#include "config.h"
#if ENABLE(JIT)
-#if USE(JSVALUE64)
#include "JIT.h"
#include "CodeBlock.h"
-#include "JITInlineMethods.h"
-#include "JITStubCall.h"
+#include "JITInlines.h"
+#include "JITOperations.h"
#include "JITStubs.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "Interpreter.h"
+#include "JSCInlines.h"
#include "ResultType.h"
#include "SamplingTool.h"
+#include "SlowPathCall.h"
-#ifndef NDEBUG
-#include <stdio.h>
-#endif
-
-using namespace std;
namespace JSC {
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jless, op1, op2, target, LessThan);
+}
+
+void JIT::emit_op_jlesseq(Instruction* currentInstruction)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual);
+}
+
+void JIT::emit_op_jgreater(Instruction* currentInstruction)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan);
+}
+
+void JIT::emit_op_jgreatereq(Instruction* currentInstruction)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual);
+}
+
+void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan);
+}
+
+void JIT::emit_op_jngreater(Instruction* currentInstruction)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual);
+}
+
+void JIT::emit_op_jngreatereq(Instruction* currentInstruction)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan);
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, operationCompareLess, false, iter);
+}
+
+void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, operationCompareLessEq, false, iter);
+}
+
+void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, operationCompareGreater, false, iter);
+}
+
+void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, operationCompareGreaterEq, false, iter);
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, operationCompareLess, true, iter);
+}
+
+void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, operationCompareLessEq, true, iter);
+}
+
+void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, operationCompareGreater, true, iter);
+}
+
+void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[1].u.operand;
+ int op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, operationCompareGreaterEq, true, iter);
+}
+
+#if USE(JSVALUE64)
+
+void JIT::emit_op_negate(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int src = currentInstruction[2].u.operand;
+
+ emitGetVirtualRegister(src, regT0);
+
+ Jump srcNotInt = emitJumpIfNotImmediateInteger(regT0);
+ addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff)));
+ neg32(regT0);
+ emitFastArithReTagImmediate(regT0, regT0);
+
+ Jump end = jump();
+
+ srcNotInt.link(this);
+ emitJumpSlowCaseIfNotImmediateNumber(regT0);
+
+ move(TrustedImm64((int64_t)0x8000000000000000ull), regT1);
+ xor64(regT1, regT0);
+
+ end.link(this);
+ emitPutVirtualRegister(dst);
+}
+
+void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ linkSlowCase(iter); // 0x7fffffff check
+ linkSlowCase(iter); // double check
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_negate);
+ slowPathCall.call();
+}
+
void JIT::emit_op_lshift(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
emitGetVirtualRegisters(op1, regT0, op2, regT2);
// FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent.
void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
- UNUSED_PARAM(op1);
- UNUSED_PARAM(op2);
linkSlowCase(iter);
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_lshift);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT2);
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_lshift);
+ slowPathCall.call();
}
void JIT::emit_op_rshift(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
// isOperandConstantImmediateInt(op2) => 1 SlowCase
Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
// supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
addSlowCase(emitJumpIfNotImmediateNumber(regT0));
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
lhsIsInt.link(this);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int op2 = currentInstruction[3].u.operand;
- JITStubCall stubCall(this, cti_op_rshift);
-
- if (isOperandConstantImmediateInt(op2)) {
+ if (isOperandConstantImmediateInt(op2))
linkSlowCase(iter);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- } else {
+
+ else {
if (supportsFloatingPointTruncate()) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
- // We're reloading op1 to regT0 as we can no longer guarantee that
- // we have not munged the operand. It may have already been shifted
- // correctly, but it still will not have been tagged.
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(regT2);
} else {
linkSlowCase(iter);
linkSlowCase(iter);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT2);
}
}
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_rshift);
+ slowPathCall.call();
}
void JIT::emit_op_urshift(Instruction* currentInstruction)
{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
- // Slow case of urshift makes assumptions about what registers hold the
- // shift arguments, so any changes must be updated there as well.
if (isOperandConstantImmediateInt(op2)) {
+ // isOperandConstantImmediateInt(op2) => 1 SlowCase
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitFastArithImmToInt(regT0);
- int shift = getConstantOperand(op2).asInt32();
- if (shift)
- urshift32(Imm32(shift & 0x1f), regT0);
- // unsigned shift < 0 or shift = k*2^32 may result in (essentially)
- // a toUint conversion, which can result in a value we can represent
- // as an immediate int.
- if (shift < 0 || !(shift & 31))
- addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(dst, regT0);
- return;
- }
- emitGetVirtualRegisters(op1, regT0, op2, regT1);
- if (!isOperandConstantImmediateInt(op1))
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
- emitFastArithImmToInt(regT0);
- emitFastArithImmToInt(regT1);
- urshift32(regT1, regT0);
- addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(dst, regT0);
-}
-
-void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
- if (isOperandConstantImmediateInt(op2)) {
- int shift = getConstantOperand(op2).asInt32();
- // op1 = regT0
- linkSlowCase(iter); // int32 check
- if (supportsFloatingPointTruncate()) {
- JumpList failures;
- failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
- failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
- if (shift)
- urshift32(Imm32(shift & 0x1f), regT0);
- if (shift < 0 || !(shift & 31))
- failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(dst, regT0);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
- failures.link(this);
- }
- if (shift < 0 || !(shift & 31))
- linkSlowCase(iter); // failed to box in hot path
+ // Mask with 0x1f as per ecma-262 11.7.2 step 7.
+ urshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
} else {
- // op1 = regT0
- // op2 = regT1
- if (!isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter); // int32 check -- op1 is not an int
- if (supportsFloatingPointTruncate()) {
- JumpList failures;
- failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
- failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
- failures.append(emitJumpIfNotImmediateInteger(regT1)); // op2 is not an int
- emitFastArithImmToInt(regT1);
- urshift32(regT1, regT0);
- failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
- emitFastArithReTagImmediate(regT0, regT0);
- emitPutVirtualRegister(dst, regT0);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
- failures.link(this);
- }
+ emitGetVirtualRegisters(op1, regT0, op2, regT2);
+ if (supportsFloatingPointTruncate()) {
+ Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
+ // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
+ addSlowCase(emitJumpIfNotImmediateNumber(regT0));
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
+ addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+ lhsIsInt.link(this);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+ } else {
+ // !supportsFloatingPoint() => 2 SlowCases
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
}
-
- linkSlowCase(iter); // int32 check - op2 is not an int
- linkSlowCase(iter); // Can't represent unsigned result as an immediate
- }
-
- JITStubCall stubCall(this, cti_op_urshift);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call(dst);
-}
-
-void JIT::emit_op_jnless(Instruction* currentInstruction)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the fast path:
- // - int immediate to constant int immediate
- // - constant int immediate to int immediate
- // - int immediate to int immediate
-
- if (isOperandConstantImmediateChar(op1)) {
- emitGetVirtualRegister(op2, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateChar(op2)) {
- emitGetVirtualRegister(op1, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- int32_t op2imm = getConstantOperandImmediateInt(op2);
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target);
- } else if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
- int32_t op1imm = getConstantOperandImmediateInt(op1);
- addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target);
- } else {
- emitGetVirtualRegisters(op1, regT0, op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
-
- addJump(branch32(GreaterThanOrEqual, regT0, regT1), target);
+ emitFastArithImmToInt(regT2);
+ urshift32(regT2, regT0);
}
+ emitFastArithIntToImmNoCheck(regT0, regT0);
+ emitPutVirtualRegister(result);
}
-void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the slow path:
- // - floating-point number to constant int immediate
- // - constant int immediate to floating-point number
- // - floating-point number to floating-point number.
- if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
- return;
- }
-
- if (isOperandConstantImmediateInt(op2)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
-
- int32_t op2imm = getConstantOperand(op2).asInt32();;
-
- move(Imm32(op2imm), regT1);
- convertInt32ToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+ int op2 = currentInstruction[3].u.operand;
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
-
- } else if (isOperandConstantImmediateInt(op1)) {
+ if (isOperandConstantImmediateInt(op2))
linkSlowCase(iter);
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
-
- int32_t op1imm = getConstantOperand(op1).asInt32();;
-
- move(Imm32(op1imm), regT0);
- convertInt32ToDouble(regT0, fpRegT0);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
-
- } else {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
- Jump fail3 = emitJumpIfImmediateInteger(regT1);
- addPtr(tagTypeNumberRegister, regT0);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT0, fpRegT0);
- movePtrToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- fail2.link(this);
- fail3.link(this);
+ else {
+ if (supportsFloatingPointTruncate()) {
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ } else {
+ linkSlowCase(iter);
+ linkSlowCase(iter);
}
-
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
}
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_urshift);
+ slowPathCall.call();
}
-void JIT::emit_op_jless(Instruction* currentInstruction)
+void JIT::emit_op_unsigned(Instruction* currentInstruction)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the fast path:
- // - int immediate to constant int immediate
- // - constant int immediate to int immediate
- // - int immediate to int immediate
-
- if (isOperandConstantImmediateChar(op1)) {
- emitGetVirtualRegister(op2, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(GreaterThan, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateChar(op2)) {
- emitGetVirtualRegister(op1, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(LessThan, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- int32_t op2imm = getConstantOperandImmediateInt(op2);
- addJump(branch32(LessThan, regT0, Imm32(op2imm)), target);
- } else if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
- int32_t op1imm = getConstantOperandImmediateInt(op1);
- addJump(branch32(GreaterThan, regT1, Imm32(op1imm)), target);
- } else {
- emitGetVirtualRegisters(op1, regT0, op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
-
- addJump(branch32(LessThan, regT0, regT1), target);
- }
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
+ emitFastArithReTagImmediate(regT0, regT0);
+ emitPutVirtualRegister(result, regT0);
}
-void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_unsigned(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the slow path:
- // - floating-point number to constant int immediate
- // - constant int immediate to floating-point number
- // - floating-point number to floating-point number.
- if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
- return;
- }
-
- if (isOperandConstantImmediateInt(op2)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
-
- int32_t op2imm = getConstantOperand(op2).asInt32();
-
- move(Imm32(op2imm), regT1);
- convertInt32ToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
-
- } else if (isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
-
- int32_t op1imm = getConstantOperand(op1).asInt32();
-
- move(Imm32(op1imm), regT0);
- convertInt32ToDouble(regT0, fpRegT0);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
-
- } else {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
- Jump fail3 = emitJumpIfImmediateInteger(regT1);
- addPtr(tagTypeNumberRegister, regT0);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT0, fpRegT0);
- movePtrToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- fail2.link(this);
- fail3.link(this);
- }
-
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
- }
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_unsigned);
+ slowPathCall.call();
}
-void JIT::emit_op_jlesseq(Instruction* currentInstruction, bool invert)
+void JIT::emit_compareAndJump(OpcodeID, int op1, int op2, unsigned target, RelationalCondition condition)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
// We generate inline code for the following cases in the fast path:
// - int immediate to constant int immediate
// - constant int immediate to int immediate
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
- addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
+ addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateChar(op2)) {
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
+ addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
int32_t op2imm = getConstantOperandImmediateInt(op2);
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(op2imm)), target);
+ addJump(branch32(condition, regT0, Imm32(op2imm)), target);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
int32_t op1imm = getConstantOperandImmediateInt(op1);
- addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT1, Imm32(op1imm)), target);
+ addJump(branch32(commute(condition), regT1, Imm32(op1imm)), target);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, regT1), target);
+ addJump(branch32(condition, regT0, regT1), target);
}
}
-void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool invert)
+void JIT::emit_compareAndJumpSlow(int op1, int op2, unsigned target, DoubleCondition condition, size_t (JIT_OPERATION *operation)(ExecState*, EncodedJSValue, EncodedJSValue), bool invert, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnlesseq), OPCODE_LENGTH_op_jnlesseq_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreater), OPCODE_LENGTH_op_jgreater_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreatereq), OPCODE_LENGTH_op_jgreatereq_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreater), OPCODE_LENGTH_op_jngreater_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreatereq), OPCODE_LENGTH_op_jngreatereq_equals_op_jless);
+
// We generate inline code for the following cases in the slow path:
// - floating-point number to constant int immediate
// - constant int immediate to floating-point number
// - floating-point number to floating-point number.
-
if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jlesseq);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
+
+ emitGetVirtualRegister(op1, argumentGPR0);
+ emitGetVirtualRegister(op2, argumentGPR1);
+ callOperation(operation, argumentGPR0, argumentGPR1);
+ emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
return;
}
if (supportsFloatingPoint()) {
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
- int32_t op2imm = getConstantOperand(op2).asInt32();;
+ int32_t op2imm = getConstantOperand(op2).asInt32();
move(Imm32(op2imm), regT1);
convertInt32ToDouble(regT1, fpRegT1);
- emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+ emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
fail1.link(this);
}
- JITStubCall stubCall(this, cti_op_jlesseq);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
-
+ emitGetVirtualRegister(op2, regT1);
+ callOperation(operation, regT0, regT1);
+ emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
} else if (isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT1, fpRegT1);
- int32_t op1imm = getConstantOperand(op1).asInt32();;
+ int32_t op1imm = getConstantOperand(op1).asInt32();
move(Imm32(op1imm), regT0);
convertInt32ToDouble(regT0, fpRegT0);
- emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+ emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
fail1.link(this);
}
- JITStubCall stubCall(this, cti_op_jlesseq);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
-
+ emitGetVirtualRegister(op1, regT2);
+ callOperation(operation, regT2, regT1);
+ emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
} else {
linkSlowCase(iter);
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
Jump fail3 = emitJumpIfImmediateInteger(regT1);
- addPtr(tagTypeNumberRegister, regT0);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT0, fpRegT0);
- movePtrToDouble(regT1, fpRegT1);
+ add64(tagTypeNumberRegister, regT0);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT0, fpRegT0);
+ move64ToDouble(regT1, fpRegT1);
- emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+ emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
fail1.link(this);
fail2.link(this);
}
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jlesseq);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
+ callOperation(operation, regT0, regT1);
+ emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
}
}
-void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
-{
- emit_op_jlesseq(currentInstruction, true);
-}
-
-void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- emitSlow_op_jlesseq(currentInstruction, iter, true);
-}
-
void JIT::emit_op_bitand(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
int32_t imm = getConstantOperandImmediateInt(op1);
- andPtr(Imm32(imm), regT0);
+ and64(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
int32_t imm = getConstantOperandImmediateInt(op2);
- andPtr(Imm32(imm), regT0);
+ and64(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
- andPtr(regT1, regT0);
+ and64(regT1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
}
emitPutVirtualRegister(result);
void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
linkSlowCase(iter);
- if (isOperandConstantImmediateInt(op1)) {
- JITStubCall stubCall(this, cti_op_bitand);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT0);
- stubCall.call(result);
- } else if (isOperandConstantImmediateInt(op2)) {
- JITStubCall stubCall(this, cti_op_bitand);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
- } else {
- JITStubCall stubCall(this, cti_op_bitand);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call(result);
- }
-}
-
-void JIT::emit_op_post_inc(Instruction* currentInstruction)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
- emitGetVirtualRegister(srcDst, regT0);
- move(regT0, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT1));
- emitFastArithIntToImmNoCheck(regT1, regT1);
- emitPutVirtualRegister(srcDst, regT1);
- emitPutVirtualRegister(result);
-}
-
-void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_post_inc);
- stubCall.addArgument(regT0);
- stubCall.addArgument(Imm32(srcDst));
- stubCall.call(result);
-}
-
-void JIT::emit_op_post_dec(Instruction* currentInstruction)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- emitGetVirtualRegister(srcDst, regT0);
- move(regT0, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchSub32(Zero, TrustedImm32(1), regT1));
- emitFastArithIntToImmNoCheck(regT1, regT1);
- emitPutVirtualRegister(srcDst, regT1);
- emitPutVirtualRegister(result);
-}
-
-void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_post_dec);
- stubCall.addArgument(regT0);
- stubCall.addArgument(Imm32(srcDst));
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitand);
+ slowPathCall.call();
}
-void JIT::emit_op_pre_inc(Instruction* currentInstruction)
+void JIT::emit_op_inc(Instruction* currentInstruction)
{
- unsigned srcDst = currentInstruction[1].u.operand;
+ int srcDst = currentInstruction[1].u.operand;
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitPutVirtualRegister(srcDst);
}
-void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned srcDst = currentInstruction[1].u.operand;
-
- Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
- emitGetVirtualRegister(srcDst, regT0);
- notImm.link(this);
- JITStubCall stubCall(this, cti_op_pre_inc);
- stubCall.addArgument(regT0);
- stubCall.call(srcDst);
+ linkSlowCase(iter);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_inc);
+ slowPathCall.call();
}
-void JIT::emit_op_pre_dec(Instruction* currentInstruction)
+void JIT::emit_op_dec(Instruction* currentInstruction)
{
- unsigned srcDst = currentInstruction[1].u.operand;
+ int srcDst = currentInstruction[1].u.operand;
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchSub32(Zero, TrustedImm32(1), regT0));
+ addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
emitPutVirtualRegister(srcDst);
}
-void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned srcDst = currentInstruction[1].u.operand;
-
- Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
- emitGetVirtualRegister(srcDst, regT0);
- notImm.link(this);
- JITStubCall stubCall(this, cti_op_pre_dec);
- stubCall.addArgument(regT0);
- stubCall.call(srcDst);
+ linkSlowCase(iter);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_dec);
+ slowPathCall.call();
}
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
-#if CPU(X86) || CPU(X86_64) || CPU(MIPS)
+#if CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
-#if CPU(X86) || CPU(X86_64)
// Make sure registers are correct for x86 IDIV instructions.
ASSERT(regT0 == X86Registers::eax);
ASSERT(regT1 == X86Registers::edx);
ASSERT(regT2 == X86Registers::ecx);
-#endif
- emitGetVirtualRegisters(op1, regT0, op2, regT2);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitGetVirtualRegisters(op1, regT3, op2, regT2);
+ emitJumpSlowCaseIfNotImmediateInteger(regT3);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
- addSlowCase(branchPtr(Equal, regT2, TrustedImmPtr(JSValue::encode(jsNumber(0)))));
+ move(regT3, regT0);
+ addSlowCase(branchTest32(Zero, regT2));
+ Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1));
+ addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1)));
+ denominatorNotNeg1.link(this);
m_assembler.cdq();
m_assembler.idivl_r(regT2);
+ Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0));
+ addSlowCase(branchTest32(Zero, regT1));
+ numeratorPositive.link(this);
emitFastArithReTagImmediate(regT1, regT0);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
-
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT2);
- stubCall.call(result);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod);
+ slowPathCall.call();
}
-#else // CPU(X86) || CPU(X86_64) || CPU(MIPS)
+#else // CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
- JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod);
+ slowPathCall.call();
}
-void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&)
{
-#if ENABLE(JIT_USE_SOFT_MODULO)
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
-#else
- ASSERT_NOT_REACHED();
-#endif
+ UNREACHABLE_FOR_PLATFORM();
}
#endif // CPU(X86) || CPU(X86_64)
/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
-void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes)
+void JIT::compileBinaryArithOp(OpcodeID opcodeID, int, int op1, int op2, OperandTypes)
{
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
+ RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
if (opcodeID == op_add)
addSlowCase(branchAdd32(Overflow, regT1, regT0));
else if (opcodeID == op_sub)
addSlowCase(branchSub32(Overflow, regT1, regT0));
else {
ASSERT(opcodeID == op_mul);
- addSlowCase(branchMul32(Overflow, regT1, regT0));
- addSlowCase(branchTest32(Zero, regT0));
+ if (shouldEmitProfiling()) {
+ // We want to be able to measure if this is taking the slow case just
+ // because of negative zero. If this produces positive zero, then we
+ // don't want the slow case to be taken because that will throw off
+ // speculative compilation.
+ move(regT0, regT2);
+ addSlowCase(branchMul32(Overflow, regT1, regT2));
+ JumpList done;
+ done.append(branchTest32(NonZero, regT2));
+ Jump negativeZero = branch32(LessThan, regT0, TrustedImm32(0));
+ done.append(branch32(GreaterThanOrEqual, regT1, TrustedImm32(0)));
+ negativeZero.link(this);
+ // We only get here if we have a genuine negative zero. Record this,
+ // so that the speculative JIT knows that we failed speculation
+ // because of a negative zero.
+ add32(TrustedImm32(1), AbsoluteAddress(&profile->m_counter));
+ addSlowCase(jump());
+ done.link(this);
+ move(regT2, regT0);
+ } else {
+ addSlowCase(branchMul32(Overflow, regT1, regT0));
+ addSlowCase(branchTest32(Zero, regT0));
+ }
}
emitFastArithIntToImmNoCheck(regT0, regT0);
}
-void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
+void JIT::compileBinaryArithOpSlowCase(Instruction* currentInstruction, OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, int result, int op1, int op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
{
// We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset.
COMPILE_ASSERT(((TagTypeNumber + DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare.
if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number.
linkSlowCase(iter);
- emitGetVirtualRegister(op1, regT0);
Label stubFunctionCall(this);
- JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
- if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) {
- emitGetVirtualRegister(op1, regT0);
- emitGetVirtualRegister(op2, regT1);
- }
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call(result);
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, opcodeID == op_add ? slow_path_add : opcodeID == op_sub ? slow_path_sub : slow_path_mul);
+ slowPathCall.call();
Jump end = jump();
if (op1HasImmediateIntFastCase) {
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
emitGetVirtualRegister(op1, regT1);
convertInt32ToDouble(regT1, fpRegT1);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT2);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT2);
} else if (op2HasImmediateIntFastCase) {
notImm1.link(this);
if (!types.first().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
emitGetVirtualRegister(op2, regT1);
convertInt32ToDouble(regT1, fpRegT1);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT2);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT2);
} else {
// if we get here, eax is not an int32, edx not yet checked.
notImm1.link(this);
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
if (!types.second().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT1);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT1);
Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1);
convertInt32ToDouble(regT1, fpRegT2);
Jump op2wasInteger = jump();
emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
convertInt32ToDouble(regT0, fpRegT1);
op2isDouble.link(this);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT2);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT1, fpRegT2);
op2wasInteger.link(this);
}
ASSERT(opcodeID == op_div);
divDouble(fpRegT2, fpRegT1);
}
- moveDoubleToPtr(fpRegT1, regT0);
- subPtr(tagTypeNumberRegister, regT0);
+ moveDoubleTo64(fpRegT1, regT0);
+ sub64(tagTypeNumberRegister, regT0);
emitPutVirtualRegister(result, regT0);
end.link(this);
void JIT::emit_op_add(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
- JITStubCall stubCall(this, cti_op_add);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
+ addSlowCase();
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_add);
+ slowPathCall.call();
return;
}
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0));
- emitFastArithIntToImmNoCheck(regT0, regT0);
+ addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op1)), regT1));
+ emitFastArithIntToImmNoCheck(regT1, regT0);
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0));
- emitFastArithIntToImmNoCheck(regT0, regT0);
+ addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op2)), regT1));
+ emitFastArithIntToImmNoCheck(regT1, regT0);
} else
compileBinaryArithOp(op_add, result, op1, op2, types);
void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ linkDummySlowCase(iter);
return;
+ }
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
- compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+ compileBinaryArithOpSlowCase(currentInstruction, op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_mul(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
// For now, only plant a fast int case if the constant operand is greater than zero.
int32_t value;
if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
+ // Add a special fast case profile because the DFG JIT will expect one.
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
- emitFastArithReTagImmediate(regT0, regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
+ emitFastArithReTagImmediate(regT1, regT0);
} else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
+ // Add a special fast case profile because the DFG JIT will expect one.
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
- emitFastArithReTagImmediate(regT0, regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
+ emitFastArithReTagImmediate(regT1, regT0);
} else
compileBinaryArithOp(op_mul, result, op1, op2, types);
void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0;
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0;
- compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+ compileBinaryArithOpSlowCase(currentInstruction, op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_div(Instruction* currentInstruction)
{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (isOperandConstantImmediateDouble(op1)) {
emitGetVirtualRegister(op1, regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
} else if (isOperandConstantImmediateInt(op1)) {
emitLoadInt32ToDouble(op1, fpRegT0);
} else {
convertInt32ToDouble(regT0, fpRegT0);
Jump skipDoubleLoad = jump();
notInt.link(this);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
+ add64(tagTypeNumberRegister, regT0);
+ move64ToDouble(regT0, fpRegT0);
skipDoubleLoad.link(this);
}
if (isOperandConstantImmediateDouble(op2)) {
emitGetVirtualRegister(op2, regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT1, fpRegT1);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoadInt32ToDouble(op2, fpRegT1);
} else {
convertInt32ToDouble(regT1, fpRegT1);
Jump skipDoubleLoad = jump();
notInt.link(this);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
+ add64(tagTypeNumberRegister, regT1);
+ move64ToDouble(regT1, fpRegT1);
skipDoubleLoad.link(this);
}
divDouble(fpRegT1, fpRegT0);
-
- // Double result.
- moveDoubleToPtr(fpRegT0, regT0);
- subPtr(tagTypeNumberRegister, regT0);
+
+ // Is the result actually an integer? The DFG JIT would really like to know. If it's
+ // not an integer, we increment a count. If this together with the slow case counter
+ // are below threshold then the DFG JIT will compile this division with a specualtion
+ // that the remainder is zero.
+
+ // As well, there are cases where a double result here would cause an important field
+ // in the heap to sometimes have doubles in it, resulting in double predictions getting
+ // propagated to a use site where it might cause damage (such as the index to an array
+ // access). So if we are DFG compiling anything in the program, we want this code to
+ // ensure that it produces integers whenever possible.
+
+ JumpList notInteger;
+ branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1);
+ // If we've got an integer, we might as well make that the result of the division.
+ emitFastArithReTagImmediate(regT0, regT0);
+ Jump isInteger = jump();
+ notInteger.link(this);
+ moveDoubleTo64(fpRegT0, regT0);
+ Jump doubleZero = branchTest64(Zero, regT0);
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter));
+ sub64(tagTypeNumberRegister, regT0);
+ Jump trueDouble = jump();
+ doubleZero.link(this);
+ move(tagTypeNumberRegister, regT0);
+ trueDouble.link(this);
+ isInteger.link(this);
emitPutVirtualRegister(dst, regT0);
}
void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) {
-#ifndef NDEBUG
- breakpoint();
-#endif
+ if (!ASSERT_DISABLED)
+ abortWithReason(JITDivOperandsAreNotNumbers);
return;
}
if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
}
// There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
- JITStubCall stubCall(this, cti_op_div);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_div);
+ slowPathCall.call();
}
void JIT::emit_op_sub(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
compileBinaryArithOp(op_sub, result, op1, op2, types);
void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
+ int result = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false);
+ compileBinaryArithOpSlowCase(currentInstruction, op_sub, iter, result, op1, op2, types, false, false);
}
/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */
+#endif // USE(JSVALUE64)
+
} // namespace JSC
-#endif // USE(JSVALUE64)
#endif // ENABLE(JIT)