]> git.saurik.com Git - apple/javascriptcore.git/blobdiff - dfg/DFGSpeculativeJIT.h
JavaScriptCore-1097.3.tar.gz
[apple/javascriptcore.git] / dfg / DFGSpeculativeJIT.h
index 82fd403305af6dfdc987fae51ca5d675dcc53a49..9241df9d6728767f4544323855f1d685a81d1310 100644 (file)
 
 #if ENABLE(DFG_JIT)
 
-#include <dfg/DFGJITCodeGenerator.h>
+#include "DFGAbstractState.h"
+#include "DFGGenerationInfo.h"
+#include "DFGJITCompiler.h"
+#include "DFGOSRExit.h"
+#include "DFGOperations.h"
+#include "MarkedAllocator.h"
+#include "ValueRecovery.h"
 
 namespace JSC { namespace DFG {
 
+class JSValueOperand;
 class SpeculativeJIT;
+class SpeculateIntegerOperand;
+class SpeculateStrictInt32Operand;
+class SpeculateDoubleOperand;
+class SpeculateCellOperand;
+class SpeculateBooleanOperand;
 
-// This enum describes the types of additional recovery that
-// may need be performed should a speculation check fail.
-enum SpeculationRecoveryType {
-    SpeculativeAdd
+
+enum ValueSourceKind {
+    SourceNotSet,
+    ValueInRegisterFile,
+    Int32InRegisterFile,
+    CellInRegisterFile,
+    BooleanInRegisterFile,
+    DoubleInRegisterFile,
+    SourceIsDead,
+    HaveNode
+};
+
+class ValueSource {
+public:
+    ValueSource()
+        : m_nodeIndex(nodeIndexFromKind(SourceNotSet))
+    {
+    }
+    
+    explicit ValueSource(ValueSourceKind valueSourceKind)
+        : m_nodeIndex(nodeIndexFromKind(valueSourceKind))
+    {
+        ASSERT(kind() != SourceNotSet);
+        ASSERT(kind() != HaveNode);
+    }
+    
+    explicit ValueSource(NodeIndex nodeIndex)
+        : m_nodeIndex(nodeIndex)
+    {
+        ASSERT(kind() == HaveNode);
+    }
+    
+    static ValueSource forPrediction(PredictedType prediction)
+    {
+        if (isInt32Prediction(prediction))
+            return ValueSource(Int32InRegisterFile);
+        if (isArrayPrediction(prediction))
+            return ValueSource(CellInRegisterFile);
+        if (isBooleanPrediction(prediction))
+            return ValueSource(BooleanInRegisterFile);
+        return ValueSource(ValueInRegisterFile);
+    }
+    
+    bool isSet() const
+    {
+        return kindFromNodeIndex(m_nodeIndex) != SourceNotSet;
+    }
+    
+    ValueSourceKind kind() const
+    {
+        return kindFromNodeIndex(m_nodeIndex);
+    }
+    
+    NodeIndex nodeIndex() const
+    {
+        ASSERT(kind() == HaveNode);
+        return m_nodeIndex;
+    }
+    
+    void dump(FILE* out) const;
+    
+private:
+    static NodeIndex nodeIndexFromKind(ValueSourceKind kind)
+    {
+        ASSERT(kind >= SourceNotSet && kind < HaveNode);
+        return NoNode - kind;
+    }
+    
+    static ValueSourceKind kindFromNodeIndex(NodeIndex nodeIndex)
+    {
+        unsigned kind = static_cast<unsigned>(NoNode - nodeIndex);
+        if (kind >= static_cast<unsigned>(HaveNode))
+            return HaveNode;
+        return static_cast<ValueSourceKind>(kind);
+    }
+    
+    NodeIndex m_nodeIndex;
+};
+
+
+enum GeneratedOperandType { GeneratedOperandTypeUnknown, GeneratedOperandInteger, GeneratedOperandDouble, GeneratedOperandJSValue};
+
+// === SpeculativeJIT ===
+//
+// The SpeculativeJIT is used to generate a fast, but potentially
+// incomplete code path for the dataflow. When code generating
+// we may make assumptions about operand types, dynamically check,
+// and bail-out to an alternate code path if these checks fail.
+// Importantly, the speculative code path cannot be reentered once
+// a speculative check has failed. This allows the SpeculativeJIT
+// to propagate type information (including information that has
+// only speculatively been asserted) through the dataflow.
+class SpeculativeJIT {
+    friend struct OSRExit;
+private:
+    typedef JITCompiler::TrustedImm32 TrustedImm32;
+    typedef JITCompiler::Imm32 Imm32;
+    typedef JITCompiler::TrustedImmPtr TrustedImmPtr;
+    typedef JITCompiler::ImmPtr ImmPtr;
+
+    // These constants are used to set priorities for spill order for
+    // the register allocator.
+#if USE(JSVALUE64)
+    enum SpillOrder {
+        SpillOrderConstant = 1, // no spill, and cheap fill
+        SpillOrderSpilled  = 2, // no spill
+        SpillOrderJS       = 4, // needs spill
+        SpillOrderCell     = 4, // needs spill
+        SpillOrderStorage  = 4, // needs spill
+        SpillOrderInteger  = 5, // needs spill and box
+        SpillOrderBoolean  = 5, // needs spill and box
+        SpillOrderDouble   = 6, // needs spill and convert
+    };
+#elif USE(JSVALUE32_64)
+    enum SpillOrder {
+        SpillOrderConstant = 1, // no spill, and cheap fill
+        SpillOrderSpilled  = 2, // no spill
+        SpillOrderJS       = 4, // needs spill
+        SpillOrderStorage  = 4, // needs spill
+        SpillOrderDouble   = 4, // needs spill
+        SpillOrderInteger  = 5, // needs spill and box
+        SpillOrderCell     = 5, // needs spill and box
+        SpillOrderBoolean  = 5, // needs spill and box
+    };
+#endif
+
+    enum UseChildrenMode { CallUseChildren, UseChildrenCalledExplicitly };
+    
+public:
+    SpeculativeJIT(JITCompiler&);
+
+    bool compile();
+    void createOSREntries();
+    void linkOSREntries(LinkBuffer&);
+
+    Node& at(NodeIndex nodeIndex)
+    {
+        return m_jit.graph()[nodeIndex];
+    }
+    Node& at(Edge nodeUse)
+    {
+        return at(nodeUse.index());
+    }
+    
+    GPRReg fillInteger(NodeIndex, DataFormat& returnFormat);
+    FPRReg fillDouble(NodeIndex);
+#if USE(JSVALUE64)
+    GPRReg fillJSValue(NodeIndex);
+#elif USE(JSVALUE32_64)
+    bool fillJSValue(NodeIndex, GPRReg&, GPRReg&, FPRReg&);
+#endif
+    GPRReg fillStorage(NodeIndex);
+
+    // lock and unlock GPR & FPR registers.
+    void lock(GPRReg reg)
+    {
+        m_gprs.lock(reg);
+    }
+    void lock(FPRReg reg)
+    {
+        m_fprs.lock(reg);
+    }
+    void unlock(GPRReg reg)
+    {
+        m_gprs.unlock(reg);
+    }
+    void unlock(FPRReg reg)
+    {
+        m_fprs.unlock(reg);
+    }
+
+    // Used to check whether a child node is on its last use,
+    // and its machine registers may be reused.
+    bool canReuse(NodeIndex nodeIndex)
+    {
+        VirtualRegister virtualRegister = at(nodeIndex).virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        return info.canReuse();
+    }
+    bool canReuse(Edge nodeUse)
+    {
+        return canReuse(nodeUse.index());
+    }
+    GPRReg reuse(GPRReg reg)
+    {
+        m_gprs.lock(reg);
+        return reg;
+    }
+    FPRReg reuse(FPRReg reg)
+    {
+        m_fprs.lock(reg);
+        return reg;
+    }
+
+    // Allocate a gpr/fpr.
+    GPRReg allocate()
+    {
+        VirtualRegister spillMe;
+        GPRReg gpr = m_gprs.allocate(spillMe);
+        if (spillMe != InvalidVirtualRegister) {
+#if USE(JSVALUE32_64)
+            GenerationInfo& info = m_generationInfo[spillMe];
+            ASSERT(info.registerFormat() != DataFormatJSDouble);
+            if ((info.registerFormat() & DataFormatJS))
+                m_gprs.release(info.tagGPR() == gpr ? info.payloadGPR() : info.tagGPR());
+#endif
+            spill(spillMe);
+        }
+        return gpr;
+    }
+    GPRReg allocate(GPRReg specific)
+    {
+        VirtualRegister spillMe = m_gprs.allocateSpecific(specific);
+        if (spillMe != InvalidVirtualRegister) {
+#if USE(JSVALUE32_64)
+            GenerationInfo& info = m_generationInfo[spillMe];
+            ASSERT(info.registerFormat() != DataFormatJSDouble);
+            if ((info.registerFormat() & DataFormatJS))
+                m_gprs.release(info.tagGPR() == specific ? info.payloadGPR() : info.tagGPR());
+#endif
+            spill(spillMe);
+        }
+        return specific;
+    }
+    GPRReg tryAllocate()
+    {
+        return m_gprs.tryAllocate();
+    }
+    FPRReg fprAllocate()
+    {
+        VirtualRegister spillMe;
+        FPRReg fpr = m_fprs.allocate(spillMe);
+        if (spillMe != InvalidVirtualRegister)
+            spill(spillMe);
+        return fpr;
+    }
+
+    // Check whether a VirtualRegsiter is currently in a machine register.
+    // We use this when filling operands to fill those that are already in
+    // machine registers first (by locking VirtualRegsiters that are already
+    // in machine register before filling those that are not we attempt to
+    // avoid spilling values we will need immediately).
+    bool isFilled(NodeIndex nodeIndex)
+    {
+        VirtualRegister virtualRegister = at(nodeIndex).virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        return info.registerFormat() != DataFormatNone;
+    }
+    bool isFilledDouble(NodeIndex nodeIndex)
+    {
+        VirtualRegister virtualRegister = at(nodeIndex).virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        return info.registerFormat() == DataFormatDouble;
+    }
+
+    // Called on an operand once it has been consumed by a parent node.
+    void use(NodeIndex nodeIndex)
+    {
+        VirtualRegister virtualRegister = at(nodeIndex).virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+
+        // use() returns true when the value becomes dead, and any
+        // associated resources may be freed.
+        if (!info.use())
+            return;
+
+        // Release the associated machine registers.
+        DataFormat registerFormat = info.registerFormat();
+#if USE(JSVALUE64)
+        if (registerFormat == DataFormatDouble)
+            m_fprs.release(info.fpr());
+        else if (registerFormat != DataFormatNone)
+            m_gprs.release(info.gpr());
+#elif USE(JSVALUE32_64)
+        if (registerFormat == DataFormatDouble || registerFormat == DataFormatJSDouble)
+            m_fprs.release(info.fpr());
+        else if (registerFormat & DataFormatJS) {
+            m_gprs.release(info.tagGPR());
+            m_gprs.release(info.payloadGPR());
+        } else if (registerFormat != DataFormatNone)
+            m_gprs.release(info.gpr());
+#endif
+    }
+    void use(Edge nodeUse)
+    {
+        use(nodeUse.index());
+    }
+
+    static void markCellCard(MacroAssembler&, GPRReg ownerGPR, GPRReg scratchGPR1, GPRReg scratchGPR2);
+    static void writeBarrier(MacroAssembler&, GPRReg ownerGPR, GPRReg scratchGPR1, GPRReg scratchGPR2, WriteBarrierUseKind);
+
+    void writeBarrier(GPRReg ownerGPR, GPRReg valueGPR, Edge valueUse, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg, GPRReg scratchGPR2 = InvalidGPRReg);
+    void writeBarrier(GPRReg ownerGPR, JSCell* value, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg, GPRReg scratchGPR2 = InvalidGPRReg);
+    void writeBarrier(JSCell* owner, GPRReg valueGPR, Edge valueUse, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg);
+
+    static GPRReg selectScratchGPR(GPRReg preserve1 = InvalidGPRReg, GPRReg preserve2 = InvalidGPRReg, GPRReg preserve3 = InvalidGPRReg, GPRReg preserve4 = InvalidGPRReg)
+    {
+        return AssemblyHelpers::selectScratchGPR(preserve1, preserve2, preserve3, preserve4);
+    }
+
+    // Called by the speculative operand types, below, to fill operand to
+    // machine registers, implicitly generating speculation checks as needed.
+    GPRReg fillSpeculateInt(NodeIndex, DataFormat& returnFormat);
+    GPRReg fillSpeculateIntStrict(NodeIndex);
+    FPRReg fillSpeculateDouble(NodeIndex);
+    GPRReg fillSpeculateCell(NodeIndex);
+    GPRReg fillSpeculateBoolean(NodeIndex);
+    GeneratedOperandType checkGeneratedTypeForToInt32(NodeIndex);
+
+private:
+    void compile(Node&);
+    void compileMovHint(Node&);
+    void compile(BasicBlock&);
+
+    void checkArgumentTypes();
+
+    void clearGenerationInfo();
+
+    // These methods are used when generating 'unexpected'
+    // calls out from JIT code to C++ helper routines -
+    // they spill all live values to the appropriate
+    // slots in the RegisterFile without changing any state
+    // in the GenerationInfo.
+    void silentSpillGPR(VirtualRegister spillMe, GPRReg source)
+    {
+        GenerationInfo& info = m_generationInfo[spillMe];
+        ASSERT(info.registerFormat() != DataFormatNone);
+        ASSERT(info.registerFormat() != DataFormatDouble);
+
+        if (!info.needsSpill())
+            return;
+
+        DataFormat registerFormat = info.registerFormat();
+
+#if USE(JSVALUE64)
+        ASSERT(info.gpr() == source);
+        if (registerFormat == DataFormatInteger)
+            m_jit.store32(source, JITCompiler::addressFor(spillMe));
+        else {
+            ASSERT(registerFormat & DataFormatJS || registerFormat == DataFormatCell || registerFormat == DataFormatStorage);
+            m_jit.storePtr(source, JITCompiler::addressFor(spillMe));
+        }
+#elif USE(JSVALUE32_64)
+        if (registerFormat & DataFormatJS) {
+            ASSERT(info.tagGPR() == source || info.payloadGPR() == source);
+            m_jit.store32(source, source == info.tagGPR() ? JITCompiler::tagFor(spillMe) : JITCompiler::payloadFor(spillMe));
+        } else {
+            ASSERT(info.gpr() == source);
+            m_jit.store32(source, JITCompiler::payloadFor(spillMe));
+        }
+#endif
+    }
+    void silentSpillFPR(VirtualRegister spillMe, FPRReg source)
+    {
+        GenerationInfo& info = m_generationInfo[spillMe];
+        ASSERT(info.registerFormat() == DataFormatDouble);
+
+        if (!info.needsSpill()) {
+            // it's either a constant or it's already been spilled
+            ASSERT(at(info.nodeIndex()).hasConstant() || info.spillFormat() != DataFormatNone);
+            return;
+        }
+        
+        // it's neither a constant nor has it been spilled.
+        ASSERT(!at(info.nodeIndex()).hasConstant());
+        ASSERT(info.spillFormat() == DataFormatNone);
+        ASSERT(info.fpr() == source);
+
+        m_jit.storeDouble(source, JITCompiler::addressFor(spillMe));
+    }
+
+    void silentFillGPR(VirtualRegister spillMe, GPRReg target)
+    {
+        GenerationInfo& info = m_generationInfo[spillMe];
+
+        NodeIndex nodeIndex = info.nodeIndex();
+        Node& node = at(nodeIndex);
+        ASSERT(info.registerFormat() != DataFormatNone);
+        ASSERT(info.registerFormat() != DataFormatDouble);
+        DataFormat registerFormat = info.registerFormat();
+
+        if (registerFormat == DataFormatInteger) {
+            ASSERT(info.gpr() == target);
+            ASSERT(isJSInteger(info.registerFormat()));
+            if (node.hasConstant()) {
+                ASSERT(isInt32Constant(nodeIndex));
+                m_jit.move(Imm32(valueOfInt32Constant(nodeIndex)), target);
+            } else
+                m_jit.load32(JITCompiler::payloadFor(spillMe), target);
+            return;
+        }
+        
+        if (registerFormat == DataFormatBoolean) {
+#if USE(JSVALUE64)
+            ASSERT_NOT_REACHED();
+#elif USE(JSVALUE32_64)
+            ASSERT(info.gpr() == target);
+            if (node.hasConstant()) {
+                ASSERT(isBooleanConstant(nodeIndex));
+                m_jit.move(TrustedImm32(valueOfBooleanConstant(nodeIndex)), target);
+            } else
+                m_jit.load32(JITCompiler::payloadFor(spillMe), target);
+#endif
+            return;
+        }
+
+        if (registerFormat == DataFormatCell) {
+            ASSERT(info.gpr() == target);
+            if (node.hasConstant()) {
+                JSValue value = valueOfJSConstant(nodeIndex);
+                ASSERT(value.isCell());
+                m_jit.move(TrustedImmPtr(value.asCell()), target);
+            } else
+                m_jit.loadPtr(JITCompiler::payloadFor(spillMe), target);
+            return;
+        }
+
+        if (registerFormat == DataFormatStorage) {
+            ASSERT(info.gpr() == target);
+            m_jit.loadPtr(JITCompiler::addressFor(spillMe), target);
+            return;
+        }
+
+        ASSERT(registerFormat & DataFormatJS);
+#if USE(JSVALUE64)
+        ASSERT(info.gpr() == target);
+        if (node.hasConstant()) {
+            if (valueOfJSConstant(nodeIndex).isCell())
+                m_jit.move(valueOfJSConstantAsImmPtr(nodeIndex).asTrustedImmPtr(), target);
+            else
+                m_jit.move(valueOfJSConstantAsImmPtr(nodeIndex), target);
+        } else if (info.spillFormat() == DataFormatInteger) {
+            ASSERT(registerFormat == DataFormatJSInteger);
+            m_jit.load32(JITCompiler::payloadFor(spillMe), target);
+            m_jit.orPtr(GPRInfo::tagTypeNumberRegister, target);
+        } else if (info.spillFormat() == DataFormatDouble) {
+            ASSERT(registerFormat == DataFormatJSDouble);
+            m_jit.loadPtr(JITCompiler::addressFor(spillMe), target);
+            m_jit.subPtr(GPRInfo::tagTypeNumberRegister, target);
+        } else
+            m_jit.loadPtr(JITCompiler::addressFor(spillMe), target);
+#else
+        ASSERT(info.tagGPR() == target || info.payloadGPR() == target);
+        if (node.hasConstant()) {
+            JSValue v = valueOfJSConstant(nodeIndex);
+            m_jit.move(info.tagGPR() == target ? Imm32(v.tag()) : Imm32(v.payload()), target);
+        } else if (info.payloadGPR() == target)
+            m_jit.load32(JITCompiler::payloadFor(spillMe), target);
+        else { // Fill the Tag
+            switch (info.spillFormat()) {
+            case DataFormatInteger:
+                ASSERT(registerFormat == DataFormatJSInteger);
+                m_jit.move(TrustedImm32(JSValue::Int32Tag), target);
+                break;
+            case DataFormatCell:
+                ASSERT(registerFormat == DataFormatJSCell);
+                m_jit.move(TrustedImm32(JSValue::CellTag), target);
+                break;
+            case DataFormatBoolean:
+                ASSERT(registerFormat == DataFormatJSBoolean);
+                m_jit.move(TrustedImm32(JSValue::BooleanTag), target);
+                break;
+            default:
+                m_jit.load32(JITCompiler::tagFor(spillMe), target);
+                break;
+            }
+        }
+#endif
+    }
+
+    void silentFillFPR(VirtualRegister spillMe, GPRReg canTrample, FPRReg target)
+    {
+        GenerationInfo& info = m_generationInfo[spillMe];
+        ASSERT(info.fpr() == target);
+
+        NodeIndex nodeIndex = info.nodeIndex();
+        Node& node = at(nodeIndex);
+#if USE(JSVALUE64)
+        ASSERT(info.registerFormat() == DataFormatDouble);
+
+        if (node.hasConstant()) {
+            ASSERT(isNumberConstant(nodeIndex));
+            m_jit.move(ImmPtr(bitwise_cast<void*>(valueOfNumberConstant(nodeIndex))), canTrample);
+            m_jit.movePtrToDouble(canTrample, target);
+            return;
+        }
+        
+        if (info.spillFormat() != DataFormatNone && info.spillFormat() != DataFormatDouble) {
+            // it was already spilled previously and not as a double, which means we need unboxing.
+            ASSERT(info.spillFormat() & DataFormatJS);
+            m_jit.loadPtr(JITCompiler::addressFor(spillMe), canTrample);
+            unboxDouble(canTrample, target);
+            return;
+        }
+
+        m_jit.loadDouble(JITCompiler::addressFor(spillMe), target);
+#elif USE(JSVALUE32_64)
+        UNUSED_PARAM(canTrample);
+        ASSERT(info.registerFormat() == DataFormatDouble || info.registerFormat() == DataFormatJSDouble);
+        if (node.hasConstant()) {
+            ASSERT(isNumberConstant(nodeIndex));
+            m_jit.loadDouble(addressOfDoubleConstant(nodeIndex), target);
+        } else
+            m_jit.loadDouble(JITCompiler::addressFor(spillMe), target);
+#endif
+    }
+
+    void silentSpillAllRegisters(GPRReg exclude, GPRReg exclude2 = InvalidGPRReg)
+    {
+        for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
+            GPRReg gpr = iter.regID();
+            if (iter.name() != InvalidVirtualRegister && gpr != exclude && gpr != exclude2)
+                silentSpillGPR(iter.name(), gpr);
+        }
+        for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister)
+                silentSpillFPR(iter.name(), iter.regID());
+        }
+    }
+    void silentSpillAllRegisters(FPRReg exclude)
+    {
+        for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister)
+                silentSpillGPR(iter.name(), iter.regID());
+        }
+        for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
+            FPRReg fpr = iter.regID();
+            if (iter.name() != InvalidVirtualRegister && fpr != exclude)
+                silentSpillFPR(iter.name(), fpr);
+        }
+    }
+
+    void silentFillAllRegisters(GPRReg exclude, GPRReg exclude2 = InvalidGPRReg)
+    {
+        GPRReg canTrample = GPRInfo::regT0;
+        if (exclude == GPRInfo::regT0)
+            canTrample = GPRInfo::regT1;
+        
+        for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister)
+                silentFillFPR(iter.name(), canTrample, iter.regID());
+        }
+        for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
+            GPRReg gpr = iter.regID();
+            if (iter.name() != InvalidVirtualRegister && gpr != exclude && gpr != exclude2)
+                silentFillGPR(iter.name(), gpr);
+        }
+    }
+    void silentFillAllRegisters(FPRReg exclude)
+    {
+        GPRReg canTrample = GPRInfo::regT0;
+        
+        for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
+            FPRReg fpr = iter.regID();
+            if (iter.name() != InvalidVirtualRegister && fpr != exclude)
+                silentFillFPR(iter.name(), canTrample, fpr);
+        }
+        for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister)
+                silentFillGPR(iter.name(), iter.regID());
+        }
+    }
+
+    // These methods convert between doubles, and doubles boxed and JSValues.
+#if USE(JSVALUE64)
+    GPRReg boxDouble(FPRReg fpr, GPRReg gpr)
+    {
+        return m_jit.boxDouble(fpr, gpr);
+    }
+    FPRReg unboxDouble(GPRReg gpr, FPRReg fpr)
+    {
+        return m_jit.unboxDouble(gpr, fpr);
+    }
+    GPRReg boxDouble(FPRReg fpr)
+    {
+        return boxDouble(fpr, allocate());
+    }
+#elif USE(JSVALUE32_64)
+    void boxDouble(FPRReg fpr, GPRReg tagGPR, GPRReg payloadGPR)
+    {
+        m_jit.boxDouble(fpr, tagGPR, payloadGPR);
+    }
+    void unboxDouble(GPRReg tagGPR, GPRReg payloadGPR, FPRReg fpr, FPRReg scratchFPR)
+    {
+        m_jit.unboxDouble(tagGPR, payloadGPR, fpr, scratchFPR);
+    }
+#endif
+
+    // Spill a VirtualRegister to the RegisterFile.
+    void spill(VirtualRegister spillMe)
+    {
+        GenerationInfo& info = m_generationInfo[spillMe];
+
+#if USE(JSVALUE32_64)
+        if (info.registerFormat() == DataFormatNone) // it has been spilled. JS values which have two GPRs can reach here
+            return;
+#endif
+        // Check the GenerationInfo to see if this value need writing
+        // to the RegisterFile - if not, mark it as spilled & return.
+        if (!info.needsSpill()) {
+            info.setSpilled();
+            return;
+        }
+
+        DataFormat spillFormat = info.registerFormat();
+        switch (spillFormat) {
+        case DataFormatStorage: {
+            // This is special, since it's not a JS value - as in it's not visible to JS
+            // code.
+            m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe));
+            info.spill(DataFormatStorage);
+            return;
+        }
+
+        case DataFormatInteger: {
+            m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
+            info.spill(DataFormatInteger);
+            return;
+        }
+
+#if USE(JSVALUE64)
+        case DataFormatDouble: {
+            m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
+            info.spill(DataFormatDouble);
+            return;
+        }
+            
+        default:
+            // The following code handles JSValues, int32s, and cells.
+            ASSERT(spillFormat == DataFormatCell || spillFormat & DataFormatJS);
+            
+            GPRReg reg = info.gpr();
+            // We need to box int32 and cell values ...
+            // but on JSVALUE64 boxing a cell is a no-op!
+            if (spillFormat == DataFormatInteger)
+                m_jit.orPtr(GPRInfo::tagTypeNumberRegister, reg);
+            
+            // Spill the value, and record it as spilled in its boxed form.
+            m_jit.storePtr(reg, JITCompiler::addressFor(spillMe));
+            info.spill((DataFormat)(spillFormat | DataFormatJS));
+            return;
+#elif USE(JSVALUE32_64)
+        case DataFormatCell:
+        case DataFormatBoolean: {
+            m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
+            info.spill(spillFormat);
+            return;
+        }
+
+        case DataFormatDouble:
+        case DataFormatJSDouble: {
+            // On JSVALUE32_64 boxing a double is a no-op.
+            m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
+            info.spill(DataFormatJSDouble);
+            return;
+        }
+
+        default:
+            // The following code handles JSValues.
+            ASSERT(spillFormat & DataFormatJS);
+            m_jit.store32(info.tagGPR(), JITCompiler::tagFor(spillMe));
+            m_jit.store32(info.payloadGPR(), JITCompiler::payloadFor(spillMe));
+            info.spill(spillFormat);
+            return;
+#endif
+        }
+    }
+    
+    bool isStrictInt32(NodeIndex);
+    
+    bool isKnownInteger(NodeIndex);
+    bool isKnownNumeric(NodeIndex);
+    bool isKnownCell(NodeIndex);
+    
+    bool isKnownNotInteger(NodeIndex);
+    bool isKnownNotNumber(NodeIndex);
+
+    bool isKnownNotCell(NodeIndex);
+    
+    // Checks/accessors for constant values.
+    bool isConstant(NodeIndex nodeIndex) { return m_jit.graph().isConstant(nodeIndex); }
+    bool isJSConstant(NodeIndex nodeIndex) { return m_jit.graph().isJSConstant(nodeIndex); }
+    bool isInt32Constant(NodeIndex nodeIndex) { return m_jit.graph().isInt32Constant(nodeIndex); }
+    bool isDoubleConstant(NodeIndex nodeIndex) { return m_jit.graph().isDoubleConstant(nodeIndex); }
+    bool isNumberConstant(NodeIndex nodeIndex) { return m_jit.graph().isNumberConstant(nodeIndex); }
+    bool isBooleanConstant(NodeIndex nodeIndex) { return m_jit.graph().isBooleanConstant(nodeIndex); }
+    bool isFunctionConstant(NodeIndex nodeIndex) { return m_jit.graph().isFunctionConstant(nodeIndex); }
+    int32_t valueOfInt32Constant(NodeIndex nodeIndex) { return m_jit.graph().valueOfInt32Constant(nodeIndex); }
+    double valueOfNumberConstant(NodeIndex nodeIndex) { return m_jit.graph().valueOfNumberConstant(nodeIndex); }
+    int32_t valueOfNumberConstantAsInt32(NodeIndex nodeIndex)
+    {
+        if (isInt32Constant(nodeIndex))
+            return valueOfInt32Constant(nodeIndex);
+        return JSC::toInt32(valueOfNumberConstant(nodeIndex));
+    }
+#if USE(JSVALUE32_64)
+    void* addressOfDoubleConstant(NodeIndex nodeIndex) { return m_jit.addressOfDoubleConstant(nodeIndex); }
+#endif
+    JSValue valueOfJSConstant(NodeIndex nodeIndex) { return m_jit.graph().valueOfJSConstant(nodeIndex); }
+    bool valueOfBooleanConstant(NodeIndex nodeIndex) { return m_jit.graph().valueOfBooleanConstant(nodeIndex); }
+    JSFunction* valueOfFunctionConstant(NodeIndex nodeIndex) { return m_jit.graph().valueOfFunctionConstant(nodeIndex); }
+    bool isNullConstant(NodeIndex nodeIndex)
+    {
+        if (!isConstant(nodeIndex))
+            return false;
+        return valueOfJSConstant(nodeIndex).isNull();
+    }
+
+    Identifier* identifier(unsigned index)
+    {
+        return &m_jit.codeBlock()->identifier(index);
+    }
+
+    // Spill all VirtualRegisters back to the RegisterFile.
+    void flushRegisters()
+    {
+        for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister) {
+                spill(iter.name());
+                iter.release();
+            }
+        }
+        for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister) {
+                spill(iter.name());
+                iter.release();
+            }
+        }
+    }
+
+#ifndef NDEBUG
+    // Used to ASSERT flushRegisters() has been called prior to
+    // calling out from JIT code to a C helper function.
+    bool isFlushed()
+    {
+        for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister)
+                return false;
+        }
+        for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister)
+                return false;
+        }
+        return true;
+    }
+#endif
+
+#if USE(JSVALUE64)
+    MacroAssembler::ImmPtr valueOfJSConstantAsImmPtr(NodeIndex nodeIndex)
+    {
+        return MacroAssembler::ImmPtr(JSValue::encode(valueOfJSConstant(nodeIndex)));
+    }
+#endif
+
+    // Helper functions to enable code sharing in implementations of bit/shift ops.
+    void bitOp(NodeType op, int32_t imm, GPRReg op1, GPRReg result)
+    {
+        switch (op) {
+        case BitAnd:
+            m_jit.and32(Imm32(imm), op1, result);
+            break;
+        case BitOr:
+            m_jit.or32(Imm32(imm), op1, result);
+            break;
+        case BitXor:
+            m_jit.xor32(Imm32(imm), op1, result);
+            break;
+        default:
+            ASSERT_NOT_REACHED();
+        }
+    }
+    void bitOp(NodeType op, GPRReg op1, GPRReg op2, GPRReg result)
+    {
+        switch (op) {
+        case BitAnd:
+            m_jit.and32(op1, op2, result);
+            break;
+        case BitOr:
+            m_jit.or32(op1, op2, result);
+            break;
+        case BitXor:
+            m_jit.xor32(op1, op2, result);
+            break;
+        default:
+            ASSERT_NOT_REACHED();
+        }
+    }
+    void shiftOp(NodeType op, GPRReg op1, int32_t shiftAmount, GPRReg result)
+    {
+        switch (op) {
+        case BitRShift:
+            m_jit.rshift32(op1, Imm32(shiftAmount), result);
+            break;
+        case BitLShift:
+            m_jit.lshift32(op1, Imm32(shiftAmount), result);
+            break;
+        case BitURShift:
+            m_jit.urshift32(op1, Imm32(shiftAmount), result);
+            break;
+        default:
+            ASSERT_NOT_REACHED();
+        }
+    }
+    void shiftOp(NodeType op, GPRReg op1, GPRReg shiftAmount, GPRReg result)
+    {
+        switch (op) {
+        case BitRShift:
+            m_jit.rshift32(op1, shiftAmount, result);
+            break;
+        case BitLShift:
+            m_jit.lshift32(op1, shiftAmount, result);
+            break;
+        case BitURShift:
+            m_jit.urshift32(op1, shiftAmount, result);
+            break;
+        default:
+            ASSERT_NOT_REACHED();
+        }
+    }
+    
+    // Returns the index of the branch node if peephole is okay, UINT_MAX otherwise.
+    unsigned detectPeepHoleBranch()
+    {
+        BasicBlock* block = m_jit.graph().m_blocks[m_block].get();
+
+        // Check that no intervening nodes will be generated.
+        for (unsigned index = m_indexInBlock + 1; index < block->size() - 1; ++index) {
+            NodeIndex nodeIndex = block->at(index);
+            if (at(nodeIndex).shouldGenerate())
+                return UINT_MAX;
+        }
+
+        // Check if the lastNode is a branch on this node.
+        Node& lastNode = at(block->last());
+        return lastNode.op() == Branch && lastNode.child1().index() == m_compileIndex ? block->size() - 1 : UINT_MAX;
+    }
+    
+    void nonSpeculativeValueToNumber(Node&);
+    void nonSpeculativeValueToInt32(Node&);
+    void nonSpeculativeUInt32ToNumber(Node&);
+
+    enum SpillRegistersMode { NeedToSpill, DontSpill };
+#if USE(JSVALUE64)
+    JITCompiler::Call cachedGetById(CodeOrigin, GPRReg baseGPR, GPRReg resultGPR, GPRReg scratchGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
+    void cachedPutById(CodeOrigin, GPRReg base, GPRReg value, Edge valueUse, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump());
+#elif USE(JSVALUE32_64)
+    JITCompiler::Call cachedGetById(CodeOrigin, GPRReg baseTagGPROrNone, GPRReg basePayloadGPR, GPRReg resultTagGPR, GPRReg resultPayloadGPR, GPRReg scratchGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
+    void cachedPutById(CodeOrigin, GPRReg basePayloadGPR, GPRReg valueTagGPR, GPRReg valuePayloadGPR, Edge valueUse, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump());
+#endif
+
+    void nonSpeculativeNonPeepholeCompareNull(Edge operand, bool invert = false);
+    void nonSpeculativePeepholeBranchNull(Edge operand, NodeIndex branchNodeIndex, bool invert = false);
+    bool nonSpeculativeCompareNull(Node&, Edge operand, bool invert = false);
+    
+    void nonSpeculativePeepholeBranch(Node&, NodeIndex branchNodeIndex, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
+    void nonSpeculativeNonPeepholeCompare(Node&, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
+    bool nonSpeculativeCompare(Node&, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
+    
+    void nonSpeculativePeepholeStrictEq(Node&, NodeIndex branchNodeIndex, bool invert = false);
+    void nonSpeculativeNonPeepholeStrictEq(Node&, bool invert = false);
+    bool nonSpeculativeStrictEq(Node&, bool invert = false);
+    
+    void compileInstanceOfForObject(Node&, GPRReg valueReg, GPRReg prototypeReg, GPRReg scratchAndResultReg);
+    void compileInstanceOf(Node&);
+    
+    // Access to our fixed callee CallFrame.
+    MacroAssembler::Address callFrameSlot(int slot)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)));
+    }
+
+    // Access to our fixed callee CallFrame.
+    MacroAssembler::Address argumentSlot(int argument)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)));
+    }
+
+    MacroAssembler::Address callFrameTagSlot(int slot)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag));
+    }
+
+    MacroAssembler::Address callFramePayloadSlot(int slot)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload));
+    }
+
+    MacroAssembler::Address argumentTagSlot(int argument)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag));
+    }
+
+    MacroAssembler::Address argumentPayloadSlot(int argument)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload));
+    }
+
+    void emitCall(Node&);
+    
+    // Called once a node has completed code generation but prior to setting
+    // its result, to free up its children. (This must happen prior to setting
+    // the nodes result, since the node may have the same VirtualRegister as
+    // a child, and as such will use the same GeneratioInfo).
+    void useChildren(Node&);
+
+    // These method called to initialize the the GenerationInfo
+    // to describe the result of an operation.
+    void integerResult(GPRReg reg, NodeIndex nodeIndex, DataFormat format = DataFormatInteger, UseChildrenMode mode = CallUseChildren)
+    {
+        Node& node = at(nodeIndex);
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node.virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+
+        if (format == DataFormatInteger) {
+            m_jit.jitAssertIsInt32(reg);
+            m_gprs.retain(reg, virtualRegister, SpillOrderInteger);
+            info.initInteger(nodeIndex, node.refCount(), reg);
+        } else {
+#if USE(JSVALUE64)
+            ASSERT(format == DataFormatJSInteger);
+            m_jit.jitAssertIsJSInt32(reg);
+            m_gprs.retain(reg, virtualRegister, SpillOrderJS);
+            info.initJSValue(nodeIndex, node.refCount(), reg, format);
+#elif USE(JSVALUE32_64)
+            ASSERT_NOT_REACHED();
+#endif
+        }
+    }
+    void integerResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode)
+    {
+        integerResult(reg, nodeIndex, DataFormatInteger, mode);
+    }
+    void noResult(NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
+    {
+        if (mode == UseChildrenCalledExplicitly)
+            return;
+        Node& node = at(nodeIndex);
+        useChildren(node);
+    }
+    void cellResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
+    {
+        Node& node = at(nodeIndex);
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node.virtualRegister();
+        m_gprs.retain(reg, virtualRegister, SpillOrderCell);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initCell(nodeIndex, node.refCount(), reg);
+    }
+    void booleanResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
+    {
+        Node& node = at(nodeIndex);
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node.virtualRegister();
+        m_gprs.retain(reg, virtualRegister, SpillOrderBoolean);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initBoolean(nodeIndex, node.refCount(), reg);
+    }
+#if USE(JSVALUE64)
+    void jsValueResult(GPRReg reg, NodeIndex nodeIndex, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
+    {
+        if (format == DataFormatJSInteger)
+            m_jit.jitAssertIsJSInt32(reg);
+        
+        Node& node = at(nodeIndex);
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node.virtualRegister();
+        m_gprs.retain(reg, virtualRegister, SpillOrderJS);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initJSValue(nodeIndex, node.refCount(), reg, format);
+    }
+    void jsValueResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode)
+    {
+        jsValueResult(reg, nodeIndex, DataFormatJS, mode);
+    }
+#elif USE(JSVALUE32_64)
+    void jsValueResult(GPRReg tag, GPRReg payload, NodeIndex nodeIndex, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
+    {
+        Node& node = at(nodeIndex);
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node.virtualRegister();
+        m_gprs.retain(tag, virtualRegister, SpillOrderJS);
+        m_gprs.retain(payload, virtualRegister, SpillOrderJS);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initJSValue(nodeIndex, node.refCount(), tag, payload, format);
+    }
+    void jsValueResult(GPRReg tag, GPRReg payload, NodeIndex nodeIndex, UseChildrenMode mode)
+    {
+        jsValueResult(tag, payload, nodeIndex, DataFormatJS, mode);
+    }
+#endif
+    void storageResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
+    {
+        Node& node = at(nodeIndex);
+        if (mode == CallUseChildren)
+            useChildren(node);
+        
+        VirtualRegister virtualRegister = node.virtualRegister();
+        m_gprs.retain(reg, virtualRegister, SpillOrderStorage);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initStorage(nodeIndex, node.refCount(), reg);
+    }
+    void doubleResult(FPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
+    {
+        Node& node = at(nodeIndex);
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node.virtualRegister();
+        m_fprs.retain(reg, virtualRegister, SpillOrderDouble);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initDouble(nodeIndex, node.refCount(), reg);
+    }
+    void initConstantInfo(NodeIndex nodeIndex)
+    {
+        ASSERT(isInt32Constant(nodeIndex) || isNumberConstant(nodeIndex) || isJSConstant(nodeIndex));
+        Node& node = at(nodeIndex);
+        m_generationInfo[node.virtualRegister()].initConstant(nodeIndex, node.refCount());
+    }
+    
+    // These methods add calls to C++ helper functions.
+    // These methods are broadly value representation specific (i.e.
+    // deal with the fact that a JSValue may be passed in one or two
+    // machine registers, and delegate the calling convention specific
+    // decision as to how to fill the regsiters to setupArguments* methods.
+#if USE(JSVALUE64)
+    JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg result, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(Z_DFGOperation_D operation, GPRReg result, FPRReg arg1)
+    {
+        m_jit.setupArguments(arg1);
+        JITCompiler::Call call = m_jit.appendCall(operation);
+        m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
+        return call;
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EGI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EI operation, GPRReg result, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EA operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EPS operation, GPRReg result, void* pointer, size_t size)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ESS operation, GPRReg result, int startConstant, int numConstants)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg result, GPRReg arg1, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_E operation, GPRReg result)
+    {
+        m_jit.setupArgumentsExecState();
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, JSCell* cell)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, JSCell* cell)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_J operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArguments(arg1);
+        return appendCallSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, MacroAssembler::TrustedImm32 imm)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, MacroAssembler::TrustedImmPtr(static_cast<const void*>(JSValue::encode(jsNumber(imm.m_value)))));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, MacroAssembler::TrustedImm32 imm, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(MacroAssembler::TrustedImmPtr(static_cast<const void*>(JSValue::encode(jsNumber(imm.m_value)))), arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EC operation, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EJPP operation, GPRReg arg1, GPRReg arg2, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EJCI operation, GPRReg arg1, GPRReg arg2, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EJJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EAZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_ECJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(D_DFGOperation_EJ operation, FPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(D_DFGOperation_ZZ operation, FPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArguments(arg1, arg2);
+        return appendCallSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(D_DFGOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2)
+    {
+        m_jit.setupArguments(arg1, arg2);
+        return appendCallSetResult(operation, result);
+    }
+#else
+    JITCompiler::Call callOperation(Z_DFGOperation_D operation, GPRReg result, FPRReg arg1)
+    {
+        prepareForExternalCall();
+        m_jit.setupArguments(arg1);
+        JITCompiler::Call call = m_jit.appendCall(operation);
+        m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
+        return call;
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EGI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EI operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EPS operation, GPRReg resultTag, GPRReg resultPayload, void* pointer, size_t size)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ESS operation, GPRReg resultTag, GPRReg resultPayload, int startConstant, int numConstants)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1Tag, GPRReg arg1Payload, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, TrustedImm32(arg1Tag), TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_E operation, GPRReg result)
+    {
+        m_jit.setupArgumentsExecState();
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, JSCell* cell)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, JSCell* cell)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_J operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
+    {
+        m_jit.setupArguments(arg1Payload, arg1Tag);
+        return appendCallSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag, arg2Payload, arg2Tag);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag, arg2Payload, arg2Tag);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, MacroAssembler::TrustedImm32 imm)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag, imm, TrustedImm32(JSValue::Int32Tag));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, MacroAssembler::TrustedImm32 imm, GPRReg arg2Tag, GPRReg arg2Payload)
+    {
+        m_jit.setupArgumentsWithExecState(imm, TrustedImm32(JSValue::Int32Tag), arg2Payload, arg2Tag);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EC operation, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EJPP operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag, arg2, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EJCI operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag, arg2, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_ECJJ operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, arg3Payload, arg3Tag);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3Payload, arg3Tag);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EAZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3Payload, arg3Tag);
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(D_DFGOperation_EJ operation, FPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1Payload, arg1Tag);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+    JITCompiler::Call callOperation(D_DFGOperation_ZZ operation, FPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArguments(arg1, arg2);
+        return appendCallSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(D_DFGOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2)
+    {
+        m_jit.setupArguments(arg1, arg2);
+        return appendCallSetResult(operation, result);
+    }
+#endif
+    
+#if !defined(NDEBUG) && !CPU(ARM_THUMB2)
+    void prepareForExternalCall()
+    {
+        for (unsigned i = 0; i < sizeof(void*) / 4; i++)
+            m_jit.store32(TrustedImm32(0xbadbeef), reinterpret_cast<char*>(&m_jit.globalData()->topCallFrame) + i * 4);
+    }
+#else
+    void prepareForExternalCall() { }
+#endif
+
+    // These methods add call instructions, with optional exception checks & setting results.
+    JITCompiler::Call appendCallWithExceptionCheck(const FunctionPtr& function)
+    {
+        prepareForExternalCall();
+        CodeOrigin codeOrigin = at(m_compileIndex).codeOrigin;
+        CallBeginToken token = m_jit.beginCall();
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.addExceptionCheck(call, codeOrigin, token);
+        return call;
+    }
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, GPRReg result)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.move(GPRInfo::returnValueGPR, result);
+        return call;
+    }
+    JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result)
+    {
+        prepareForExternalCall();
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.move(GPRInfo::returnValueGPR, result);
+        return call;
+    }
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, GPRReg result1, GPRReg result2)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.setupResults(result1, result2);
+        return call;
+    }
+#if CPU(X86)
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister);
+        m_jit.loadDouble(JITCompiler::stackPointerRegister, result);
+        return call;
+    }
+    JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister);
+        m_jit.loadDouble(JITCompiler::stackPointerRegister, result);
+        return call;
+    }
+#elif CPU(ARM)
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
+        return call;
+    }
+    JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
+        return call;
+    }
+#else
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.moveDouble(FPRInfo::returnValueFPR, result);
+        return call;
+    }
+    JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.moveDouble(FPRInfo::returnValueFPR, result);
+        return call;
+    }
+#endif
+    
+    void branchDouble(JITCompiler::DoubleCondition cond, FPRReg left, FPRReg right, BlockIndex destination)
+    {
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchDouble(cond, left, right), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchDouble(JITCompiler::invert(cond), left, right);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    void branchDoubleNonZero(FPRReg value, FPRReg scratch, BlockIndex destination)
+    {
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchDoubleNonZero(value, scratch), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchDoubleZeroOrNaN(value, scratch);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T, typename U>
+    void branch32(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
+    {
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branch32(cond, left, right), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branch32(JITCompiler::invert(cond), left, right);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T, typename U>
+    void branchTest32(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTest32(cond, value, mask), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTest32(JITCompiler::invert(cond), value, mask);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T>
+    void branchTest32(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTest32(cond, value), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTest32(JITCompiler::invert(cond), value);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T, typename U>
+    void branchPtr(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
+    {
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchPtr(cond, left, right), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchPtr(JITCompiler::invert(cond), left, right);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T, typename U>
+    void branchTestPtr(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTestPtr(cond, value, mask), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTestPtr(JITCompiler::invert(cond), value, mask);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T>
+    void branchTestPtr(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTestPtr(cond, value), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTestPtr(JITCompiler::invert(cond), value);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T, typename U>
+    void branchTest8(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTest8(cond, value, mask), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTest8(JITCompiler::invert(cond), value, mask);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T>
+    void branchTest8(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTest8(cond, value), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTest8(JITCompiler::invert(cond), value);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    enum FallThroughMode {
+        AtFallThroughPoint,
+        ForceJump
+    };
+    void jump(BlockIndex destination, FallThroughMode fallThroughMode = AtFallThroughPoint)
+    {
+        if (haveEdgeCodeToEmit(destination))
+            emitEdgeCode(destination);
+        if (destination == m_block + 1
+            && fallThroughMode == AtFallThroughPoint)
+            return;
+        addBranch(m_jit.jump(), destination);
+    }
+    
+    inline bool haveEdgeCodeToEmit(BlockIndex)
+    {
+        return DFG_ENABLE_EDGE_CODE_VERIFICATION;
+    }
+    void emitEdgeCode(BlockIndex destination)
+    {
+        if (!DFG_ENABLE_EDGE_CODE_VERIFICATION)
+            return;
+        m_jit.move(TrustedImm32(destination), GPRInfo::regT0);
+    }
+
+    void addBranch(const MacroAssembler::Jump& jump, BlockIndex destination)
+    {
+        m_branches.append(BranchRecord(jump, destination));
+    }
+
+    void linkBranches()
+    {
+        for (size_t i = 0; i < m_branches.size(); ++i) {
+            BranchRecord& branch = m_branches[i];
+            branch.jump.linkTo(m_blockHeads[branch.destination], &m_jit);
+        }
+    }
+
+    BasicBlock* block()
+    {
+        return m_jit.graph().m_blocks[m_block].get();
+    }
+
+#ifndef NDEBUG
+    void dump(const char* label = 0);
+#endif
+
+#if DFG_ENABLE(CONSISTENCY_CHECK)
+    void checkConsistency();
+#else
+    void checkConsistency() { }
+#endif
+
+    bool isInteger(NodeIndex nodeIndex)
+    {
+        Node& node = at(nodeIndex);
+        if (node.hasInt32Result())
+            return true;
+
+        if (isInt32Constant(nodeIndex))
+            return true;
+
+        VirtualRegister virtualRegister = node.virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        
+        return info.isJSInteger();
+    }
+    
+    bool compare(Node&, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_DFGOperation_EJJ);
+    bool compilePeepHoleBranch(Node&, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_DFGOperation_EJJ);
+    void compilePeepHoleIntegerBranch(Node&, NodeIndex branchNodeIndex, JITCompiler::RelationalCondition);
+    void compilePeepHoleDoubleBranch(Node&, NodeIndex branchNodeIndex, JITCompiler::DoubleCondition);
+    void compilePeepHoleObjectEquality(Node&, NodeIndex branchNodeIndex, const ClassInfo*, PredictionChecker);
+    void compilePeepHoleObjectToObjectOrOtherEquality(
+        Edge leftChild, Edge rightChild, NodeIndex branchNodeIndex, const ClassInfo*, PredictionChecker);
+    void compileObjectEquality(Node&, const ClassInfo*, PredictionChecker);
+    void compileObjectToObjectOrOtherEquality(
+        Edge leftChild, Edge rightChild, const ClassInfo*, PredictionChecker);
+    void compileValueAdd(Node&);
+    void compileObjectOrOtherLogicalNot(Edge value, const ClassInfo*, bool needSpeculationCheck);
+    void compileLogicalNot(Node&);
+    void emitObjectOrOtherBranch(Edge value, BlockIndex taken, BlockIndex notTaken, const ClassInfo*, bool needSpeculationCheck);
+    void emitBranch(Node&);
+    
+    void compileIntegerCompare(Node&, MacroAssembler::RelationalCondition);
+    void compileDoubleCompare(Node&, MacroAssembler::DoubleCondition);
+    
+    bool compileStrictEqForConstant(Node&, Edge value, JSValue constant);
+    
+    bool compileStrictEq(Node&);
+    
+    void compileGetCharCodeAt(Node&);
+    void compileGetByValOnString(Node&);
+    void compileValueToInt32(Node&);
+    void compileUInt32ToNumber(Node&);
+    void compileDoubleAsInt32(Node&);
+    void compileInt32ToDouble(Node&);
+    void compileAdd(Node&);
+    void compileArithSub(Node&);
+    void compileArithNegate(Node&);
+    void compileArithMul(Node&);
+#if CPU(X86) || CPU(X86_64)
+    void compileIntegerArithDivForX86(Node&);
+#endif
+    void compileArithMod(Node&);
+    void compileSoftModulo(Node&);
+    void compileGetTypedArrayLength(const TypedArrayDescriptor&, Node&, bool needsSpeculationCheck);
+    enum TypedArraySpeculationRequirements {
+        NoTypedArraySpecCheck,
+        NoTypedArrayTypeSpecCheck,
+        AllTypedArraySpecChecks
+    };
+    enum TypedArraySignedness {
+        SignedTypedArray,
+        UnsignedTypedArray
+    };
+    enum TypedArrayRounding {
+        TruncateRounding,
+        ClampRounding
+    };
+    void compileGetIndexedPropertyStorage(Node&);
+    void compileGetByValOnIntTypedArray(const TypedArrayDescriptor&, Node&, size_t elementSize, TypedArraySpeculationRequirements, TypedArraySignedness);
+    void compilePutByValForIntTypedArray(const TypedArrayDescriptor&, GPRReg base, GPRReg property, Node&, size_t elementSize, TypedArraySpeculationRequirements, TypedArraySignedness, TypedArrayRounding = TruncateRounding);
+    void compileGetByValOnFloatTypedArray(const TypedArrayDescriptor&, Node&, size_t elementSize, TypedArraySpeculationRequirements);
+    void compilePutByValForFloatTypedArray(const TypedArrayDescriptor&, GPRReg base, GPRReg property, Node&, size_t elementSize, TypedArraySpeculationRequirements);
+    void compileNewFunctionNoCheck(Node&);
+    void compileNewFunctionExpression(Node&);
+    bool compileRegExpExec(Node&);
+    
+    template <typename ClassType, bool destructor, typename StructureType> 
+    void emitAllocateBasicJSObject(StructureType structure, GPRReg resultGPR, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
+    {
+        MarkedAllocator* allocator = 0;
+        if (destructor)
+            allocator = &m_jit.globalData()->heap.allocatorForObjectWithDestructor(sizeof(ClassType));
+        else
+            allocator = &m_jit.globalData()->heap.allocatorForObjectWithoutDestructor(sizeof(ClassType));
+
+        m_jit.loadPtr(&allocator->m_freeList.head, resultGPR);
+        slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR));
+        
+        // The object is half-allocated: we have what we know is a fresh object, but
+        // it's still on the GC's free list.
+        
+        // Ditch the structure by placing it into the structure slot, so that we can reuse
+        // scratchGPR.
+        m_jit.storePtr(structure, MacroAssembler::Address(resultGPR, JSObject::structureOffset()));
+        
+        // Now that we have scratchGPR back, remove the object from the free list
+        m_jit.loadPtr(MacroAssembler::Address(resultGPR), scratchGPR);
+        m_jit.storePtr(scratchGPR, &allocator->m_freeList.head);
+        
+        // Initialize the object's classInfo pointer
+        m_jit.storePtr(MacroAssembler::TrustedImmPtr(&ClassType::s_info), MacroAssembler::Address(resultGPR, JSCell::classInfoOffset()));
+        
+        // Initialize the object's inheritorID.
+        m_jit.storePtr(MacroAssembler::TrustedImmPtr(0), MacroAssembler::Address(resultGPR, JSObject::offsetOfInheritorID()));
+        
+        // Initialize the object's property storage pointer.
+        m_jit.addPtr(MacroAssembler::TrustedImm32(sizeof(JSObject)), resultGPR, scratchGPR);
+        m_jit.storePtr(scratchGPR, MacroAssembler::Address(resultGPR, ClassType::offsetOfPropertyStorage()));
+    }
+
+    // It is acceptable to have structure be equal to scratch, so long as you're fine
+    // with the structure GPR being clobbered.
+    template<typename T>
+    void emitAllocateJSFinalObject(T structure, GPRReg resultGPR, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
+    {
+        return emitAllocateBasicJSObject<JSFinalObject, false>(structure, resultGPR, scratchGPR, slowPath);
+    }
+
+#if USE(JSVALUE64) 
+    JITCompiler::Jump convertToDouble(GPRReg value, FPRReg result, GPRReg tmp);
+#elif USE(JSVALUE32_64)
+    JITCompiler::Jump convertToDouble(JSValueOperand&, FPRReg result);
+#endif
+
+    // Add a speculation check without additional recovery.
+    void speculationCheck(ExitKind kind, JSValueSource jsValueSource, NodeIndex nodeIndex, MacroAssembler::Jump jumpToFail)
+    {
+        if (!m_compileOkay)
+            return;
+        m_jit.codeBlock()->appendOSRExit(OSRExit(kind, jsValueSource, m_jit.graph().methodOfGettingAValueProfileFor(nodeIndex), jumpToFail, this));
+    }
+    void speculationCheck(ExitKind kind, JSValueSource jsValueSource, Edge nodeUse, MacroAssembler::Jump jumpToFail)
+    {
+        speculationCheck(kind, jsValueSource, nodeUse.index(), jumpToFail);
+    }
+    // Add a set of speculation checks without additional recovery.
+    void speculationCheck(ExitKind kind, JSValueSource jsValueSource, NodeIndex nodeIndex, MacroAssembler::JumpList& jumpsToFail)
+    {
+        Vector<MacroAssembler::Jump, 16> jumpVector = jumpsToFail.jumps();
+        for (unsigned i = 0; i < jumpVector.size(); ++i)
+            speculationCheck(kind, jsValueSource, nodeIndex, jumpVector[i]);
+    }
+    void speculationCheck(ExitKind kind, JSValueSource jsValueSource, Edge nodeUse, MacroAssembler::JumpList& jumpsToFail)
+    {
+        speculationCheck(kind, jsValueSource, nodeUse.index(), jumpsToFail);
+    }
+    // Add a speculation check with additional recovery.
+    void speculationCheck(ExitKind kind, JSValueSource jsValueSource, NodeIndex nodeIndex, MacroAssembler::Jump jumpToFail, const SpeculationRecovery& recovery)
+    {
+        if (!m_compileOkay)
+            return;
+        m_jit.codeBlock()->appendSpeculationRecovery(recovery);
+        m_jit.codeBlock()->appendOSRExit(OSRExit(kind, jsValueSource, m_jit.graph().methodOfGettingAValueProfileFor(nodeIndex), jumpToFail, this, m_jit.codeBlock()->numberOfSpeculationRecoveries()));
+    }
+    void speculationCheck(ExitKind kind, JSValueSource jsValueSource, Edge nodeUse, MacroAssembler::Jump jumpToFail, const SpeculationRecovery& recovery)
+    {
+        speculationCheck(kind, jsValueSource, nodeUse.index(), jumpToFail, recovery);
+    }
+    void forwardSpeculationCheck(ExitKind kind, JSValueSource jsValueSource, NodeIndex nodeIndex, MacroAssembler::Jump jumpToFail, const ValueRecovery& valueRecovery)
+    {
+        speculationCheck(kind, jsValueSource, nodeIndex, jumpToFail);
+        
+        unsigned setLocalIndexInBlock = m_indexInBlock + 1;
+        
+        Node* setLocal = &at(m_jit.graph().m_blocks[m_block]->at(setLocalIndexInBlock));
+        
+        if (setLocal->op() == Int32ToDouble) {
+            setLocal = &at(m_jit.graph().m_blocks[m_block]->at(++setLocalIndexInBlock));
+            ASSERT(at(setLocal->child1()).child1() == m_compileIndex);
+        } else
+            ASSERT(setLocal->child1() == m_compileIndex);
+        
+        ASSERT(setLocal->op() == SetLocal);
+        ASSERT(setLocal->codeOrigin == at(m_compileIndex).codeOrigin);
+
+        Node* nextNode = &at(m_jit.graph().m_blocks[m_block]->at(setLocalIndexInBlock + 1));
+        if (nextNode->codeOrigin == at(m_compileIndex).codeOrigin) {
+            ASSERT(nextNode->op() == Flush);
+            nextNode = &at(m_jit.graph().m_blocks[m_block]->at(setLocalIndexInBlock + 2));
+            ASSERT(nextNode->codeOrigin != at(m_compileIndex).codeOrigin); // duplicate the same assertion as below so that if we fail, we'll know we came down this path.
+        }
+        ASSERT(nextNode->codeOrigin != at(m_compileIndex).codeOrigin);
+        
+        OSRExit& exit = m_jit.codeBlock()->lastOSRExit();
+        exit.m_codeOrigin = nextNode->codeOrigin;
+        exit.m_lastSetOperand = setLocal->local();
+        
+        exit.valueRecoveryForOperand(setLocal->local()) = valueRecovery;
+    }
+    void forwardSpeculationCheck(ExitKind kind, JSValueSource jsValueSource, NodeIndex nodeIndex, MacroAssembler::JumpList& jumpsToFail, const ValueRecovery& valueRecovery)
+    {
+        Vector<MacroAssembler::Jump, 16> jumpVector = jumpsToFail.jumps();
+        for (unsigned i = 0; i < jumpVector.size(); ++i)
+            forwardSpeculationCheck(kind, jsValueSource, nodeIndex, jumpVector[i], valueRecovery);
+    }
+
+    // Called when we statically determine that a speculation will fail.
+    void terminateSpeculativeExecution(ExitKind kind, JSValueRegs jsValueRegs, NodeIndex nodeIndex)
+    {
+#if DFG_ENABLE(DEBUG_VERBOSE)
+        dataLog("SpeculativeJIT was terminated.\n");
+#endif
+        if (!m_compileOkay)
+            return;
+        speculationCheck(kind, jsValueRegs, nodeIndex, m_jit.jump());
+        m_compileOkay = false;
+    }
+    void terminateSpeculativeExecution(ExitKind kind, JSValueRegs jsValueRegs, Edge nodeUse)
+    {
+        terminateSpeculativeExecution(kind, jsValueRegs, nodeUse.index());
+    }
+    
+    template<bool strict>
+    GPRReg fillSpeculateIntInternal(NodeIndex, DataFormat& returnFormat);
+    
+    // It is possible, during speculative generation, to reach a situation in which we
+    // can statically determine a speculation will fail (for example, when two nodes
+    // will make conflicting speculations about the same operand). In such cases this
+    // flag is cleared, indicating no further code generation should take place.
+    bool m_compileOkay;
+    
+    // Tracking for which nodes are currently holding the values of arguments and bytecode
+    // operand-indexed variables.
+    
+    ValueSource valueSourceForOperand(int operand)
+    {
+        return valueSourceReferenceForOperand(operand);
+    }
+    
+    void setNodeIndexForOperand(NodeIndex nodeIndex, int operand)
+    {
+        valueSourceReferenceForOperand(operand) = ValueSource(nodeIndex);
+    }
+    
+    // Call this with care, since it both returns a reference into an array
+    // and potentially resizes the array. So it would not be right to call this
+    // twice and then perform operands on both references, since the one from
+    // the first call may no longer be valid.
+    ValueSource& valueSourceReferenceForOperand(int operand)
+    {
+        if (operandIsArgument(operand)) {
+            int argument = operandToArgument(operand);
+            return m_arguments[argument];
+        }
+        
+        if ((unsigned)operand >= m_variables.size())
+            m_variables.resize(operand + 1);
+        
+        return m_variables[operand];
+    }
+    
+    // The JIT, while also provides MacroAssembler functionality.
+    JITCompiler& m_jit;
+    // The current node being generated.
+    BlockIndex m_block;
+    NodeIndex m_compileIndex;
+    unsigned m_indexInBlock;
+    // Virtual and physical register maps.
+    Vector<GenerationInfo, 32> m_generationInfo;
+    RegisterBank<GPRInfo> m_gprs;
+    RegisterBank<FPRInfo> m_fprs;
+
+    Vector<MacroAssembler::Label> m_blockHeads;
+    Vector<MacroAssembler::Label> m_osrEntryHeads;
+    
+    struct BranchRecord {
+        BranchRecord(MacroAssembler::Jump jump, BlockIndex destination)
+            : jump(jump)
+            , destination(destination)
+        {
+        }
+
+        MacroAssembler::Jump jump;
+        BlockIndex destination;
+    };
+    Vector<BranchRecord, 8> m_branches;
+
+    Vector<ValueSource, 0> m_arguments;
+    Vector<ValueSource, 0> m_variables;
+    int m_lastSetOperand;
+    CodeOrigin m_codeOriginForOSR;
+    
+    AbstractState m_state;
+    
+    ValueRecovery computeValueRecoveryFor(const ValueSource&);
+
+    ValueRecovery computeValueRecoveryFor(int operand)
+    {
+        return computeValueRecoveryFor(valueSourceForOperand(operand));
+    }
 };
 
-// === SpeculationRecovery ===
-//
-// This class provides additional information that may be associated with a
-// speculation check - for example 
-class SpeculationRecovery {
-public:
-    SpeculationRecovery(SpeculationRecoveryType type, GPRReg dest, GPRReg src)
-        : m_type(type)
-        , m_dest(dest)
-        , m_src(src)
+
+// === Operand types ===
+//
+// IntegerOperand, DoubleOperand and JSValueOperand.
+//
+// These classes are used to lock the operands to a node into machine
+// registers. These classes implement of pattern of locking a value
+// into register at the point of construction only if it is already in
+// registers, and otherwise loading it lazily at the point it is first
+// used. We do so in order to attempt to avoid spilling one operand
+// in order to make space available for another.
+
+class IntegerOperand {
+public:
+    explicit IntegerOperand(SpeculativeJIT* jit, Edge use)
+        : m_jit(jit)
+        , m_index(use.index())
+        , m_gprOrInvalid(InvalidGPRReg)
+#ifndef NDEBUG
+        , m_format(DataFormatNone)
+#endif
+    {
+        ASSERT(m_jit);
+        ASSERT(use.useKind() != DoubleUse);
+        if (jit->isFilled(m_index))
+            gpr();
+    }
+
+    ~IntegerOperand()
+    {
+        ASSERT(m_gprOrInvalid != InvalidGPRReg);
+        m_jit->unlock(m_gprOrInvalid);
+    }
+
+    NodeIndex index() const
+    {
+        return m_index;
+    }
+
+    DataFormat format()
     {
+        gpr(); // m_format is set when m_gpr is locked.
+        ASSERT(m_format == DataFormatInteger || m_format == DataFormatJSInteger);
+        return m_format;
     }
 
-    SpeculationRecoveryType type() { return m_type; }
-    GPRReg dest() { return m_dest; }
-    GPRReg src() { return m_src; }
+    GPRReg gpr()
+    {
+        if (m_gprOrInvalid == InvalidGPRReg)
+            m_gprOrInvalid = m_jit->fillInteger(index(), m_format);
+        return m_gprOrInvalid;
+    }
+    
+    void use()
+    {
+        m_jit->use(m_index);
+    }
 
 private:
-    // Indicates the type of additional recovery to be performed.
-    SpeculationRecoveryType m_type;
-    // different recovery types may required different additional information here.
-    GPRReg m_dest;
-    GPRReg m_src;
+    SpeculativeJIT* m_jit;
+    NodeIndex m_index;
+    GPRReg m_gprOrInvalid;
+    DataFormat m_format;
 };
 
-// === SpeculationCheck ===
-//
-// This structure records a bail-out from the speculative path,
-// which will need to be linked in to the non-speculative one.
-struct SpeculationCheck {
-    SpeculationCheck(MacroAssembler::Jump, SpeculativeJIT*, unsigned recoveryIndex = 0);
-
-    // The location of the jump out from the speculative path, 
-    // and the node we were generating code for.
-    MacroAssembler::Jump m_check;
-    NodeIndex m_nodeIndex;
-    // Used to record any additional recovery to be performed; this
-    // value is an index into the SpeculativeJIT's m_speculationRecoveryList
-    // array, offset by 1. (m_recoveryIndex == 0) means no recovery.
-    unsigned m_recoveryIndex;
-
-    struct RegisterInfo {
-        NodeIndex nodeIndex;
-        DataFormat format;
-    };
-    RegisterInfo m_gprInfo[GPRInfo::numberOfRegisters];
-    NodeIndex m_fprInfo[FPRInfo::numberOfRegisters];
-};
-typedef SegmentedVector<SpeculationCheck, 16> SpeculationCheckVector;
+class DoubleOperand {
+public:
+    explicit DoubleOperand(SpeculativeJIT* jit, Edge use)
+        : m_jit(jit)
+        , m_index(use.index())
+        , m_fprOrInvalid(InvalidFPRReg)
+    {
+        ASSERT(m_jit);
+        
+        // This is counter-intuitive but correct. DoubleOperand is intended to
+        // be used only when you're a node that is happy to accept an untyped
+        // value, but will special-case for doubles (using DoubleOperand) if the
+        // value happened to already be represented as a double. The implication
+        // is that you will not try to force the value to become a double if it
+        // is not one already.
+        ASSERT(use.useKind() != DoubleUse);
+        
+        if (jit->isFilledDouble(m_index))
+            fpr();
+    }
 
+    ~DoubleOperand()
+    {
+        ASSERT(m_fprOrInvalid != InvalidFPRReg);
+        m_jit->unlock(m_fprOrInvalid);
+    }
 
-// === SpeculativeJIT ===
-//
-// The SpeculativeJIT is used to generate a fast, but potentially
-// incomplete code path for the dataflow. When code generating
-// we may make assumptions about operand types, dynamically check,
-// and bail-out to an alternate code path if these checks fail.
-// Importantly, the speculative code path cannot be reentered once
-// a speculative check has failed. This allows the SpeculativeJIT
-// to propagate type information (including information that has
-// only speculatively been asserted) through the dataflow.
-class SpeculativeJIT : public JITCodeGenerator {
-    friend struct SpeculationCheck;
+    NodeIndex index() const
+    {
+        return m_index;
+    }
+
+    FPRReg fpr()
+    {
+        if (m_fprOrInvalid == InvalidFPRReg)
+            m_fprOrInvalid = m_jit->fillDouble(index());
+        return m_fprOrInvalid;
+    }
+    
+    void use()
+    {
+        m_jit->use(m_index);
+    }
+
+private:
+    SpeculativeJIT* m_jit;
+    NodeIndex m_index;
+    FPRReg m_fprOrInvalid;
+};
+
+class JSValueOperand {
 public:
-    SpeculativeJIT(JITCompiler& jit)
-        : JITCodeGenerator(jit, true)
-        , m_compileOkay(true)
+    explicit JSValueOperand(SpeculativeJIT* jit, Edge use)
+        : m_jit(jit)
+        , m_index(use.index())
+#if USE(JSVALUE64)
+        , m_gprOrInvalid(InvalidGPRReg)
+#elif USE(JSVALUE32_64)
+        , m_isDouble(false)
+#endif
     {
+        ASSERT(m_jit);
+        ASSERT(use.useKind() != DoubleUse);
+#if USE(JSVALUE64)
+        if (jit->isFilled(m_index))
+            gpr();
+#elif USE(JSVALUE32_64)
+        m_register.pair.tagGPR = InvalidGPRReg;
+        m_register.pair.payloadGPR = InvalidGPRReg;
+        if (jit->isFilled(m_index))
+            fill();
+#endif
     }
 
-    bool compile();
+    ~JSValueOperand()
+    {
+#if USE(JSVALUE64)
+        ASSERT(m_gprOrInvalid != InvalidGPRReg);
+        m_jit->unlock(m_gprOrInvalid);
+#elif USE(JSVALUE32_64)
+        if (m_isDouble) {
+            ASSERT(m_register.fpr != InvalidFPRReg);
+            m_jit->unlock(m_register.fpr);
+        } else {
+            ASSERT(m_register.pair.tagGPR != InvalidGPRReg && m_register.pair.payloadGPR != InvalidGPRReg);
+            m_jit->unlock(m_register.pair.tagGPR);
+            m_jit->unlock(m_register.pair.payloadGPR);
+        }
+#endif
+    }
+
+    NodeIndex index() const
+    {
+        return m_index;
+    }
 
-    // Retrieve the list of bail-outs from the speculative path,
-    // and additional recovery information.
-    SpeculationCheckVector& speculationChecks()
+#if USE(JSVALUE64)
+    GPRReg gpr()
     {
-        return m_speculationChecks;
+        if (m_gprOrInvalid == InvalidGPRReg)
+            m_gprOrInvalid = m_jit->fillJSValue(index());
+        return m_gprOrInvalid;
     }
-    SpeculationRecovery* speculationRecovery(size_t index)
+    JSValueRegs jsValueRegs()
     {
-        // SpeculationCheck::m_recoveryIndex is offset by 1,
-        // 0 means no recovery.
-        return index ? &m_speculationRecoveryList[index - 1] : 0;
+        return JSValueRegs(gpr());
     }
+#elif USE(JSVALUE32_64)
+    bool isDouble() { return m_isDouble; }
 
-    // Called by the speculative operand types, below, to fill operand to
-    // machine registers, implicitly generating speculation checks as needed.
-    GPRReg fillSpeculateInt(NodeIndex, DataFormat& returnFormat);
-    GPRReg fillSpeculateIntStrict(NodeIndex);
-    GPRReg fillSpeculateCell(NodeIndex);
+    void fill()
+    {
+        if (m_register.pair.tagGPR == InvalidGPRReg && m_register.pair.payloadGPR == InvalidGPRReg)
+            m_isDouble = !m_jit->fillJSValue(index(), m_register.pair.tagGPR, m_register.pair.payloadGPR, m_register.fpr);
+    }
 
-private:
-    void compile(Node&);
-    void compile(BasicBlock&);
+    GPRReg tagGPR()
+    {
+        fill();
+        ASSERT(!m_isDouble);
+        return m_register.pair.tagGPR;
+    }
 
-    void checkArgumentTypes();
-    void initializeVariableTypes();
+    GPRReg payloadGPR()
+    {
+        fill();
+        ASSERT(!m_isDouble);
+        return m_register.pair.payloadGPR;
+    }
 
-    bool isDoubleConstantWithInt32Value(NodeIndex nodeIndex, int32_t& out)
+    JSValueRegs jsValueRegs()
     {
-        if (!m_jit.isDoubleConstant(nodeIndex))
-            return false;
-        double value = m_jit.valueOfDoubleConstant(nodeIndex);
+        return JSValueRegs(tagGPR(), payloadGPR());
+    }
 
-        int32_t asInt32 = static_cast<int32_t>(value);
-        if (value != asInt32)
-            return false;
-        if (!asInt32 && signbit(value))
-            return false;
+    FPRReg fpr()
+    {
+        fill();
+        ASSERT(m_isDouble);
+        return m_register.fpr;
+    }
+#endif
 
-        out = asInt32;
-        return true;
+    void use()
+    {
+        m_jit->use(m_index);
     }
 
-    bool isJSConstantWithInt32Value(NodeIndex nodeIndex, int32_t& out)
+private:
+    SpeculativeJIT* m_jit;
+    NodeIndex m_index;
+#if USE(JSVALUE64)
+    GPRReg m_gprOrInvalid;
+#elif USE(JSVALUE32_64)
+    union {
+        struct {
+            GPRReg tagGPR;
+            GPRReg payloadGPR;
+        } pair;
+        FPRReg fpr;
+    } m_register;
+    bool m_isDouble;
+#endif
+};
+
+class StorageOperand {
+public:
+    explicit StorageOperand(SpeculativeJIT* jit, Edge use)
+        : m_jit(jit)
+        , m_index(use.index())
+        , m_gprOrInvalid(InvalidGPRReg)
     {
-        if (!m_jit.isJSConstant(nodeIndex))
-            return false;
-        JSValue value = m_jit.valueOfJSConstant(nodeIndex);
+        ASSERT(m_jit);
+        ASSERT(use.useKind() != DoubleUse);
+        if (jit->isFilled(m_index))
+            gpr();
+    }
+    
+    ~StorageOperand()
+    {
+        ASSERT(m_gprOrInvalid != InvalidGPRReg);
+        m_jit->unlock(m_gprOrInvalid);
+    }
+    
+    NodeIndex index() const
+    {
+        return m_index;
+    }
+    
+    GPRReg gpr()
+    {
+        if (m_gprOrInvalid == InvalidGPRReg)
+            m_gprOrInvalid = m_jit->fillStorage(index());
+        return m_gprOrInvalid;
+    }
+    
+    void use()
+    {
+        m_jit->use(m_index);
+    }
+    
+private:
+    SpeculativeJIT* m_jit;
+    NodeIndex m_index;
+    GPRReg m_gprOrInvalid;
+};
 
-        if (!value.isInt32())
-            return false;
-        
-        out = value.asInt32();
-        return true;
+
+// === Temporaries ===
+//
+// These classes are used to allocate temporary registers.
+// A mechanism is provided to attempt to reuse the registers
+// currently allocated to child nodes whose value is consumed
+// by, and not live after, this operation.
+
+class GPRTemporary {
+public:
+    GPRTemporary();
+    GPRTemporary(SpeculativeJIT*);
+    GPRTemporary(SpeculativeJIT*, GPRReg specific);
+    GPRTemporary(SpeculativeJIT*, SpeculateIntegerOperand&);
+    GPRTemporary(SpeculativeJIT*, SpeculateIntegerOperand&, SpeculateIntegerOperand&);
+    GPRTemporary(SpeculativeJIT*, SpeculateStrictInt32Operand&);
+    GPRTemporary(SpeculativeJIT*, IntegerOperand&);
+    GPRTemporary(SpeculativeJIT*, IntegerOperand&, IntegerOperand&);
+    GPRTemporary(SpeculativeJIT*, SpeculateCellOperand&);
+    GPRTemporary(SpeculativeJIT*, SpeculateBooleanOperand&);
+#if USE(JSVALUE64)
+    GPRTemporary(SpeculativeJIT*, JSValueOperand&);
+#elif USE(JSVALUE32_64)
+    GPRTemporary(SpeculativeJIT*, JSValueOperand&, bool tag = true);
+#endif
+    GPRTemporary(SpeculativeJIT*, StorageOperand&);
+
+    void adopt(GPRTemporary&);
+
+    ~GPRTemporary()
+    {
+        if (m_jit && m_gpr != InvalidGPRReg)
+            m_jit->unlock(gpr());
     }
 
-    bool detectPeepHoleBranch()
+    GPRReg gpr()
     {
-        // Check if the block contains precisely one more node.
-        if (m_compileIndex + 2 != m_jit.graph().m_blocks[m_block]->end)
-            return false;
+        return m_gpr;
+    }
 
-        // Check if the lastNode is a branch on this node.
-        Node& lastNode = m_jit.graph()[m_compileIndex + 1];
-        return lastNode.op == Branch && lastNode.child1 == m_compileIndex;
+private:
+    SpeculativeJIT* m_jit;
+    GPRReg m_gpr;
+};
+
+class FPRTemporary {
+public:
+    FPRTemporary(SpeculativeJIT*);
+    FPRTemporary(SpeculativeJIT*, DoubleOperand&);
+    FPRTemporary(SpeculativeJIT*, DoubleOperand&, DoubleOperand&);
+    FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&);
+    FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&, SpeculateDoubleOperand&);
+#if USE(JSVALUE32_64)
+    FPRTemporary(SpeculativeJIT*, JSValueOperand&);
+#endif
+
+    ~FPRTemporary()
+    {
+        m_jit->unlock(fpr());
     }
 
-    void compilePeepHoleBranch(Node&, JITCompiler::RelationalCondition);
+    FPRReg fpr() const
+    {
+        ASSERT(m_fpr != InvalidFPRReg);
+        return m_fpr;
+    }
 
-    // Add a speculation check without additional recovery.
-    void speculationCheck(MacroAssembler::Jump jumpToFail)
+protected:
+    FPRTemporary(SpeculativeJIT* jit, FPRReg lockedFPR)
+        : m_jit(jit)
+        , m_fpr(lockedFPR)
     {
-        m_speculationChecks.append(SpeculationCheck(jumpToFail, this));
     }
-    // Add a speculation check with additional recovery.
-    void speculationCheck(MacroAssembler::Jump jumpToFail, const SpeculationRecovery& recovery)
+
+private:
+    SpeculativeJIT* m_jit;
+    FPRReg m_fpr;
+};
+
+
+// === Results ===
+//
+// These classes lock the result of a call to a C++ helper function.
+
+class GPRResult : public GPRTemporary {
+public:
+    GPRResult(SpeculativeJIT* jit)
+        : GPRTemporary(jit, GPRInfo::returnValueGPR)
     {
-        m_speculationRecoveryList.append(recovery);
-        m_speculationChecks.append(SpeculationCheck(jumpToFail, this, m_speculationRecoveryList.size()));
     }
+};
 
-    // Called when we statically determine that a speculation will fail.
-    void terminateSpeculativeExecution()
+#if USE(JSVALUE32_64)
+class GPRResult2 : public GPRTemporary {
+public:
+    GPRResult2(SpeculativeJIT* jit)
+        : GPRTemporary(jit, GPRInfo::returnValueGPR2)
     {
-        // FIXME: in cases where we can statically determine we're going to bail out from the speculative
-        // JIT we should probably rewind code generation and only produce the non-speculative path.
-        m_compileOkay = false;
-        speculationCheck(m_jit.jump());
     }
+};
+#endif
 
-    template<bool strict>
-    GPRReg fillSpeculateIntInternal(NodeIndex, DataFormat& returnFormat);
+class FPRResult : public FPRTemporary {
+public:
+    FPRResult(SpeculativeJIT* jit)
+        : FPRTemporary(jit, lockedResult(jit))
+    {
+    }
 
-    // It is possible, during speculative generation, to reach a situation in which we
-    // can statically determine a speculation will fail (for example, when two nodes
-    // will make conflicting speculations about the same operand). In such cases this
-    // flag is cleared, indicating no further code generation should take place.
-    bool m_compileOkay;
-    // This vector tracks bail-outs from the speculative path to the non-speculative one.
-    SpeculationCheckVector m_speculationChecks;
-    // Some bail-outs need to record additional information recording specific recovery
-    // to be performed (for example, on detected overflow from an add, we may need to
-    // reverse the addition if an operand is being overwritten).
-    Vector<SpeculationRecovery, 16> m_speculationRecoveryList;
+private:
+    static FPRReg lockedResult(SpeculativeJIT* jit)
+    {
+        jit->lock(FPRInfo::returnValueFPR);
+        return FPRInfo::returnValueFPR;
+    }
 };
 
 
@@ -223,23 +2409,24 @@ private:
 // SpeculateIntegerOperand, SpeculateStrictInt32Operand and SpeculateCellOperand.
 //
 // These are used to lock the operands to a node into machine registers within the
-// SpeculativeJIT. The classes operate like those provided by the JITCodeGenerator,
-// however these will perform a speculative check for a more restrictive type than
-// we can statically determine the operand to have. If the operand does not have
-// the requested type, a bail-out to the non-speculative path will be taken.
+// SpeculativeJIT. The classes operate like those above, however these will
+// perform a speculative check for a more restrictive type than we can statically
+// determine the operand to have. If the operand does not have the requested type,
+// a bail-out to the non-speculative path will be taken.
 
 class SpeculateIntegerOperand {
 public:
-    explicit SpeculateIntegerOperand(SpeculativeJIT* jit, NodeIndex index)
+    explicit SpeculateIntegerOperand(SpeculativeJIT* jit, Edge use)
         : m_jit(jit)
-        , m_index(index)
+        , m_index(use.index())
         , m_gprOrInvalid(InvalidGPRReg)
 #ifndef NDEBUG
         , m_format(DataFormatNone)
 #endif
     {
         ASSERT(m_jit);
-        if (jit->isFilled(index))
+        ASSERT(use.useKind() != DoubleUse);
+        if (jit->isFilled(m_index))
             gpr();
     }
 
@@ -277,13 +2464,14 @@ private:
 
 class SpeculateStrictInt32Operand {
 public:
-    explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, NodeIndex index)
+    explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, Edge use)
         : m_jit(jit)
-        , m_index(index)
+        , m_index(use.index())
         , m_gprOrInvalid(InvalidGPRReg)
     {
         ASSERT(m_jit);
-        if (jit->isFilled(index))
+        ASSERT(use.useKind() != DoubleUse);
+        if (jit->isFilled(m_index))
             gpr();
     }
 
@@ -304,6 +2492,11 @@ public:
             m_gprOrInvalid = m_jit->fillSpeculateIntStrict(index());
         return m_gprOrInvalid;
     }
+    
+    void use()
+    {
+        m_jit->use(m_index);
+    }
 
 private:
     SpeculativeJIT* m_jit;
@@ -311,15 +2504,53 @@ private:
     GPRReg m_gprOrInvalid;
 };
 
+class SpeculateDoubleOperand {
+public:
+    explicit SpeculateDoubleOperand(SpeculativeJIT* jit, Edge use)
+        : m_jit(jit)
+        , m_index(use.index())
+        , m_fprOrInvalid(InvalidFPRReg)
+    {
+        ASSERT(m_jit);
+        ASSERT(use.useKind() == DoubleUse);
+        if (jit->isFilled(m_index))
+            fpr();
+    }
+
+    ~SpeculateDoubleOperand()
+    {
+        ASSERT(m_fprOrInvalid != InvalidFPRReg);
+        m_jit->unlock(m_fprOrInvalid);
+    }
+
+    NodeIndex index() const
+    {
+        return m_index;
+    }
+
+    FPRReg fpr()
+    {
+        if (m_fprOrInvalid == InvalidFPRReg)
+            m_fprOrInvalid = m_jit->fillSpeculateDouble(index());
+        return m_fprOrInvalid;
+    }
+
+private:
+    SpeculativeJIT* m_jit;
+    NodeIndex m_index;
+    FPRReg m_fprOrInvalid;
+};
+
 class SpeculateCellOperand {
 public:
-    explicit SpeculateCellOperand(SpeculativeJIT* jit, NodeIndex index)
+    explicit SpeculateCellOperand(SpeculativeJIT* jit, Edge use)
         : m_jit(jit)
-        , m_index(index)
+        , m_index(use.index())
         , m_gprOrInvalid(InvalidGPRReg)
     {
         ASSERT(m_jit);
-        if (jit->isFilled(index))
+        ASSERT(use.useKind() != DoubleUse);
+        if (jit->isFilled(m_index))
             gpr();
     }
 
@@ -340,6 +2571,11 @@ public:
             m_gprOrInvalid = m_jit->fillSpeculateCell(index());
         return m_gprOrInvalid;
     }
+    
+    void use()
+    {
+        m_jit->use(m_index);
+    }
 
 private:
     SpeculativeJIT* m_jit;
@@ -347,37 +2583,61 @@ private:
     GPRReg m_gprOrInvalid;
 };
 
-
-// === SpeculationCheckIndexIterator ===
-//
-// This class is used by the non-speculative JIT to check which
-// nodes require entry points from the speculative path.
-class SpeculationCheckIndexIterator {
+class SpeculateBooleanOperand {
 public:
-    SpeculationCheckIndexIterator(SpeculationCheckVector& speculationChecks)
-        : m_speculationChecks(speculationChecks)
-        , m_iter(m_speculationChecks.begin())
-        , m_end(m_speculationChecks.end())
+    explicit SpeculateBooleanOperand(SpeculativeJIT* jit, Edge use)
+        : m_jit(jit)
+        , m_index(use.index())
+        , m_gprOrInvalid(InvalidGPRReg)
     {
+        ASSERT(m_jit);
+        ASSERT(use.useKind() != DoubleUse);
+        if (jit->isFilled(m_index))
+            gpr();
     }
-
-    bool hasCheckAtIndex(NodeIndex nodeIndex)
+    
+    ~SpeculateBooleanOperand()
     {
-        while (m_iter != m_end) {
-            NodeIndex current = m_iter->m_nodeIndex;
-            if (current >= nodeIndex)
-                return current == nodeIndex;
-            ++m_iter;
-        }
-        return false;
+        ASSERT(m_gprOrInvalid != InvalidGPRReg);
+        m_jit->unlock(m_gprOrInvalid);
+    }
+    
+    NodeIndex index() const
+    {
+        return m_index;
+    }
+    
+    GPRReg gpr()
+    {
+        if (m_gprOrInvalid == InvalidGPRReg)
+            m_gprOrInvalid = m_jit->fillSpeculateBoolean(index());
+        return m_gprOrInvalid;
+    }
+    
+    void use()
+    {
+        m_jit->use(m_index);
     }
 
 private:
-    SpeculationCheckVector& m_speculationChecks;
-    SpeculationCheckVector::Iterator m_iter;
-    SpeculationCheckVector::Iterator m_end;
+    SpeculativeJIT* m_jit;
+    NodeIndex m_index;
+    GPRReg m_gprOrInvalid;
 };
 
+inline SpeculativeJIT::SpeculativeJIT(JITCompiler& jit)
+    : m_compileOkay(true)
+    , m_jit(jit)
+    , m_compileIndex(0)
+    , m_indexInBlock(0)
+    , m_generationInfo(m_jit.codeBlock()->m_numCalleeRegisters)
+    , m_blockHeads(jit.graph().m_blocks.size())
+    , m_arguments(jit.codeBlock()->numParameters())
+    , m_variables(jit.graph().m_localVars)
+    , m_lastSetOperand(std::numeric_limits<int>::max())
+    , m_state(m_jit.graph())
+{
+}
 
 } } // namespace JSC::DFG