREGISTER(DECLARE_REGISTER)
+ #undef DECLARE_REGISTER
+ }
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+
+ static const char* registerName(FPRegisterID regID)
+ {
+ switch (regID) {
+ #define DECLARE_REGISTER(_type, _regName) \
+ case FPRegisterID::_regName: \
+ return #_regName;
+ FOR_EACH_CPU_FPREGISTER(DECLARE_REGISTER)
+ #undef DECLARE_REGISTER
+ }
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+
+ void* registerValue(RegisterID regID)
+ {
+ switch (regID) {
+ #define DECLARE_REGISTER(_type, _regName) \
+ case RegisterID::_regName: \
+ return _regName;
+ FOR_EACH_CPU_GPREGISTER(DECLARE_REGISTER)
+ #undef DECLARE_REGISTER
+ }
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+
+ double registerValue(FPRegisterID regID)
+ {
+ switch (regID) {
+ #define DECLARE_REGISTER(_type, _regName) \
+ case FPRegisterID::_regName: \
+ return _regName;
+ FOR_EACH_CPU_FPREGISTER(DECLARE_REGISTER)
+ #undef DECLARE_REGISTER
+ }
+ RELEASE_ASSERT_NOT_REACHED();
+ }
+
+ };
+
+ struct ProbeContext;
+ typedef void (*ProbeFunction)(struct ProbeContext*);
+
+ struct ProbeContext {
+ ProbeFunction probeFunction;
+ void* arg1;
+ void* arg2;
+ CPUState cpu;
+
+ void print(int indentation = 0)
+ {
+ #define INDENT MacroAssemblerType::printIndent(indentation)
+
+ INDENT, dataLogF("ProbeContext %p {\n", this);
+ indentation++;
+ {
+ INDENT, dataLogF("probeFunction: %p\n", probeFunction);
+ INDENT, dataLogF("arg1: %p %llu\n", arg1, reinterpret_cast<int64_t>(arg1));
+ INDENT, dataLogF("arg2: %p %llu\n", arg2, reinterpret_cast<int64_t>(arg2));
+ MacroAssemblerType::printCPU(cpu, indentation);
+ }
+ indentation--;
+ INDENT, dataLog("}\n");
+
+ #undef INDENT
+ }
+ };
+
+ static void printIndent(int indentation)
+ {
+ for (; indentation > 0; indentation--)
+ dataLog(" ");
+ }
+
+ static void printCPU(CPUState& cpu, int indentation = 0)
+ {
+ #define INDENT printIndent(indentation)
+
+ INDENT, dataLog("cpu: {\n");
+ MacroAssemblerType::printCPURegisters(cpu, indentation + 1);
+ INDENT, dataLog("}\n");
+
+ #undef INDENT
+ }
+
+ // This is a marker type only used with print(). See print() below for details.
+ struct AllRegisters { };
+
+ // Emits code which will print debugging info at runtime. The type of values that
+ // can be printed is encapsulated in the PrintArg struct below. Here are some
+ // examples:
+ //
+ // print("Hello world\n"); // Emits code to print the string.
+ //
+ // CodeBlock* cb = ...;
+ // print(cb); // Emits code to print the pointer value.
+ //
+ // RegisterID regID = ...;
+ // print(regID); // Emits code to print the register value (not the id).
+ //
+ // // Emits code to print all registers. Unlike other items, this prints
+ // // multiple lines as follows:
+ // // cpu {
+ // // eax: 0x123456789
+ // // ebx: 0x000000abc
+ // // ...
+ // // }
+ // print(AllRegisters());
+ //
+ // // Print multiple things at once. This incurs the probe overhead only once
+ // // to print all the items.
+ // print("cb:", cb, " regID:", regID, " cpu:\n", AllRegisters());
+
+ template<typename... Arguments>
+ void print(Arguments... args)
+ {
+ printInternal(static_cast<MacroAssemblerType*>(this), args...);
+ }
+
+ // This function will be called by printCPU() to print the contents of the
+ // target specific registers which are saved away in the CPUState struct.
+ // printCPURegisters() should make use of printIndentation() to print the
+ // registers with the appropriate amount of indentation.
+ //
+ // Note: printCPURegisters() should be implemented by the target specific
+ // MacroAssembler. This prototype is only provided here to document the
+ // interface.
+
+ static void printCPURegisters(CPUState&, int indentation = 0);
+
+ // This function will be called by print() to print the contents of a
+ // specific register (from the CPUState) in line with other items in the
+ // print stream. Hence, no indentation is needed.
+ //
+ // Note: printRegister() should be implemented by the target specific
+ // MacroAssembler. These prototypes are only provided here to document their
+ // interface.
+
+ static void printRegister(CPUState&, RegisterID);
+ static void printRegister(CPUState&, FPRegisterID);
+
+ // This function emits code to preserve the CPUState (e.g. registers),
+ // call a user supplied probe function, and restore the CPUState before
+ // continuing with other JIT generated code.
+ //
+ // The user supplied probe function will be called with a single pointer to
+ // a ProbeContext struct (defined above) which contains, among other things,
+ // the preserved CPUState. This allows the user probe function to inspect
+ // the CPUState at that point in the JIT generated code.
+ //
+ // If the user probe function alters the register values in the ProbeContext,
+ // the altered values will be loaded into the CPU registers when the probe
+ // returns.
+ //
+ // The ProbeContext is stack allocated and is only valid for the duration
+ // of the call to the user probe function.
+ //
+ // Note: probe() should be implemented by the target specific MacroAssembler.
+ // This prototype is only provided here to document the interface.
+
+ void probe(ProbeFunction, void* arg1 = 0, void* arg2 = 0);
+
+#endif // ENABLE(MASM_PROBE)
+
AssemblerType m_assembler;
protected:
friend class Label;
public:
- CachedTempRegister(AbstractMacroAssembler<AssemblerType>* masm, RegisterID registerID)
+ CachedTempRegister(AbstractMacroAssemblerType* masm, RegisterID registerID)
: m_masm(masm)
, m_registerID(registerID)
, m_value(0)
ALWAYS_INLINE void invalidate() { m_masm->clearTempRegisterValid(m_validBit); }
private:
- AbstractMacroAssembler<AssemblerType>* m_masm;
+ AbstractMacroAssemblerType* m_masm;
RegisterID m_registerID;
intptr_t m_value;
unsigned m_validBit;
{
AssemblerType::replaceWithAddressComputation(label.dataLocation());
}
-};
+
+private:
+
+#if ENABLE(MASM_PROBE)
+
+ struct PrintArg {
+
+ enum class Type {
+ AllRegisters,
+ RegisterID,
+ FPRegisterID,
+ ConstCharPtr,
+ ConstVoidPtr,
+ IntptrValue,
+ UintptrValue,
+ };
+
+ PrintArg(AllRegisters&)
+ : type(Type::AllRegisters)
+ {
+ }
+
+ PrintArg(RegisterID regID)
+ : type(Type::RegisterID)
+ {
+ u.gpRegisterID = regID;
+ }
+
+ PrintArg(FPRegisterID regID)
+ : type(Type::FPRegisterID)
+ {
+ u.fpRegisterID = regID;
+ }
+
+ PrintArg(const char* ptr)
+ : type(Type::ConstCharPtr)
+ {
+ u.constCharPtr = ptr;
+ }
+
+ PrintArg(const void* ptr)
+ : type(Type::ConstVoidPtr)
+ {
+ u.constVoidPtr = ptr;
+ }
+
+ PrintArg(int value)
+ : type(Type::IntptrValue)
+ {
+ u.intptrValue = value;
+ }
+
+ PrintArg(unsigned value)
+ : type(Type::UintptrValue)
+ {
+ u.intptrValue = value;
+ }
+
+ PrintArg(intptr_t value)
+ : type(Type::IntptrValue)
+ {
+ u.intptrValue = value;
+ }
+
+ PrintArg(uintptr_t value)
+ : type(Type::UintptrValue)
+ {
+ u.uintptrValue = value;
+ }
+
+ Type type;
+ union {
+ RegisterID gpRegisterID;
+ FPRegisterID fpRegisterID;
+ const char* constCharPtr;
+ const void* constVoidPtr;
+ intptr_t intptrValue;
+ uintptr_t uintptrValue;
+ } u;
+ };
+
+ typedef Vector<PrintArg> PrintArgsList;
+
+ template<typename FirstArg, typename... Arguments>
+ static void appendPrintArg(PrintArgsList* argsList, FirstArg& firstArg, Arguments... otherArgs)
+ {
+ argsList->append(PrintArg(firstArg));
+ appendPrintArg(argsList, otherArgs...);
+ }
+
+ static void appendPrintArg(PrintArgsList*) { }
+
+
+ template<typename... Arguments>
+ static void printInternal(MacroAssemblerType* masm, Arguments... args)
+ {
+ auto argsList = std::make_unique<PrintArgsList>();
+ appendPrintArg(argsList.get(), args...);
+ masm->probe(printCallback, argsList.release());
+ }
+
+ static void printCallback(ProbeContext* context)
+ {
+ typedef PrintArg Arg;
+ PrintArgsList& argsList =
+ *reinterpret_cast<PrintArgsList*>(context->arg1);
+ for (size_t i = 0; i < argsList.size(); i++) {
+ auto& arg = argsList[i];
+ switch (arg.type) {
+ case Arg::Type::AllRegisters:
+ MacroAssemblerType::printCPU(context->cpu);
+ break;
+ case Arg::Type::RegisterID:
+ MacroAssemblerType::printRegister(context->cpu, arg.u.gpRegisterID);
+ break;
+ case Arg::Type::FPRegisterID:
+ MacroAssemblerType::printRegister(context->cpu, arg.u.fpRegisterID);
+ break;
+ case Arg::Type::ConstCharPtr:
+ dataLog(arg.u.constCharPtr);
+ break;
+ case Arg::Type::ConstVoidPtr:
+ dataLogF("%p", arg.u.constVoidPtr);
+ break;
+ case Arg::Type::IntptrValue:
+ dataLog(arg.u.intptrValue);
+ break;
+ case Arg::Type::UintptrValue:
+ dataLog(arg.u.uintptrValue);
+ break;
+ }
+ }
+ }
+
+#endif // ENABLE(MASM_PROBE)
+
+}; // class AbstractMacroAssembler
} // namespace JSC