#ifndef CodeBlock_h
#define CodeBlock_h
+#include "BytecodeConventions.h"
+#include "CallLinkInfo.h"
+#include "CallReturnOffsetToBytecodeOffset.h"
+#include "CodeOrigin.h"
+#include "CodeType.h"
+#include "CompactJITCodeMap.h"
+#include "DFGCodeBlocks.h"
+#include "DFGExitProfile.h"
+#include "DFGOSREntry.h"
+#include "DFGOSRExit.h"
#include "EvalCodeCache.h"
+#include "ExecutionCounter.h"
+#include "ExpressionRangeInfo.h"
+#include "GlobalResolveInfo.h"
+#include "HandlerInfo.h"
+#include "MethodCallLinkInfo.h"
+#include "Options.h"
#include "Instruction.h"
#include "JITCode.h"
#include "JITWriteBarrier.h"
#include "JSGlobalObject.h"
#include "JumpTable.h"
+#include "LLIntCallLinkInfo.h"
+#include "LazyOperandValueProfile.h"
+#include "LineInfo.h"
#include "Nodes.h"
#include "RegExpObject.h"
+#include "StructureStubInfo.h"
#include "UString.h"
+#include "UnconditionalFinalizer.h"
+#include "ValueProfile.h"
+#include <wtf/RefCountedArray.h>
#include <wtf/FastAllocBase.h>
#include <wtf/PassOwnPtr.h>
#include <wtf/RefPtr.h>
+#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>
-
-#if ENABLE(JIT)
#include "StructureStubInfo.h"
-#endif
-
-// Register numbers used in bytecode operations have different meaning according to their ranges:
-// 0x80000000-0xFFFFFFFF Negative indices from the CallFrame pointer are entries in the call frame, see RegisterFile.h.
-// 0x00000000-0x3FFFFFFF Forwards indices from the CallFrame pointer are local vars and temporaries with the function's callframe.
-// 0x40000000-0x7FFFFFFF Positive indices from 0x40000000 specify entries in the constant pool on the CodeBlock.
-static const int FirstConstantRegisterIndex = 0x40000000;
namespace JSC {
- enum HasSeenShouldRepatch {
- hasSeenShouldRepatch
- };
-
+ class DFGCodeBlocks;
class ExecState;
-
- enum CodeType { GlobalCode, EvalCode, FunctionCode };
+ class LLIntOffsetsExtractor;
inline int unmodifiedArgumentsRegister(int argumentsRegister) { return argumentsRegister - 1; }
static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits<int>::max(); }
- struct HandlerInfo {
- uint32_t start;
- uint32_t end;
- uint32_t target;
- uint32_t scopeDepth;
-#if ENABLE(JIT)
- CodeLocationLabel nativeCode;
-#endif
- };
-
- struct ExpressionRangeInfo {
- enum {
- MaxOffset = (1 << 7) - 1,
- MaxDivot = (1 << 25) - 1
- };
- uint32_t instructionOffset : 25;
- uint32_t divotPoint : 25;
- uint32_t startOffset : 7;
- uint32_t endOffset : 7;
- };
-
- struct LineInfo {
- uint32_t instructionOffset;
- int32_t lineNumber;
- };
-
-#if ENABLE(JIT)
- struct CallLinkInfo {
- CallLinkInfo()
- : hasSeenShouldRepatch(false)
- , isCall(false)
- {
- }
-
- CodeLocationNearCall callReturnLocation;
- CodeLocationDataLabelPtr hotPathBegin;
- CodeLocationNearCall hotPathOther;
- JITWriteBarrier<JSFunction> callee;
- bool hasSeenShouldRepatch : 1;
- bool isCall : 1;
-
- bool isLinked() { return callee; }
- void unlink()
- {
- hasSeenShouldRepatch = false;
- callee.clear();
- }
-
- bool seenOnce()
- {
- return hasSeenShouldRepatch;
- }
-
- void setSeen()
- {
- hasSeenShouldRepatch = true;
- }
- };
-
- struct MethodCallLinkInfo {
- MethodCallLinkInfo()
- {
- }
-
- bool seenOnce()
- {
- ASSERT(!cachedStructure);
- return cachedPrototypeStructure.isFlagged();
- }
-
- void setSeen()
- {
- ASSERT(!cachedStructure && !cachedPrototypeStructure);
- // We use the values of cachedStructure & cachedPrototypeStructure to indicate the
- // current state.
- // - In the initial state, both are null.
- // - Once this transition has been taken once, cachedStructure is
- // null and cachedPrototypeStructure is set to a nun-null value.
- // - Once the call is linked both structures are set to non-null values.
- cachedPrototypeStructure.setFlagOnBarrier();
- }
-
- CodeLocationCall callReturnLocation;
- JITWriteBarrier<Structure> cachedStructure;
- JITWriteBarrier<Structure> cachedPrototypeStructure;
- // We'd like this to actually be JSFunction, but InternalFunction and JSFunction
- // don't have a common parent class and we allow specialisation on both
- JITWriteBarrier<JSObjectWithGlobalObject> cachedFunction;
- JITWriteBarrier<JSObject> cachedPrototype;
- };
-
- struct GlobalResolveInfo {
- GlobalResolveInfo(unsigned bytecodeOffset)
- : offset(0)
- , bytecodeOffset(bytecodeOffset)
- {
- }
-
- WriteBarrier<Structure> structure;
- unsigned offset;
- unsigned bytecodeOffset;
- };
-
- // This structure is used to map from a call return location
- // (given as an offset in bytes into the JIT code) back to
- // the bytecode index of the corresponding bytecode operation.
- // This is then used to look up the corresponding handler.
- struct CallReturnOffsetToBytecodeOffset {
- CallReturnOffsetToBytecodeOffset(unsigned callReturnOffset, unsigned bytecodeOffset)
- : callReturnOffset(callReturnOffset)
- , bytecodeOffset(bytecodeOffset)
- {
- }
-
- unsigned callReturnOffset;
- unsigned bytecodeOffset;
- };
-
- // valueAtPosition helpers for the binarySearch algorithm.
-
- inline void* getStructureStubInfoReturnLocation(StructureStubInfo* structureStubInfo)
- {
- return structureStubInfo->callReturnLocation.executableAddress();
- }
-
- inline void* getCallLinkInfoReturnLocation(CallLinkInfo* callLinkInfo)
- {
- return callLinkInfo->callReturnLocation.executableAddress();
- }
-
- inline void* getMethodCallLinkInfoReturnLocation(MethodCallLinkInfo* methodCallLinkInfo)
- {
- return methodCallLinkInfo->callReturnLocation.executableAddress();
- }
-
- inline unsigned getCallReturnOffset(CallReturnOffsetToBytecodeOffset* pc)
- {
- return pc->callReturnOffset;
- }
-#endif
-
- class CodeBlock {
+ class CodeBlock : public UnconditionalFinalizer, public WeakReferenceHarvester {
WTF_MAKE_FAST_ALLOCATED;
friend class JIT;
+ friend class LLIntOffsetsExtractor;
+ public:
+ enum CopyParsedBlockTag { CopyParsedBlock };
protected:
- CodeBlock(ScriptExecutable* ownerExecutable, CodeType, JSGlobalObject*, PassRefPtr<SourceProvider>, unsigned sourceOffset, SymbolTable* symbolTable, bool isConstructor);
+ CodeBlock(CopyParsedBlockTag, CodeBlock& other, SymbolTable*);
+
+ CodeBlock(ScriptExecutable* ownerExecutable, CodeType, JSGlobalObject*, PassRefPtr<SourceProvider>, unsigned sourceOffset, SymbolTable*, bool isConstructor, PassOwnPtr<CodeBlock> alternative);
WriteBarrier<JSGlobalObject> m_globalObject;
Heap* m_heap;
public:
- virtual ~CodeBlock();
+ JS_EXPORT_PRIVATE virtual ~CodeBlock();
+
+ int numParameters() const { return m_numParameters; }
+ void setNumParameters(int newValue);
+ void addParameter();
+
+ int* addressOfNumParameters() { return &m_numParameters; }
+ static ptrdiff_t offsetOfNumParameters() { return OBJECT_OFFSETOF(CodeBlock, m_numParameters); }
+ CodeBlock* alternative() { return m_alternative.get(); }
+ PassOwnPtr<CodeBlock> releaseAlternative() { return m_alternative.release(); }
+ void setAlternative(PassOwnPtr<CodeBlock> alternative) { m_alternative = alternative; }
+
+ CodeSpecializationKind specializationKind()
+ {
+ if (m_isConstructor)
+ return CodeForConstruct;
+ return CodeForCall;
+ }
+
+#if ENABLE(JIT)
+ CodeBlock* baselineVersion()
+ {
+ CodeBlock* result = replacement();
+ if (!result)
+ return 0; // This can happen if we're in the process of creating the baseline version.
+ while (result->alternative())
+ result = result->alternative();
+ ASSERT(result);
+ ASSERT(JITCode::isBaselineCode(result->getJITType()));
+ return result;
+ }
+#endif
+
void visitAggregate(SlotVisitor&);
static void dumpStatistics();
-#if !defined(NDEBUG) || ENABLE_OPCODE_SAMPLING
void dump(ExecState*) const;
void printStructures(const Instruction*) const;
void printStructure(const char* name, const Instruction*, int operand) const;
-#endif
bool isStrictMode() const { return m_isStrictMode; }
return *(binarySearch<StructureStubInfo, void*, getStructureStubInfoReturnLocation>(m_structureStubInfos.begin(), m_structureStubInfos.size(), returnAddress.value()));
}
+ StructureStubInfo& getStubInfo(unsigned bytecodeIndex)
+ {
+ return *(binarySearch<StructureStubInfo, unsigned, getStructureStubInfoBytecodeIndex>(m_structureStubInfos.begin(), m_structureStubInfos.size(), bytecodeIndex));
+ }
+
CallLinkInfo& getCallLinkInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<CallLinkInfo, void*, getCallLinkInfoReturnLocation>(m_callLinkInfos.begin(), m_callLinkInfos.size(), returnAddress.value()));
}
+
+ CallLinkInfo& getCallLinkInfo(unsigned bytecodeIndex)
+ {
+ return *(binarySearch<CallLinkInfo, unsigned, getCallLinkInfoBytecodeIndex>(m_callLinkInfos.begin(), m_callLinkInfos.size(), bytecodeIndex));
+ }
MethodCallLinkInfo& getMethodCallLinkInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<MethodCallLinkInfo, void*, getMethodCallLinkInfoReturnLocation>(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), returnAddress.value()));
}
- unsigned bytecodeOffset(ReturnAddressPtr returnAddress)
+ MethodCallLinkInfo& getMethodCallLinkInfo(unsigned bytecodeIndex)
+ {
+ return *(binarySearch<MethodCallLinkInfo, unsigned, getMethodCallLinkInfoBytecodeIndex>(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), bytecodeIndex));
+ }
+
+ unsigned bytecodeOffset(ExecState*, ReturnAddressPtr);
+
+ unsigned bytecodeOffsetForCallAtIndex(unsigned index)
{
if (!m_rareData)
return 1;
Vector<CallReturnOffsetToBytecodeOffset>& callIndices = m_rareData->m_callReturnIndexVector;
if (!callIndices.size())
return 1;
- return binarySearch<CallReturnOffsetToBytecodeOffset, unsigned, getCallReturnOffset>(callIndices.begin(), callIndices.size(), getJITCode().offsetOf(returnAddress.value()))->bytecodeOffset;
+ ASSERT(index < m_rareData->m_callReturnIndexVector.size());
+ return m_rareData->m_callReturnIndexVector[index].bytecodeOffset;
}
void unlinkCalls();
+
+ bool hasIncomingCalls() { return m_incomingCalls.begin() != m_incomingCalls.end(); }
+
+ void linkIncomingCall(CallLinkInfo* incoming)
+ {
+ m_incomingCalls.push(incoming);
+ }
+#if ENABLE(LLINT)
+ void linkIncomingCall(LLIntCallLinkInfo* incoming)
+ {
+ m_incomingLLIntCalls.push(incoming);
+ }
+#endif // ENABLE(LLINT)
+
+ void unlinkIncomingCalls();
+#endif // ENABLE(JIT)
+
+#if ENABLE(DFG_JIT) || ENABLE(LLINT)
+ void setJITCodeMap(PassOwnPtr<CompactJITCodeMap> jitCodeMap)
+ {
+ m_jitCodeMap = jitCodeMap;
+ }
+ CompactJITCodeMap* jitCodeMap()
+ {
+ return m_jitCodeMap.get();
+ }
+#endif
+
+#if ENABLE(DFG_JIT)
+ void createDFGDataIfNecessary()
+ {
+ if (!!m_dfgData)
+ return;
+
+ m_dfgData = adoptPtr(new DFGData);
+ }
+
+ DFG::OSREntryData* appendDFGOSREntryData(unsigned bytecodeIndex, unsigned machineCodeOffset)
+ {
+ createDFGDataIfNecessary();
+ DFG::OSREntryData entry;
+ entry.m_bytecodeIndex = bytecodeIndex;
+ entry.m_machineCodeOffset = machineCodeOffset;
+ m_dfgData->osrEntry.append(entry);
+ return &m_dfgData->osrEntry.last();
+ }
+ unsigned numberOfDFGOSREntries() const
+ {
+ if (!m_dfgData)
+ return 0;
+ return m_dfgData->osrEntry.size();
+ }
+ DFG::OSREntryData* dfgOSREntryData(unsigned i) { return &m_dfgData->osrEntry[i]; }
+ DFG::OSREntryData* dfgOSREntryDataForBytecodeIndex(unsigned bytecodeIndex)
+ {
+ return binarySearch<DFG::OSREntryData, unsigned, DFG::getOSREntryDataBytecodeIndex>(m_dfgData->osrEntry.begin(), m_dfgData->osrEntry.size(), bytecodeIndex);
+ }
+
+ void appendOSRExit(const DFG::OSRExit& osrExit)
+ {
+ createDFGDataIfNecessary();
+ m_dfgData->osrExit.append(osrExit);
+ }
+
+ DFG::OSRExit& lastOSRExit()
+ {
+ return m_dfgData->osrExit.last();
+ }
+
+ void appendSpeculationRecovery(const DFG::SpeculationRecovery& recovery)
+ {
+ createDFGDataIfNecessary();
+ m_dfgData->speculationRecovery.append(recovery);
+ }
+
+ unsigned numberOfOSRExits()
+ {
+ if (!m_dfgData)
+ return 0;
+ return m_dfgData->osrExit.size();
+ }
+
+ unsigned numberOfSpeculationRecoveries()
+ {
+ if (!m_dfgData)
+ return 0;
+ return m_dfgData->speculationRecovery.size();
+ }
+
+ DFG::OSRExit& osrExit(unsigned index)
+ {
+ return m_dfgData->osrExit[index];
+ }
+
+ DFG::SpeculationRecovery& speculationRecovery(unsigned index)
+ {
+ return m_dfgData->speculationRecovery[index];
+ }
+
+ void appendWeakReference(JSCell* target)
+ {
+ createDFGDataIfNecessary();
+ m_dfgData->weakReferences.append(WriteBarrier<JSCell>(*globalData(), ownerExecutable(), target));
+ }
+
+ void shrinkWeakReferencesToFit()
+ {
+ if (!m_dfgData)
+ return;
+ m_dfgData->weakReferences.shrinkToFit();
+ }
+
+ void appendWeakReferenceTransition(JSCell* codeOrigin, JSCell* from, JSCell* to)
+ {
+ createDFGDataIfNecessary();
+ m_dfgData->transitions.append(
+ WeakReferenceTransition(*globalData(), ownerExecutable(), codeOrigin, from, to));
+ }
+
+ void shrinkWeakReferenceTransitionsToFit()
+ {
+ if (!m_dfgData)
+ return;
+ m_dfgData->transitions.shrinkToFit();
+ }
#endif
-#if ENABLE(INTERPRETER)
unsigned bytecodeOffset(Instruction* returnAddress)
{
+ ASSERT(returnAddress >= instructions().begin() && returnAddress < instructions().end());
return static_cast<Instruction*>(returnAddress) - instructions().begin();
}
-#endif
void setIsNumericCompareFunction(bool isNumericCompareFunction) { m_isNumericCompareFunction = isNumericCompareFunction; }
bool isNumericCompareFunction() { return m_isNumericCompareFunction; }
- Vector<Instruction>& instructions() { return m_instructions; }
- void discardBytecode() { m_instructions.clear(); }
+ unsigned numberOfInstructions() const { return m_instructions.size(); }
+ RefCountedArray<Instruction>& instructions() { return m_instructions; }
+ const RefCountedArray<Instruction>& instructions() const { return m_instructions; }
+
+ size_t predictedMachineCodeSize();
+
+ bool usesOpcode(OpcodeID);
-#ifndef NDEBUG
- unsigned instructionCount() { return m_instructionCount; }
- void setInstructionCount(unsigned instructionCount) { m_instructionCount = instructionCount; }
-#endif
+ unsigned instructionCount() { return m_instructions.size(); }
#if ENABLE(JIT)
- JITCode& getJITCode() { return m_isConstructor ? ownerExecutable()->generatedJITCodeForConstruct() : ownerExecutable()->generatedJITCodeForCall(); }
- ExecutablePool* executablePool() { return getJITCode().getExecutablePool(); }
+ void setJITCode(const JITCode& code, MacroAssemblerCodePtr codeWithArityCheck)
+ {
+ m_jitCode = code;
+ m_jitCodeWithArityCheck = codeWithArityCheck;
+#if ENABLE(DFG_JIT)
+ if (m_jitCode.jitType() == JITCode::DFGJIT) {
+ createDFGDataIfNecessary();
+ m_globalData->heap.m_dfgCodeBlocks.m_set.add(this);
+ }
+#endif
+ }
+ JITCode& getJITCode() { return m_jitCode; }
+ MacroAssemblerCodePtr getJITCodeWithArityCheck() { return m_jitCodeWithArityCheck; }
+ JITCode::JITType getJITType() { return m_jitCode.jitType(); }
+ ExecutableMemoryHandle* executableMemory() { return getJITCode().getExecutableMemory(); }
+ virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*) = 0;
+ virtual void jettison() = 0;
+ enum JITCompilationResult { AlreadyCompiled, CouldNotCompile, CompiledSuccessfully };
+ JITCompilationResult jitCompile(JSGlobalData& globalData)
+ {
+ if (getJITType() != JITCode::InterpreterThunk) {
+ ASSERT(getJITType() == JITCode::BaselineJIT);
+ return AlreadyCompiled;
+ }
+#if ENABLE(JIT)
+ if (jitCompileImpl(globalData))
+ return CompiledSuccessfully;
+ return CouldNotCompile;
+#else
+ UNUSED_PARAM(globalData);
+ return CouldNotCompile;
+#endif
+ }
+ virtual CodeBlock* replacement() = 0;
+
+ enum CompileWithDFGState {
+ CompileWithDFGFalse,
+ CompileWithDFGTrue,
+ CompileWithDFGUnset
+ };
+
+ virtual bool canCompileWithDFGInternal() = 0;
+ bool canCompileWithDFG()
+ {
+ bool result = canCompileWithDFGInternal();
+ m_canCompileWithDFGState = result ? CompileWithDFGTrue : CompileWithDFGFalse;
+ return result;
+ }
+ CompileWithDFGState canCompileWithDFGState() { return m_canCompileWithDFGState; }
+
+ bool hasOptimizedReplacement()
+ {
+ ASSERT(JITCode::isBaselineCode(getJITType()));
+ bool result = replacement()->getJITType() > getJITType();
+#if !ASSERT_DISABLED
+ if (result)
+ ASSERT(replacement()->getJITType() == JITCode::DFGJIT);
+ else {
+ ASSERT(JITCode::isBaselineCode(replacement()->getJITType()));
+ ASSERT(replacement() == this);
+ }
+#endif
+ return result;
+ }
+#else
+ JITCode::JITType getJITType() { return JITCode::BaselineJIT; }
#endif
ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); }
void setGlobalData(JSGlobalData* globalData) { m_globalData = globalData; }
+ JSGlobalData* globalData() { return m_globalData; }
void setThisRegister(int thisRegister) { m_thisRegister = thisRegister; }
int thisRegister() const { return m_thisRegister; }
void clearEvalCache();
-#if ENABLE(INTERPRETER)
void addPropertyAccessInstruction(unsigned propertyAccessInstruction)
{
- if (!m_globalData->canUseJIT())
- m_propertyAccessInstructions.append(propertyAccessInstruction);
+ m_propertyAccessInstructions.append(propertyAccessInstruction);
}
void addGlobalResolveInstruction(unsigned globalResolveInstruction)
{
- if (!m_globalData->canUseJIT())
- m_globalResolveInstructions.append(globalResolveInstruction);
+ m_globalResolveInstructions.append(globalResolveInstruction);
}
bool hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset);
+#if ENABLE(LLINT)
+ LLIntCallLinkInfo* addLLIntCallLinkInfo()
+ {
+ m_llintCallLinkInfos.append(LLIntCallLinkInfo());
+ return &m_llintCallLinkInfos.last();
+ }
#endif
#if ENABLE(JIT)
+ void setNumberOfStructureStubInfos(size_t size) { m_structureStubInfos.grow(size); }
size_t numberOfStructureStubInfos() const { return m_structureStubInfos.size(); }
- void addStructureStubInfo(const StructureStubInfo& stubInfo)
- {
- if (m_globalData->canUseJIT())
- m_structureStubInfos.append(stubInfo);
- }
StructureStubInfo& structureStubInfo(int index) { return m_structureStubInfos[index]; }
void addGlobalResolveInfo(unsigned globalResolveInstruction)
{
- if (m_globalData->canUseJIT())
- m_globalResolveInfos.append(GlobalResolveInfo(globalResolveInstruction));
+ m_globalResolveInfos.append(GlobalResolveInfo(globalResolveInstruction));
}
GlobalResolveInfo& globalResolveInfo(int index) { return m_globalResolveInfos[index]; }
bool hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset);
+ void setNumberOfCallLinkInfos(size_t size) { m_callLinkInfos.grow(size); }
size_t numberOfCallLinkInfos() const { return m_callLinkInfos.size(); }
- void addCallLinkInfo() { m_callLinkInfos.append(CallLinkInfo()); }
CallLinkInfo& callLinkInfo(int index) { return m_callLinkInfos[index]; }
void addMethodCallLinkInfos(unsigned n) { ASSERT(m_globalData->canUseJIT()); m_methodCallLinkInfos.grow(n); }
MethodCallLinkInfo& methodCallLinkInfo(int index) { return m_methodCallLinkInfos[index]; }
+ size_t numberOfMethodCallLinkInfos() { return m_methodCallLinkInfos.size(); }
+#endif
+
+#if ENABLE(VALUE_PROFILER)
+ unsigned numberOfArgumentValueProfiles()
+ {
+ ASSERT(m_numParameters >= 0);
+ ASSERT(m_argumentValueProfiles.size() == static_cast<unsigned>(m_numParameters));
+ return m_argumentValueProfiles.size();
+ }
+ ValueProfile* valueProfileForArgument(unsigned argumentIndex)
+ {
+ ValueProfile* result = &m_argumentValueProfiles[argumentIndex];
+ ASSERT(result->m_bytecodeOffset == -1);
+ return result;
+ }
+
+ ValueProfile* addValueProfile(int bytecodeOffset)
+ {
+ ASSERT(bytecodeOffset != -1);
+ ASSERT(m_valueProfiles.isEmpty() || m_valueProfiles.last().m_bytecodeOffset < bytecodeOffset);
+ m_valueProfiles.append(ValueProfile(bytecodeOffset));
+ return &m_valueProfiles.last();
+ }
+ unsigned numberOfValueProfiles() { return m_valueProfiles.size(); }
+ ValueProfile* valueProfile(int index)
+ {
+ ValueProfile* result = &m_valueProfiles[index];
+ ASSERT(result->m_bytecodeOffset != -1);
+ return result;
+ }
+ ValueProfile* valueProfileForBytecodeOffset(int bytecodeOffset)
+ {
+ ValueProfile* result = WTF::genericBinarySearch<ValueProfile, int, getValueProfileBytecodeOffset>(m_valueProfiles, m_valueProfiles.size(), bytecodeOffset);
+ ASSERT(result->m_bytecodeOffset != -1);
+ ASSERT(instructions()[bytecodeOffset + opcodeLength(
+ m_globalData->interpreter->getOpcodeID(
+ instructions()[
+ bytecodeOffset].u.opcode)) - 1].u.profile == result);
+ return result;
+ }
+ PredictedType valueProfilePredictionForBytecodeOffset(int bytecodeOffset)
+ {
+ return valueProfileForBytecodeOffset(bytecodeOffset)->computeUpdatedPrediction();
+ }
+
+ unsigned totalNumberOfValueProfiles()
+ {
+ return numberOfArgumentValueProfiles() + numberOfValueProfiles();
+ }
+ ValueProfile* getFromAllValueProfiles(unsigned index)
+ {
+ if (index < numberOfArgumentValueProfiles())
+ return valueProfileForArgument(index);
+ return valueProfile(index - numberOfArgumentValueProfiles());
+ }
+
+ RareCaseProfile* addRareCaseProfile(int bytecodeOffset)
+ {
+ m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset));
+ return &m_rareCaseProfiles.last();
+ }
+ unsigned numberOfRareCaseProfiles() { return m_rareCaseProfiles.size(); }
+ RareCaseProfile* rareCaseProfile(int index) { return &m_rareCaseProfiles[index]; }
+ RareCaseProfile* rareCaseProfileForBytecodeOffset(int bytecodeOffset)
+ {
+ return WTF::genericBinarySearch<RareCaseProfile, int, getRareCaseProfileBytecodeOffset>(m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset);
+ }
+
+ bool likelyToTakeSlowCase(int bytecodeOffset)
+ {
+ if (!numberOfRareCaseProfiles())
+ return false;
+ unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
+ return value >= Options::likelyToTakeSlowCaseMinimumCount && static_cast<double>(value) / m_executionEntryCount >= Options::likelyToTakeSlowCaseThreshold;
+ }
+
+ bool couldTakeSlowCase(int bytecodeOffset)
+ {
+ if (!numberOfRareCaseProfiles())
+ return false;
+ unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
+ return value >= Options::couldTakeSlowCaseMinimumCount && static_cast<double>(value) / m_executionEntryCount >= Options::couldTakeSlowCaseThreshold;
+ }
+
+ RareCaseProfile* addSpecialFastCaseProfile(int bytecodeOffset)
+ {
+ m_specialFastCaseProfiles.append(RareCaseProfile(bytecodeOffset));
+ return &m_specialFastCaseProfiles.last();
+ }
+ unsigned numberOfSpecialFastCaseProfiles() { return m_specialFastCaseProfiles.size(); }
+ RareCaseProfile* specialFastCaseProfile(int index) { return &m_specialFastCaseProfiles[index]; }
+ RareCaseProfile* specialFastCaseProfileForBytecodeOffset(int bytecodeOffset)
+ {
+ return WTF::genericBinarySearch<RareCaseProfile, int, getRareCaseProfileBytecodeOffset>(m_specialFastCaseProfiles, m_specialFastCaseProfiles.size(), bytecodeOffset);
+ }
+
+ bool likelyToTakeSpecialFastCase(int bytecodeOffset)
+ {
+ if (!numberOfRareCaseProfiles())
+ return false;
+ unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
+ return specialFastCaseCount >= Options::likelyToTakeSlowCaseMinimumCount && static_cast<double>(specialFastCaseCount) / m_executionEntryCount >= Options::likelyToTakeSlowCaseThreshold;
+ }
+
+ bool likelyToTakeDeepestSlowCase(int bytecodeOffset)
+ {
+ if (!numberOfRareCaseProfiles())
+ return false;
+ unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
+ unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
+ unsigned value = slowCaseCount - specialFastCaseCount;
+ return value >= Options::likelyToTakeSlowCaseMinimumCount && static_cast<double>(value) / m_executionEntryCount >= Options::likelyToTakeSlowCaseThreshold;
+ }
+
+ bool likelyToTakeAnySlowCase(int bytecodeOffset)
+ {
+ if (!numberOfRareCaseProfiles())
+ return false;
+ unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
+ unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
+ unsigned value = slowCaseCount + specialFastCaseCount;
+ return value >= Options::likelyToTakeSlowCaseMinimumCount && static_cast<double>(value) / m_executionEntryCount >= Options::likelyToTakeSlowCaseThreshold;
+ }
+
+ unsigned executionEntryCount() const { return m_executionEntryCount; }
#endif
+
unsigned globalResolveInfoCount() const
{
#if ENABLE(JIT)
}
#endif
+#if ENABLE(DFG_JIT)
+ SegmentedVector<InlineCallFrame, 4>& inlineCallFrames()
+ {
+ createRareDataIfNecessary();
+ return m_rareData->m_inlineCallFrames;
+ }
+
+ Vector<CodeOriginAtCallReturnOffset>& codeOrigins()
+ {
+ createRareDataIfNecessary();
+ return m_rareData->m_codeOrigins;
+ }
+
+ // Having code origins implies that there has been some inlining.
+ bool hasCodeOrigins()
+ {
+ return m_rareData && !!m_rareData->m_codeOrigins.size();
+ }
+
+ bool codeOriginForReturn(ReturnAddressPtr returnAddress, CodeOrigin& codeOrigin)
+ {
+ if (!hasCodeOrigins())
+ return false;
+ unsigned offset = getJITCode().offsetOf(returnAddress.value());
+ CodeOriginAtCallReturnOffset* entry = binarySearch<CodeOriginAtCallReturnOffset, unsigned, getCallReturnOffsetForCodeOrigin>(codeOrigins().begin(), codeOrigins().size(), offset, WTF::KeyMustNotBePresentInArray);
+ if (entry->callReturnOffset != offset)
+ return false;
+ codeOrigin = entry->codeOrigin;
+ return true;
+ }
+
+ CodeOrigin codeOrigin(unsigned index)
+ {
+ ASSERT(m_rareData);
+ return m_rareData->m_codeOrigins[index].codeOrigin;
+ }
+
+ bool addFrequentExitSite(const DFG::FrequentExitSite& site)
+ {
+ ASSERT(JITCode::isBaselineCode(getJITType()));
+ return m_exitProfile.add(site);
+ }
+
+ DFG::ExitProfile& exitProfile() { return m_exitProfile; }
+
+ CompressedLazyOperandValueProfileHolder& lazyOperandValueProfiles()
+ {
+ return m_lazyOperandValueProfiles;
+ }
+#endif
+
// Constant Pool
size_t numberOfIdentifiers() const { return m_identifiers.size(); }
Identifier& identifier(int index) { return m_identifiers[index]; }
size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); }
- void addConstant(JSValue v)
+ unsigned addConstant(JSValue v)
{
+ unsigned result = m_constantRegisters.size();
m_constantRegisters.append(WriteBarrier<Unknown>());
m_constantRegisters.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), v);
+ return result;
}
+ unsigned addOrFindConstant(JSValue);
WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; }
ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); }
m_rareData->m_regexps.append(WriteBarrier<RegExp>(*m_globalData, ownerExecutable(), r));
return size;
}
+ unsigned numberOfRegExps() const
+ {
+ if (!m_rareData)
+ return 0;
+ return m_rareData->m_regexps.size();
+ }
RegExp* regexp(int index) const { ASSERT(m_rareData); return m_rareData->m_regexps[index].get(); }
unsigned addConstantBuffer(unsigned length)
}
JSGlobalObject* globalObject() { return m_globalObject.get(); }
+
+ JSGlobalObject* globalObjectFor(CodeOrigin codeOrigin)
+ {
+ if (!codeOrigin.inlineCallFrame)
+ return globalObject();
+ // FIXME: if we ever inline based on executable not function, this code will need to change.
+ return codeOrigin.inlineCallFrame->callee->scope()->globalObject.get();
+ }
// Jump Tables
EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; }
void shrinkToFit();
+
+ void copyPostParseDataFrom(CodeBlock* alternative);
+ void copyPostParseDataFromAlternative();
+
+ // Functions for controlling when JITting kicks in, in a mixed mode
+ // execution world.
+
+ bool checkIfJITThresholdReached()
+ {
+ return m_llintExecuteCounter.checkIfThresholdCrossedAndSet(this);
+ }
+
+ void dontJITAnytimeSoon()
+ {
+ m_llintExecuteCounter.deferIndefinitely();
+ }
+
+ void jitAfterWarmUp()
+ {
+ m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITAfterWarmUp, this);
+ }
+
+ void jitSoon()
+ {
+ m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITSoon, this);
+ }
+
+ int32_t llintExecuteCounter() const
+ {
+ return m_llintExecuteCounter.m_counter;
+ }
+
+ // Functions for controlling when tiered compilation kicks in. This
+ // controls both when the optimizing compiler is invoked and when OSR
+ // entry happens. Two triggers exist: the loop trigger and the return
+ // trigger. In either case, when an addition to m_jitExecuteCounter
+ // causes it to become non-negative, the optimizing compiler is
+ // invoked. This includes a fast check to see if this CodeBlock has
+ // already been optimized (i.e. replacement() returns a CodeBlock
+ // that was optimized with a higher tier JIT than this one). In the
+ // case of the loop trigger, if the optimized compilation succeeds
+ // (or has already succeeded in the past) then OSR is attempted to
+ // redirect program flow into the optimized code.
+
+ // These functions are called from within the optimization triggers,
+ // and are used as a single point at which we define the heuristics
+ // for how much warm-up is mandated before the next optimization
+ // trigger files. All CodeBlocks start out with optimizeAfterWarmUp(),
+ // as this is called from the CodeBlock constructor.
+
+ // When we observe a lot of speculation failures, we trigger a
+ // reoptimization. But each time, we increase the optimization trigger
+ // to avoid thrashing.
+ unsigned reoptimizationRetryCounter() const
+ {
+ ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax);
+ return m_reoptimizationRetryCounter;
+ }
+
+ void countReoptimization()
+ {
+ m_reoptimizationRetryCounter++;
+ if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax)
+ m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax;
+ }
+
+ int32_t counterValueForOptimizeAfterWarmUp()
+ {
+ return Options::thresholdForOptimizeAfterWarmUp << reoptimizationRetryCounter();
+ }
+
+ int32_t counterValueForOptimizeAfterLongWarmUp()
+ {
+ return Options::thresholdForOptimizeAfterLongWarmUp << reoptimizationRetryCounter();
+ }
+
+ int32_t* addressOfJITExecuteCounter()
+ {
+ return &m_jitExecuteCounter.m_counter;
+ }
+
+ static ptrdiff_t offsetOfJITExecuteCounter() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_counter); }
+ static ptrdiff_t offsetOfJITExecutionActiveThreshold() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_activeThreshold); }
+ static ptrdiff_t offsetOfJITExecutionTotalCount() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_totalCount); }
+ int32_t jitExecuteCounter() const { return m_jitExecuteCounter.m_counter; }
+
+ unsigned optimizationDelayCounter() const { return m_optimizationDelayCounter; }
+
+ // Check if the optimization threshold has been reached, and if not,
+ // adjust the heuristics accordingly. Returns true if the threshold has
+ // been reached.
+ bool checkIfOptimizationThresholdReached()
+ {
+ return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this);
+ }
+
+ // Call this to force the next optimization trigger to fire. This is
+ // rarely wise, since optimization triggers are typically more
+ // expensive than executing baseline code.
+ void optimizeNextInvocation()
+ {
+ m_jitExecuteCounter.setNewThreshold(0, this);
+ }
+
+ // Call this to prevent optimization from happening again. Note that
+ // optimization will still happen after roughly 2^29 invocations,
+ // so this is really meant to delay that as much as possible. This
+ // is called if optimization failed, and we expect it to fail in
+ // the future as well.
+ void dontOptimizeAnytimeSoon()
+ {
+ m_jitExecuteCounter.deferIndefinitely();
+ }
+
+ // Call this to reinitialize the counter to its starting state,
+ // forcing a warm-up to happen before the next optimization trigger
+ // fires. This is called in the CodeBlock constructor. It also
+ // makes sense to call this if an OSR exit occurred. Note that
+ // OSR exit code is code generated, so the value of the execute
+ // counter that this corresponds to is also available directly.
+ void optimizeAfterWarmUp()
+ {
+ m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterWarmUp(), this);
+ }
+
+ // Call this to force an optimization trigger to fire only after
+ // a lot of warm-up.
+ void optimizeAfterLongWarmUp()
+ {
+ m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterLongWarmUp(), this);
+ }
+
+ // Call this to cause an optimization trigger to fire soon, but
+ // not necessarily the next one. This makes sense if optimization
+ // succeeds. Successfuly optimization means that all calls are
+ // relinked to the optimized code, so this only affects call
+ // frames that are still executing this CodeBlock. The value here
+ // is tuned to strike a balance between the cost of OSR entry
+ // (which is too high to warrant making every loop back edge to
+ // trigger OSR immediately) and the cost of executing baseline
+ // code (which is high enough that we don't necessarily want to
+ // have a full warm-up). The intuition for calling this instead of
+ // optimizeNextInvocation() is for the case of recursive functions
+ // with loops. Consider that there may be N call frames of some
+ // recursive function, for a reasonably large value of N. The top
+ // one triggers optimization, and then returns, and then all of
+ // the others return. We don't want optimization to be triggered on
+ // each return, as that would be superfluous. It only makes sense
+ // to trigger optimization if one of those functions becomes hot
+ // in the baseline code.
+ void optimizeSoon()
+ {
+ m_jitExecuteCounter.setNewThreshold(Options::thresholdForOptimizeSoon << reoptimizationRetryCounter(), this);
+ }
+
+ // The speculative JIT tracks its success rate, so that we can
+ // decide when to reoptimize. It's interesting to note that these
+ // counters may overflow without any protection. The success
+ // counter will overflow before the fail one does, becuase the
+ // fail one is used as a trigger to reoptimize. So the worst case
+ // is that the success counter overflows and we reoptimize without
+ // needing to. But this is harmless. If a method really did
+ // execute 2^32 times then compiling it again probably won't hurt
+ // anyone.
+
+ void countSpeculationSuccess()
+ {
+ m_speculativeSuccessCounter++;
+ }
+
+ void countSpeculationFailure()
+ {
+ m_speculativeFailCounter++;
+ }
+
+ uint32_t speculativeSuccessCounter() const { return m_speculativeSuccessCounter; }
+ uint32_t speculativeFailCounter() const { return m_speculativeFailCounter; }
+ uint32_t forcedOSRExitCounter() const { return m_forcedOSRExitCounter; }
+
+ uint32_t* addressOfSpeculativeSuccessCounter() { return &m_speculativeSuccessCounter; }
+ uint32_t* addressOfSpeculativeFailCounter() { return &m_speculativeFailCounter; }
+ uint32_t* addressOfForcedOSRExitCounter() { return &m_forcedOSRExitCounter; }
+
+ static ptrdiff_t offsetOfSpeculativeSuccessCounter() { return OBJECT_OFFSETOF(CodeBlock, m_speculativeSuccessCounter); }
+ static ptrdiff_t offsetOfSpeculativeFailCounter() { return OBJECT_OFFSETOF(CodeBlock, m_speculativeFailCounter); }
+ static ptrdiff_t offsetOfForcedOSRExitCounter() { return OBJECT_OFFSETOF(CodeBlock, m_forcedOSRExitCounter); }
+
+#if ENABLE(JIT)
+ // The number of failures that triggers the use of the ratio.
+ unsigned largeFailCountThreshold() { return Options::largeFailCountThresholdBase << baselineVersion()->reoptimizationRetryCounter(); }
+ unsigned largeFailCountThresholdForLoop() { return Options::largeFailCountThresholdBaseForLoop << baselineVersion()->reoptimizationRetryCounter(); }
+
+ bool shouldReoptimizeNow()
+ {
+ return (Options::desiredSpeculativeSuccessFailRatio *
+ speculativeFailCounter() >= speculativeSuccessCounter()
+ && speculativeFailCounter() >= largeFailCountThreshold())
+ || forcedOSRExitCounter() >=
+ Options::forcedOSRExitCountForReoptimization;
+ }
+
+ bool shouldReoptimizeFromLoopNow()
+ {
+ return (Options::desiredSpeculativeSuccessFailRatio *
+ speculativeFailCounter() >= speculativeSuccessCounter()
+ && speculativeFailCounter() >= largeFailCountThresholdForLoop())
+ || forcedOSRExitCounter() >=
+ Options::forcedOSRExitCountForReoptimization;
+ }
+#endif
+
+#if ENABLE(VALUE_PROFILER)
+ bool shouldOptimizeNow();
+#else
+ bool shouldOptimizeNow() { return false; }
+#endif
+
+#if ENABLE(JIT)
+ void reoptimize()
+ {
+ ASSERT(replacement() != this);
+ ASSERT(replacement()->alternative() == this);
+ replacement()->tallyFrequentExitSites();
+ replacement()->jettison();
+ countReoptimization();
+ optimizeAfterWarmUp();
+ }
+#endif
+
+#if ENABLE(VERBOSE_VALUE_PROFILE)
+ void dumpValueProfiles();
+#endif
+
// FIXME: Make these remaining members private.
int m_numCalleeRegisters;
int m_numVars;
int m_numCapturedVars;
- int m_numParameters;
bool m_isConstructor;
+ protected:
+#if ENABLE(JIT)
+ virtual bool jitCompileImpl(JSGlobalData&) = 0;
+#endif
+ virtual void visitWeakReferences(SlotVisitor&);
+ virtual void finalizeUnconditionally();
+
private:
-#if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING)
+ friend class DFGCodeBlocks;
+
+#if ENABLE(DFG_JIT)
+ void tallyFrequentExitSites();
+#else
+ void tallyFrequentExitSites() { }
+#endif
+
void dump(ExecState*, const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator&) const;
CString registerName(ExecState*, int r) const;
void printBinaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printConditionalJump(ExecState*, const Vector<Instruction>::const_iterator&, Vector<Instruction>::const_iterator&, int location, const char* op) const;
void printGetByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
+ void printCallOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printPutByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
-#endif
void visitStructures(SlotVisitor&, Instruction* vPC) const;
+
+#if ENABLE(DFG_JIT)
+ bool shouldImmediatelyAssumeLivenessDuringScan()
+ {
+ // Null m_dfgData means that this is a baseline JIT CodeBlock. Baseline JIT
+ // CodeBlocks don't need to be jettisoned when their weak references go
+ // stale. So if a basline JIT CodeBlock gets scanned, we can assume that
+ // this means that it's live.
+ if (!m_dfgData)
+ return true;
+
+ // For simplicity, we don't attempt to jettison code blocks during GC if
+ // they are executing. Instead we strongly mark their weak references to
+ // allow them to continue to execute soundly.
+ if (m_dfgData->mayBeExecuting)
+ return true;
+
+ return false;
+ }
+#else
+ bool shouldImmediatelyAssumeLivenessDuringScan() { return true; }
+#endif
+
+ void performTracingFixpointIteration(SlotVisitor&);
+
+ void stronglyVisitStrongReferences(SlotVisitor&);
+ void stronglyVisitWeakReferences(SlotVisitor&);
void createRareDataIfNecessary()
{
if (!m_rareData)
m_rareData = adoptPtr(new RareData);
}
+
+ int m_numParameters;
WriteBarrier<ScriptExecutable> m_ownerExecutable;
JSGlobalData* m_globalData;
- Vector<Instruction> m_instructions;
-#ifndef NDEBUG
- unsigned m_instructionCount;
-#endif
+ RefCountedArray<Instruction> m_instructions;
int m_thisRegister;
int m_argumentsRegister;
RefPtr<SourceProvider> m_source;
unsigned m_sourceOffset;
-#if ENABLE(INTERPRETER)
Vector<unsigned> m_propertyAccessInstructions;
Vector<unsigned> m_globalResolveInstructions;
+#if ENABLE(LLINT)
+ SegmentedVector<LLIntCallLinkInfo, 8> m_llintCallLinkInfos;
+ SentinelLinkedList<LLIntCallLinkInfo, BasicRawSentinelNode<LLIntCallLinkInfo> > m_incomingLLIntCalls;
#endif
#if ENABLE(JIT)
Vector<StructureStubInfo> m_structureStubInfos;
Vector<GlobalResolveInfo> m_globalResolveInfos;
Vector<CallLinkInfo> m_callLinkInfos;
Vector<MethodCallLinkInfo> m_methodCallLinkInfos;
+ JITCode m_jitCode;
+ MacroAssemblerCodePtr m_jitCodeWithArityCheck;
+ SentinelLinkedList<CallLinkInfo, BasicRawSentinelNode<CallLinkInfo> > m_incomingCalls;
+#endif
+#if ENABLE(DFG_JIT) || ENABLE(LLINT)
+ OwnPtr<CompactJITCodeMap> m_jitCodeMap;
+#endif
+#if ENABLE(DFG_JIT)
+ struct WeakReferenceTransition {
+ WeakReferenceTransition() { }
+
+ WeakReferenceTransition(JSGlobalData& globalData, JSCell* owner, JSCell* codeOrigin, JSCell* from, JSCell* to)
+ : m_from(globalData, owner, from)
+ , m_to(globalData, owner, to)
+ {
+ if (!!codeOrigin)
+ m_codeOrigin.set(globalData, owner, codeOrigin);
+ }
+
+ WriteBarrier<JSCell> m_codeOrigin;
+ WriteBarrier<JSCell> m_from;
+ WriteBarrier<JSCell> m_to;
+ };
+
+ struct DFGData {
+ DFGData()
+ : mayBeExecuting(false)
+ , isJettisoned(false)
+ {
+ }
+
+ Vector<DFG::OSREntryData> osrEntry;
+ SegmentedVector<DFG::OSRExit, 8> osrExit;
+ Vector<DFG::SpeculationRecovery> speculationRecovery;
+ Vector<WeakReferenceTransition> transitions;
+ Vector<WriteBarrier<JSCell> > weakReferences;
+ bool mayBeExecuting;
+ bool isJettisoned;
+ bool livenessHasBeenProved; // Initialized and used on every GC.
+ bool allTransitionsHaveBeenMarked; // Initialized and used on every GC.
+ unsigned visitAggregateHasBeenCalled; // Unsigned to make it work seamlessly with the broadest set of CAS implementations.
+ };
+
+ OwnPtr<DFGData> m_dfgData;
+
+ // This is relevant to non-DFG code blocks that serve as the profiled code block
+ // for DFG code blocks.
+ DFG::ExitProfile m_exitProfile;
+ CompressedLazyOperandValueProfileHolder m_lazyOperandValueProfiles;
+#endif
+#if ENABLE(VALUE_PROFILER)
+ Vector<ValueProfile> m_argumentValueProfiles;
+ SegmentedVector<ValueProfile, 8> m_valueProfiles;
+ SegmentedVector<RareCaseProfile, 8> m_rareCaseProfiles;
+ SegmentedVector<RareCaseProfile, 8> m_specialFastCaseProfiles;
+ unsigned m_executionEntryCount;
#endif
Vector<unsigned> m_jumpTargets;
+ Vector<unsigned> m_loopTargets;
// Constant Pool
Vector<Identifier> m_identifiers;
SymbolTable* m_symbolTable;
+ OwnPtr<CodeBlock> m_alternative;
+
+ ExecutionCounter m_llintExecuteCounter;
+
+ ExecutionCounter m_jitExecuteCounter;
+ int32_t m_totalJITExecutions;
+ uint32_t m_speculativeSuccessCounter;
+ uint32_t m_speculativeFailCounter;
+ uint32_t m_forcedOSRExitCounter;
+ uint16_t m_optimizationDelayCounter;
+ uint16_t m_reoptimizationRetryCounter;
+
struct RareData {
WTF_MAKE_FAST_ALLOCATED;
public:
Vector<LineInfo> m_lineInfo;
#if ENABLE(JIT)
Vector<CallReturnOffsetToBytecodeOffset> m_callReturnIndexVector;
+#endif
+#if ENABLE(DFG_JIT)
+ SegmentedVector<InlineCallFrame, 4> m_inlineCallFrames;
+ Vector<CodeOriginAtCallReturnOffset> m_codeOrigins;
#endif
};
#if COMPILER(MSVC)
friend void WTF::deleteOwnedPtr<RareData>(RareData*);
#endif
OwnPtr<RareData> m_rareData;
+#if ENABLE(JIT)
+ CompileWithDFGState m_canCompileWithDFGState;
+#endif
};
// Program code is not marked by any function, so we make the global object
// responsible for marking it.
class GlobalCodeBlock : public CodeBlock {
- public:
- GlobalCodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset)
- : CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, &m_unsharedSymbolTable, false)
+ protected:
+ GlobalCodeBlock(CopyParsedBlockTag, GlobalCodeBlock& other)
+ : CodeBlock(CopyParsedBlock, other, &m_unsharedSymbolTable)
+ , m_unsharedSymbolTable(other.m_unsharedSymbolTable)
+ {
+ }
+
+ GlobalCodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, PassOwnPtr<CodeBlock> alternative)
+ : CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, &m_unsharedSymbolTable, false, alternative)
{
}
class ProgramCodeBlock : public GlobalCodeBlock {
public:
- ProgramCodeBlock(ProgramExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider)
- : GlobalCodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, 0)
+ ProgramCodeBlock(CopyParsedBlockTag, ProgramCodeBlock& other)
+ : GlobalCodeBlock(CopyParsedBlock, other)
{
}
+
+ ProgramCodeBlock(ProgramExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, PassOwnPtr<CodeBlock> alternative)
+ : GlobalCodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, 0, alternative)
+ {
+ }
+
+#if ENABLE(JIT)
+ protected:
+ virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*);
+ virtual void jettison();
+ virtual bool jitCompileImpl(JSGlobalData&);
+ virtual CodeBlock* replacement();
+ virtual bool canCompileWithDFGInternal();
+#endif
};
class EvalCodeBlock : public GlobalCodeBlock {
public:
- EvalCodeBlock(EvalExecutable* ownerExecutable, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, int baseScopeDepth)
- : GlobalCodeBlock(ownerExecutable, EvalCode, globalObject, sourceProvider, 0)
+ EvalCodeBlock(CopyParsedBlockTag, EvalCodeBlock& other)
+ : GlobalCodeBlock(CopyParsedBlock, other)
+ , m_baseScopeDepth(other.m_baseScopeDepth)
+ , m_variables(other.m_variables)
+ {
+ }
+
+ EvalCodeBlock(EvalExecutable* ownerExecutable, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, int baseScopeDepth, PassOwnPtr<CodeBlock> alternative)
+ : GlobalCodeBlock(ownerExecutable, EvalCode, globalObject, sourceProvider, 0, alternative)
, m_baseScopeDepth(baseScopeDepth)
{
}
ASSERT(m_variables.isEmpty());
m_variables.swap(variables);
}
+
+#if ENABLE(JIT)
+ protected:
+ virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*);
+ virtual void jettison();
+ virtual bool jitCompileImpl(JSGlobalData&);
+ virtual CodeBlock* replacement();
+ virtual bool canCompileWithDFGInternal();
+#endif
private:
int m_baseScopeDepth;
class FunctionCodeBlock : public CodeBlock {
public:
+ FunctionCodeBlock(CopyParsedBlockTag, FunctionCodeBlock& other)
+ : CodeBlock(CopyParsedBlock, other, other.sharedSymbolTable())
+ {
+ // The fact that we have to do this is yucky, but is necessary because of the
+ // class hierarchy issues described in the comment block for the main
+ // constructor, below.
+ sharedSymbolTable()->ref();
+ }
+
// Rather than using the usual RefCounted::create idiom for SharedSymbolTable we just use new
// as we need to initialise the CodeBlock before we could initialise any RefPtr to hold the shared
// symbol table, so we just pass as a raw pointer with a ref count of 1. We then manually deref
// in the destructor.
- FunctionCodeBlock(FunctionExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, bool isConstructor)
- : CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, SharedSymbolTable::create().leakRef(), isConstructor)
+ FunctionCodeBlock(FunctionExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, bool isConstructor, PassOwnPtr<CodeBlock> alternative = nullptr)
+ : CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, SharedSymbolTable::create().leakRef(), isConstructor, alternative)
{
}
~FunctionCodeBlock()
{
sharedSymbolTable()->deref();
}
+
+#if ENABLE(JIT)
+ protected:
+ virtual JSObject* compileOptimized(ExecState*, ScopeChainNode*);
+ virtual void jettison();
+ virtual bool jitCompileImpl(JSGlobalData&);
+ virtual CodeBlock* replacement();
+ virtual bool canCompileWithDFGInternal();
+#endif
};
+ inline CodeBlock* baselineCodeBlockForInlineCallFrame(InlineCallFrame* inlineCallFrame)
+ {
+ ASSERT(inlineCallFrame);
+ ExecutableBase* executable = inlineCallFrame->executable.get();
+ ASSERT(executable->structure()->classInfo() == &FunctionExecutable::s_info);
+ return static_cast<FunctionExecutable*>(executable)->baselineCodeBlockFor(inlineCallFrame->isCall ? CodeForCall : CodeForConstruct);
+ }
+
+ inline CodeBlock* baselineCodeBlockForOriginAndBaselineCodeBlock(const CodeOrigin& codeOrigin, CodeBlock* baselineCodeBlock)
+ {
+ if (codeOrigin.inlineCallFrame)
+ return baselineCodeBlockForInlineCallFrame(codeOrigin.inlineCallFrame);
+ return baselineCodeBlock;
+ }
+
+
inline Register& ExecState::r(int index)
{
CodeBlock* codeBlock = this->codeBlock();
ASSERT(index < FirstConstantRegisterIndex);
return this[index];
}
+
+#if ENABLE(DFG_JIT)
+ inline bool ExecState::isInlineCallFrame()
+ {
+ if (LIKELY(!codeBlock() || codeBlock()->getJITType() != JITCode::DFGJIT))
+ return false;
+ return isInlineCallFrameSlow();
+ }
+#endif
+
+#if ENABLE(DFG_JIT)
+ inline void DFGCodeBlocks::mark(void* candidateCodeBlock)
+ {
+ // We have to check for 0 and -1 because those are used by the HashMap as markers.
+ uintptr_t value = reinterpret_cast<uintptr_t>(candidateCodeBlock);
+
+ // This checks for both of those nasty cases in one go.
+ // 0 + 1 = 1
+ // -1 + 1 = 0
+ if (value + 1 <= 1)
+ return;
+
+ HashSet<CodeBlock*>::iterator iter = m_set.find(static_cast<CodeBlock*>(candidateCodeBlock));
+ if (iter == m_set.end())
+ return;
+
+ (*iter)->m_dfgData->mayBeExecuting = true;
+ }
+#endif
} // namespace JSC