/*
- * Copyright (C) 2011 Apple Inc. All rights reserved.
+ * Copyright (C) 2011, 2012, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
#if ENABLE(DFG_JIT)
-#include "DFGAliasTracker.h"
-#include "DFGScoreBoard.h"
+#include "ArrayConstructor.h"
+#include "CallLinkStatus.h"
#include "CodeBlock.h"
+#include "CodeBlockWithJITType.h"
+#include "DFGArrayMode.h"
+#include "DFGCapabilities.h"
+#include "GetByIdStatus.h"
+#include "Operations.h"
+#include "PreciseJumpTargets.h"
+#include "PutByIdStatus.h"
+#include "ResolveGlobalStatus.h"
+#include "StringConstructor.h"
+#include <wtf/CommaPrinter.h>
+#include <wtf/HashMap.h>
+#include <wtf/MathExtras.h>
namespace JSC { namespace DFG {
-#if ENABLE(DFG_JIT_RESTRICTIONS)
-// FIXME: Temporarily disable arithmetic, until we fix associated performance regressions.
-#define ARITHMETIC_OP() m_parseFailed = true
-#else
-#define ARITHMETIC_OP() ((void)0)
-#endif
+class ConstantBufferKey {
+public:
+ ConstantBufferKey()
+ : m_codeBlock(0)
+ , m_index(0)
+ {
+ }
+
+ ConstantBufferKey(WTF::HashTableDeletedValueType)
+ : m_codeBlock(0)
+ , m_index(1)
+ {
+ }
+
+ ConstantBufferKey(CodeBlock* codeBlock, unsigned index)
+ : m_codeBlock(codeBlock)
+ , m_index(index)
+ {
+ }
+
+ bool operator==(const ConstantBufferKey& other) const
+ {
+ return m_codeBlock == other.m_codeBlock
+ && m_index == other.m_index;
+ }
+
+ unsigned hash() const
+ {
+ return WTF::PtrHash<CodeBlock*>::hash(m_codeBlock) ^ m_index;
+ }
+
+ bool isHashTableDeletedValue() const
+ {
+ return !m_codeBlock && m_index;
+ }
+
+ CodeBlock* codeBlock() const { return m_codeBlock; }
+ unsigned index() const { return m_index; }
+
+private:
+ CodeBlock* m_codeBlock;
+ unsigned m_index;
+};
+
+struct ConstantBufferKeyHash {
+ static unsigned hash(const ConstantBufferKey& key) { return key.hash(); }
+ static bool equal(const ConstantBufferKey& a, const ConstantBufferKey& b)
+ {
+ return a == b;
+ }
+
+ static const bool safeToCompareToEmptyOrDeleted = true;
+};
+
+} } // namespace JSC::DFG
+
+namespace WTF {
+
+template<typename T> struct DefaultHash;
+template<> struct DefaultHash<JSC::DFG::ConstantBufferKey> {
+ typedef JSC::DFG::ConstantBufferKeyHash Hash;
+};
+
+template<typename T> struct HashTraits;
+template<> struct HashTraits<JSC::DFG::ConstantBufferKey> : SimpleClassHashTraits<JSC::DFG::ConstantBufferKey> { };
+
+} // namespace WTF
+
+namespace JSC { namespace DFG {
// === ByteCodeParser ===
//
// This class is used to compile the dataflow graph from a CodeBlock.
class ByteCodeParser {
public:
- ByteCodeParser(JSGlobalData* globalData, CodeBlock* codeBlock, Graph& graph)
- : m_globalData(globalData)
- , m_codeBlock(codeBlock)
+ ByteCodeParser(Graph& graph)
+ : m_vm(&graph.m_vm)
+ , m_codeBlock(graph.m_codeBlock)
+ , m_profiledBlock(graph.m_profiledBlock)
, m_graph(graph)
+ , m_currentBlock(0)
, m_currentIndex(0)
- , m_parseFailed(false)
+ , m_currentProfilingIndex(0)
, m_constantUndefined(UINT_MAX)
, m_constantNull(UINT_MAX)
+ , m_constantNaN(UINT_MAX)
, m_constant1(UINT_MAX)
- , m_constants(codeBlock->numberOfConstantRegisters())
- , m_numArguments(codeBlock->m_numParameters)
- , m_numLocals(codeBlock->m_numCalleeRegisters)
- , m_preservedVars(codeBlock->m_numVars)
+ , m_constants(m_codeBlock->numberOfConstantRegisters())
+ , m_numArguments(m_codeBlock->numParameters())
+ , m_numLocals(m_codeBlock->m_numCalleeRegisters)
+ , m_preservedVars(m_codeBlock->m_numVars)
+ , m_parameterSlots(0)
+ , m_numPassedVarArgs(0)
+ , m_inlineStackTop(0)
+ , m_haveBuiltOperandMaps(false)
+ , m_emptyJSValueIndex(UINT_MAX)
+ , m_currentInstruction(0)
{
+ ASSERT(m_profiledBlock);
+
+ for (int i = 0; i < m_codeBlock->m_numVars; ++i)
+ m_preservedVars.set(i);
}
-
+
// Parse a full CodeBlock of bytecode.
bool parse();
-
+
private:
+ struct InlineStackEntry;
+
+ // Just parse from m_currentIndex to the end of the current CodeBlock.
+ void parseCodeBlock();
+
+ // Helper for min and max.
+ bool handleMinMax(bool usesResult, int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis);
+
+ // Handle calls. This resolves issues surrounding inlining and intrinsics.
+ void handleCall(Interpreter*, Instruction* currentInstruction, NodeType op, CodeSpecializationKind);
+ void emitFunctionChecks(const CallLinkStatus&, Node* callTarget, int registerOffset, CodeSpecializationKind);
+ void emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind);
+ // Handle inlining. Return true if it succeeded, false if we need to plant a call.
+ bool handleInlining(bool usesResult, Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, CodeSpecializationKind);
+ // Handle setting the result of an intrinsic.
+ void setIntrinsicResult(bool usesResult, int resultOperand, Node*);
+ // Handle intrinsic functions. Return true if it succeeded, false if we need to plant a call.
+ bool handleIntrinsic(bool usesResult, int resultOperand, Intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction);
+ bool handleConstantInternalFunction(bool usesResult, int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, CodeSpecializationKind);
+ Node* handleGetByOffset(SpeculatedType, Node* base, unsigned identifierNumber, PropertyOffset);
+ void handleGetByOffset(
+ int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber,
+ PropertyOffset);
+ void handleGetById(
+ int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber,
+ const GetByIdStatus&);
+
+ Node* getScope(bool skipTop, unsigned skipCount);
+
+ // Convert a set of ResolveOperations into graph nodes
+ bool parseResolveOperations(SpeculatedType, unsigned identifierNumber, ResolveOperations*, PutToBaseOperation*, Node** base, Node** value);
+
+ // Prepare to parse a block.
+ void prepareToParseBlock();
// Parse a single basic block of bytecode instructions.
bool parseBlock(unsigned limit);
- // Setup predecessor links in the graph's BasicBlocks.
- void setupPredecessors();
- // Link GetLocal & SetLocal nodes, to ensure live values are generated.
- enum PhiStackType {
- LocalPhiStack,
- ArgumentPhiStack
- };
- template<PhiStackType stackType>
- void processPhiStack();
- // Add spill locations to nodes.
- void allocateVirtualRegisters();
-
+ // Link block successors.
+ void linkBlock(BasicBlock*, Vector<BlockIndex>& possibleTargets);
+ void linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BlockIndex>& possibleTargets);
+
+ VariableAccessData* newVariableAccessData(int operand, bool isCaptured)
+ {
+ ASSERT(operand < FirstConstantRegisterIndex);
+
+ m_graph.m_variableAccessData.append(VariableAccessData(static_cast<VirtualRegister>(operand), isCaptured));
+ return &m_graph.m_variableAccessData.last();
+ }
+
// Get/Set the operands/result of a bytecode instruction.
- NodeIndex get(int operand)
+ Node* getDirect(int operand)
{
// Is this a constant?
if (operand >= FirstConstantRegisterIndex) {
return getJSConstant(constant);
}
+ ASSERT(operand != JSStack::Callee);
+
// Is this an argument?
if (operandIsArgument(operand))
return getArgument(operand);
// Must be a local.
return getLocal((unsigned)operand);
}
- void set(int operand, NodeIndex value, PredictedType prediction = PredictNone)
+ Node* get(int operand)
+ {
+ if (operand == JSStack::Callee) {
+ if (inlineCallFrame() && inlineCallFrame()->callee)
+ return cellConstant(inlineCallFrame()->callee.get());
+
+ return getCallee();
+ }
+
+ return getDirect(m_inlineStackTop->remapOperand(operand));
+ }
+ enum SetMode { NormalSet, SetOnEntry };
+ void setDirect(int operand, Node* value, SetMode setMode = NormalSet)
{
- m_graph.predict(operand, prediction);
-
// Is this an argument?
if (operandIsArgument(operand)) {
- setArgument(operand, value);
+ setArgument(operand, value, setMode);
return;
}
// Must be a local.
- setLocal((unsigned)operand, value);
+ setLocal((unsigned)operand, value, setMode);
+ }
+ void set(int operand, Node* value, SetMode setMode = NormalSet)
+ {
+ setDirect(m_inlineStackTop->remapOperand(operand), value, setMode);
+ }
+
+ void setPair(int operand1, Node* value1, int operand2, Node* value2)
+ {
+ // First emit dead SetLocals for the benefit of OSR.
+ set(operand1, value1);
+ set(operand2, value2);
+
+ // Now emit the real SetLocals.
+ set(operand1, value1);
+ set(operand2, value2);
+ }
+
+ Node* injectLazyOperandSpeculation(Node* node)
+ {
+ ASSERT(node->op() == GetLocal);
+ ASSERT(node->codeOrigin.bytecodeIndex == m_currentIndex);
+ SpeculatedType prediction =
+ m_inlineStackTop->m_lazyOperands.prediction(
+ LazyOperandValueProfileKey(m_currentIndex, node->local()));
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLog("Lazy operand [@", node->index(), ", bc#", m_currentIndex, ", r", node->local(), "] prediction: ", SpeculationDump(prediction), "\n");
+#endif
+ node->variableAccessData()->predict(prediction);
+ return node;
}
// Used in implementing get/set, above, where the operand is a local variable.
- NodeIndex getLocal(unsigned operand)
+ Node* getLocal(unsigned operand)
{
- NodeIndex nodeIndex = m_currentBlock->m_locals[operand].value;
-
- if (nodeIndex != NoNode) {
- Node& node = m_graph[nodeIndex];
- if (node.op == GetLocal)
- return nodeIndex;
- ASSERT(node.op == SetLocal);
- return node.child1;
+ Node* node = m_currentBlock->variablesAtTail.local(operand);
+ bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame());
+
+ // This has two goals: 1) link together variable access datas, and 2)
+ // try to avoid creating redundant GetLocals. (1) is required for
+ // correctness - no other phase will ensure that block-local variable
+ // access data unification is done correctly. (2) is purely opportunistic
+ // and is meant as an compile-time optimization only.
+
+ VariableAccessData* variable;
+
+ if (node) {
+ variable = node->variableAccessData();
+ variable->mergeIsCaptured(isCaptured);
+
+ if (!isCaptured) {
+ switch (node->op()) {
+ case GetLocal:
+ return node;
+ case SetLocal:
+ return node->child1().node();
+ default:
+ break;
+ }
+ }
+ } else {
+ m_preservedVars.set(operand);
+ variable = newVariableAccessData(operand, isCaptured);
}
-
- // Check for reads of temporaries from prior blocks,
- // expand m_preservedVars to cover these.
- m_preservedVars = std::max(m_preservedVars, operand + 1);
-
- NodeIndex phi = addToGraph(Phi);
- m_localPhiStack.append(PhiStackEntry(m_currentBlock, phi, operand));
- nodeIndex = addToGraph(GetLocal, OpInfo(operand), phi);
- m_currentBlock->m_locals[operand].value = nodeIndex;
- return nodeIndex;
+
+ node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
+ m_currentBlock->variablesAtTail.local(operand) = node;
+ return node;
}
- void setLocal(unsigned operand, NodeIndex value)
+ void setLocal(unsigned operand, Node* value, SetMode setMode = NormalSet)
{
- m_currentBlock->m_locals[operand].value = addToGraph(SetLocal, OpInfo(operand), value);
+ bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame());
+
+ if (setMode == NormalSet) {
+ ArgumentPosition* argumentPosition = findArgumentPositionForLocal(operand);
+ if (isCaptured || argumentPosition)
+ flushDirect(operand, argumentPosition);
+ }
+
+ VariableAccessData* variableAccessData = newVariableAccessData(operand, isCaptured);
+ variableAccessData->mergeStructureCheckHoistingFailed(
+ m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
+ Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
+ m_currentBlock->variablesAtTail.local(operand) = node;
}
// Used in implementing get/set, above, where the operand is an argument.
- NodeIndex getArgument(unsigned operand)
+ Node* getArgument(unsigned operand)
{
- unsigned argument = operand + m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize;
+ unsigned argument = operandToArgument(operand);
ASSERT(argument < m_numArguments);
+
+ Node* node = m_currentBlock->variablesAtTail.argument(argument);
+ bool isCaptured = m_codeBlock->isCaptured(operand);
- NodeIndex nodeIndex = m_currentBlock->m_arguments[argument].value;
-
- if (nodeIndex != NoNode) {
- Node& node = m_graph[nodeIndex];
- if (node.op == GetLocal)
- return nodeIndex;
- ASSERT(node.op == SetLocal);
- return node.child1;
- }
-
- NodeIndex phi = addToGraph(Phi);
- m_argumentPhiStack.append(PhiStackEntry(m_currentBlock, phi, argument));
- nodeIndex = addToGraph(GetLocal, OpInfo(operand), phi);
- m_currentBlock->m_arguments[argument].value = nodeIndex;
- return nodeIndex;
+ VariableAccessData* variable;
+
+ if (node) {
+ variable = node->variableAccessData();
+ variable->mergeIsCaptured(isCaptured);
+
+ switch (node->op()) {
+ case GetLocal:
+ return node;
+ case SetLocal:
+ return node->child1().node();
+ default:
+ break;
+ }
+ } else
+ variable = newVariableAccessData(operand, isCaptured);
+
+ node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
+ m_currentBlock->variablesAtTail.argument(argument) = node;
+ return node;
}
- void setArgument(int operand, NodeIndex value)
+ void setArgument(int operand, Node* value, SetMode setMode = NormalSet)
{
- unsigned argument = operand + m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize;
+ unsigned argument = operandToArgument(operand);
ASSERT(argument < m_numArguments);
+
+ bool isCaptured = m_codeBlock->isCaptured(operand);
- m_currentBlock->m_arguments[argument].value = addToGraph(SetLocal, OpInfo(operand), value);
- }
+ VariableAccessData* variableAccessData = newVariableAccessData(operand, isCaptured);
- // Get an operand, and perform a ToInt32/ToNumber conversion on it.
- NodeIndex getToInt32(int operand)
+ // Always flush arguments, except for 'this'. If 'this' is created by us,
+ // then make sure that it's never unboxed.
+ if (argument) {
+ if (setMode == NormalSet)
+ flushDirect(operand);
+ } else if (m_codeBlock->specializationKind() == CodeForConstruct)
+ variableAccessData->mergeShouldNeverUnbox(true);
+
+ variableAccessData->mergeStructureCheckHoistingFailed(
+ m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
+ Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
+ m_currentBlock->variablesAtTail.argument(argument) = node;
+ }
+
+ ArgumentPosition* findArgumentPositionForArgument(int argument)
{
- // Avoid wastefully adding a JSConstant node to the graph, only to
- // replace it with a Int32Constant (which is what would happen if
- // we called 'toInt32(get(operand))' in this case).
- if (operand >= FirstConstantRegisterIndex) {
- JSValue v = m_codeBlock->getConstant(operand);
- if (v.isInt32())
- return getInt32Constant(v.asInt32(), operand - FirstConstantRegisterIndex);
- }
- return toInt32(get(operand));
+ InlineStackEntry* stack = m_inlineStackTop;
+ while (stack->m_inlineCallFrame)
+ stack = stack->m_caller;
+ return stack->m_argumentPositions[argument];
}
- NodeIndex getToNumber(int operand)
+
+ ArgumentPosition* findArgumentPositionForLocal(int operand)
{
- // Avoid wastefully adding a JSConstant node to the graph, only to
- // replace it with a DoubleConstant (which is what would happen if
- // we called 'toNumber(get(operand))' in this case).
- if (operand >= FirstConstantRegisterIndex) {
- JSValue v = m_codeBlock->getConstant(operand);
- if (v.isNumber())
- return getDoubleConstant(v.uncheckedGetNumber(), operand - FirstConstantRegisterIndex);
+ for (InlineStackEntry* stack = m_inlineStackTop; ; stack = stack->m_caller) {
+ InlineCallFrame* inlineCallFrame = stack->m_inlineCallFrame;
+ if (!inlineCallFrame)
+ break;
+ if (operand >= static_cast<int>(inlineCallFrame->stackOffset - JSStack::CallFrameHeaderSize))
+ continue;
+ if (operand == inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset())
+ continue;
+ if (operand < static_cast<int>(inlineCallFrame->stackOffset - JSStack::CallFrameHeaderSize - inlineCallFrame->arguments.size()))
+ continue;
+ int argument = operandToArgument(operand - inlineCallFrame->stackOffset);
+ return stack->m_argumentPositions[argument];
}
- return toNumber(get(operand));
+ return 0;
}
-
- // Perform an ES5 ToInt32 operation - returns a node of type NodeResultInt32.
- NodeIndex toInt32(NodeIndex index)
+
+ ArgumentPosition* findArgumentPosition(int operand)
{
- Node& node = m_graph[index];
-
- if (node.hasInt32Result())
- return index;
-
- if (node.hasDoubleResult()) {
- if (node.op == DoubleConstant)
- return getInt32Constant(JSC::toInt32(valueOfDoubleConstant(index)), node.constantNumber());
- // 'NumberToInt32(Int32ToNumber(X))' == X, and 'NumberToInt32(UInt32ToNumber(X)) == X'
- if (node.op == Int32ToNumber || node.op == UInt32ToNumber)
- return node.child1;
-
- // We unique NumberToInt32 nodes in a map to prevent duplicate conversions.
- pair<UnaryOpMap::iterator, bool> result = m_numberToInt32Nodes.add(index, NoNode);
- // Either we added a new value, or the existing value in the map is non-zero.
- ASSERT(result.second == (result.first->second == NoNode));
- if (result.second)
- result.first->second = addToGraph(NumberToInt32, index);
- return result.first->second;
- }
+ if (operandIsArgument(operand))
+ return findArgumentPositionForArgument(operandToArgument(operand));
+ return findArgumentPositionForLocal(operand);
+ }
+
+ void flush(int operand)
+ {
+ flushDirect(m_inlineStackTop->remapOperand(operand));
+ }
+
+ void flushDirect(int operand)
+ {
+ flushDirect(operand, findArgumentPosition(operand));
+ }
+
+ void flushDirect(int operand, ArgumentPosition* argumentPosition)
+ {
+ bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame());
+
+ ASSERT(operand < FirstConstantRegisterIndex);
+
+ if (!operandIsArgument(operand))
+ m_preservedVars.set(operand);
+
+ Node* node = m_currentBlock->variablesAtTail.operand(operand);
+
+ VariableAccessData* variable;
+
+ if (node) {
+ variable = node->variableAccessData();
+ variable->mergeIsCaptured(isCaptured);
+ } else
+ variable = newVariableAccessData(operand, isCaptured);
+
+ node = addToGraph(Flush, OpInfo(variable));
+ m_currentBlock->variablesAtTail.operand(operand) = node;
+ if (argumentPosition)
+ argumentPosition->addVariable(variable);
+ }
- // Check for numeric constants boxed as JSValues.
- if (node.op == JSConstant) {
- JSValue v = valueOfJSConstant(index);
- if (v.isInt32())
- return getInt32Constant(v.asInt32(), node.constantNumber());
- if (v.isNumber())
- return getInt32Constant(JSC::toInt32(v.uncheckedGetNumber()), node.constantNumber());
+ void flush(InlineStackEntry* inlineStackEntry)
+ {
+ int numArguments;
+ if (InlineCallFrame* inlineCallFrame = inlineStackEntry->m_inlineCallFrame)
+ numArguments = inlineCallFrame->arguments.size();
+ else
+ numArguments = inlineStackEntry->m_codeBlock->numParameters();
+ for (unsigned argument = numArguments; argument-- > 1;)
+ flushDirect(inlineStackEntry->remapOperand(argumentToOperand(argument)));
+ for (int local = 0; local < inlineStackEntry->m_codeBlock->m_numVars; ++local) {
+ if (!inlineStackEntry->m_codeBlock->isCaptured(local))
+ continue;
+ flushDirect(inlineStackEntry->remapOperand(local));
}
+ }
- return addToGraph(ValueToInt32, index);
+ void flushAllArgumentsAndCapturedVariablesInInlineStack()
+ {
+ for (InlineStackEntry* inlineStackEntry = m_inlineStackTop; inlineStackEntry; inlineStackEntry = inlineStackEntry->m_caller)
+ flush(inlineStackEntry);
}
- // Perform an ES5 ToNumber operation - returns a node of type NodeResultDouble.
- NodeIndex toNumber(NodeIndex index)
+ void flushArgumentsAndCapturedVariables()
{
- Node& node = m_graph[index];
+ flush(m_inlineStackTop);
+ }
- if (node.hasDoubleResult())
- return index;
+ // Get an operand, and perform a ToInt32/ToNumber conversion on it.
+ Node* getToInt32(int operand)
+ {
+ return toInt32(get(operand));
+ }
- if (node.hasInt32Result()) {
- if (node.op == Int32Constant)
- return getDoubleConstant(valueOfInt32Constant(index), node.constantNumber());
+ // Perform an ES5 ToInt32 operation - returns a node of type NodeResultInt32.
+ Node* toInt32(Node* node)
+ {
+ if (node->hasInt32Result())
+ return node;
- // We unique Int32ToNumber nodes in a map to prevent duplicate conversions.
- pair<UnaryOpMap::iterator, bool> result = m_int32ToNumberNodes.add(index, NoNode);
- // Either we added a new value, or the existing value in the map is non-zero.
- ASSERT(result.second == (result.first->second == NoNode));
- if (result.second)
- result.first->second = addToGraph(Int32ToNumber, index);
- return result.first->second;
- }
+ if (node->op() == UInt32ToNumber)
+ return node->child1().node();
- if (node.op == JSConstant) {
- JSValue v = valueOfJSConstant(index);
+ // Check for numeric constants boxed as JSValues.
+ if (canFold(node)) {
+ JSValue v = valueOfJSConstant(node);
+ if (v.isInt32())
+ return getJSConstant(node->constantNumber());
if (v.isNumber())
- return getDoubleConstant(v.uncheckedGetNumber(), node.constantNumber());
+ return getJSConstantForValue(JSValue(JSC::toInt32(v.asNumber())));
}
- return addToGraph(ValueToNumber, index);
+ return addToGraph(ValueToInt32, node);
}
-
- // Used in implementing get, above, where the operand is a constant.
- NodeIndex getInt32Constant(int32_t value, unsigned constant)
+ // NOTE: Only use this to construct constants that arise from non-speculative
+ // constant folding. I.e. creating constants using this if we had constant
+ // field inference would be a bad idea, since the bytecode parser's folding
+ // doesn't handle liveness preservation.
+ Node* getJSConstantForValue(JSValue constantValue)
{
- NodeIndex index = m_constants[constant].asInt32;
- if (index != NoNode)
- return index;
- NodeIndex resultIndex = addToGraph(Int32Constant, OpInfo(constant));
- m_graph[resultIndex].setInt32Constant(value);
- m_constants[constant].asInt32 = resultIndex;
- return resultIndex;
+ unsigned constantIndex = m_codeBlock->addOrFindConstant(constantValue);
+ if (constantIndex >= m_constants.size())
+ m_constants.append(ConstantRecord());
+
+ ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
+
+ return getJSConstant(constantIndex);
}
- NodeIndex getDoubleConstant(double value, unsigned constant)
+
+ Node* getJSConstant(unsigned constant)
{
- NodeIndex index = m_constants[constant].asNumeric;
- if (index != NoNode)
- return index;
- NodeIndex resultIndex = addToGraph(DoubleConstant, OpInfo(constant));
- m_graph[resultIndex].setDoubleConstant(value);
- m_constants[constant].asNumeric = resultIndex;
- return resultIndex;
+ Node* node = m_constants[constant].asJSValue;
+ if (node)
+ return node;
+
+ Node* result = addToGraph(JSConstant, OpInfo(constant));
+ m_constants[constant].asJSValue = result;
+ return result;
}
- NodeIndex getJSConstant(unsigned constant)
- {
- NodeIndex index = m_constants[constant].asJSValue;
- if (index != NoNode)
- return index;
- NodeIndex resultIndex = addToGraph(JSConstant, OpInfo(constant));
- m_constants[constant].asJSValue = resultIndex;
- return resultIndex;
+ Node* getCallee()
+ {
+ return addToGraph(GetCallee);
}
// Helper functions to get/set the this value.
- NodeIndex getThis()
+ Node* getThis()
{
- return getArgument(m_codeBlock->thisRegister());
+ return get(m_inlineStackTop->m_codeBlock->thisRegister());
}
- void setThis(NodeIndex value)
+ void setThis(Node* value)
{
- setArgument(m_codeBlock->thisRegister(), value);
+ set(m_inlineStackTop->m_codeBlock->thisRegister(), value);
}
// Convenience methods for checking nodes for constants.
- bool isInt32Constant(NodeIndex index)
+ bool isJSConstant(Node* node)
{
- return m_graph[index].op == Int32Constant;
+ return node->op() == JSConstant;
}
- bool isDoubleConstant(NodeIndex index)
+ bool isInt32Constant(Node* node)
{
- return m_graph[index].op == DoubleConstant;
+ return isJSConstant(node) && valueOfJSConstant(node).isInt32();
}
- bool isJSConstant(NodeIndex index)
- {
- return m_graph[index].op == JSConstant;
- }
-
// Convenience methods for getting constant values.
- int32_t valueOfInt32Constant(NodeIndex index)
+ JSValue valueOfJSConstant(Node* node)
{
- ASSERT(isInt32Constant(index));
- return m_graph[index].int32Constant();
+ ASSERT(isJSConstant(node));
+ return m_codeBlock->getConstant(FirstConstantRegisterIndex + node->constantNumber());
}
- double valueOfDoubleConstant(NodeIndex index)
+ int32_t valueOfInt32Constant(Node* node)
{
- ASSERT(isDoubleConstant(index));
- return m_graph[index].numericConstant();
+ ASSERT(isInt32Constant(node));
+ return valueOfJSConstant(node).asInt32();
}
- JSValue valueOfJSConstant(NodeIndex index)
- {
- ASSERT(isJSConstant(index));
- return m_codeBlock->getConstant(FirstConstantRegisterIndex + m_graph[index].constantNumber());
- }
-
+
// This method returns a JSConstant with the value 'undefined'.
- NodeIndex constantUndefined()
+ Node* constantUndefined()
{
// Has m_constantUndefined been set up yet?
if (m_constantUndefined == UINT_MAX) {
}
// This method returns a JSConstant with the value 'null'.
- NodeIndex constantNull()
+ Node* constantNull()
{
// Has m_constantNull been set up yet?
if (m_constantNull == UINT_MAX) {
}
// This method returns a DoubleConstant with the value 1.
- NodeIndex one()
+ Node* one()
{
// Has m_constant1 been set up yet?
if (m_constant1 == UINT_MAX) {
for (m_constant1 = 0; m_constant1 < numberOfConstants; ++m_constant1) {
JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1);
if (testMe.isInt32() && testMe.asInt32() == 1)
- return getDoubleConstant(1, m_constant1);
+ return getJSConstant(m_constant1);
}
// Add the value 1 to the CodeBlock's constants, and add a corresponding slot in m_constants.
// m_constant1 must refer to an entry in the CodeBlock's constant pool that has the integer value 1.
ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).isInt32());
ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).asInt32() == 1);
- return getDoubleConstant(1, m_constant1);
+ return getJSConstant(m_constant1);
}
+
+ // This method returns a DoubleConstant with the value NaN.
+ Node* constantNaN()
+ {
+ JSValue nan = jsNaN();
+
+ // Has m_constantNaN been set up yet?
+ if (m_constantNaN == UINT_MAX) {
+ // Search the constant pool for the value NaN, if we find it, we can just reuse this!
+ unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
+ for (m_constantNaN = 0; m_constantNaN < numberOfConstants; ++m_constantNaN) {
+ JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN);
+ if (JSValue::encode(testMe) == JSValue::encode(nan))
+ return getJSConstant(m_constantNaN);
+ }
+ // Add the value nan to the CodeBlock's constants, and add a corresponding slot in m_constants.
+ ASSERT(m_constants.size() == numberOfConstants);
+ m_codeBlock->addConstant(nan);
+ m_constants.append(ConstantRecord());
+ ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
+ }
- // These methods create a node and add it to the graph. If nodes of this type are
- // 'mustGenerate' then the node will implicitly be ref'ed to ensure generation.
- NodeIndex addToGraph(NodeType op, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode)
+ // m_constantNaN must refer to an entry in the CodeBlock's constant pool that has the value nan.
+ ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN).isDouble());
+ ASSERT(std::isnan(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN).asDouble()));
+ return getJSConstant(m_constantNaN);
+ }
+
+ Node* cellConstant(JSCell* cell)
{
- NodeIndex resultIndex = (NodeIndex)m_graph.size();
- m_graph.append(Node(op, m_currentIndex, child1, child2, child3));
-
- if (op & NodeMustGenerate)
- m_graph.ref(resultIndex);
- return resultIndex;
+ HashMap<JSCell*, Node*>::AddResult result = m_cellConstantNodes.add(cell, 0);
+ if (result.isNewEntry)
+ result.iterator->value = addToGraph(WeakJSConstant, OpInfo(cell));
+
+ return result.iterator->value;
}
- NodeIndex addToGraph(NodeType op, OpInfo info, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode)
+
+ InlineCallFrame* inlineCallFrame()
{
- NodeIndex resultIndex = (NodeIndex)m_graph.size();
- m_graph.append(Node(op, m_currentIndex, info, child1, child2, child3));
+ return m_inlineStackTop->m_inlineCallFrame;
+ }
- if (op & NodeMustGenerate)
- m_graph.ref(resultIndex);
- return resultIndex;
+ CodeOrigin currentCodeOrigin()
+ {
+ return CodeOrigin(m_currentIndex, inlineCallFrame(), m_currentProfilingIndex - m_currentIndex);
}
- NodeIndex addToGraph(NodeType op, OpInfo info1, OpInfo info2, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode)
+
+ bool canFold(Node* node)
{
- NodeIndex resultIndex = (NodeIndex)m_graph.size();
- m_graph.append(Node(op, m_currentIndex, info1, info2, child1, child2, child3));
-
- if (op & NodeMustGenerate)
- m_graph.ref(resultIndex);
- return resultIndex;
+ return node->isStronglyProvedConstantIn(inlineCallFrame());
}
- void predictArray(NodeIndex nodeIndex)
+ // Our codegen for constant strict equality performs a bitwise comparison,
+ // so we can only select values that have a consistent bitwise identity.
+ bool isConstantForCompareStrictEq(Node* node)
{
- Node* nodePtr = &m_graph[nodeIndex];
-
- if (nodePtr->op == GetLocal)
- m_graph.predict(nodePtr->local(), PredictArray);
+ if (!node->isConstant())
+ return false;
+ JSValue value = valueOfJSConstant(node);
+ return value.isBoolean() || value.isUndefinedOrNull();
}
-
- void predictInt32(NodeIndex nodeIndex)
+
+ Node* addToGraph(NodeType op, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
- Node* nodePtr = &m_graph[nodeIndex];
-
- if (nodePtr->op == ValueToNumber)
- nodePtr = &m_graph[nodePtr->child1];
-
- if (nodePtr->op == ValueToInt32)
- nodePtr = &m_graph[nodePtr->child1];
+ Node* result = m_graph.addNode(
+ SpecNone, op, currentCodeOrigin(), Edge(child1), Edge(child2), Edge(child3));
+ ASSERT(op != Phi);
+ m_currentBlock->append(result);
+ return result;
+ }
+ Node* addToGraph(NodeType op, Edge child1, Edge child2 = Edge(), Edge child3 = Edge())
+ {
+ Node* result = m_graph.addNode(
+ SpecNone, op, currentCodeOrigin(), child1, child2, child3);
+ ASSERT(op != Phi);
+ m_currentBlock->append(result);
+ return result;
+ }
+ Node* addToGraph(NodeType op, OpInfo info, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
+ {
+ Node* result = m_graph.addNode(
+ SpecNone, op, currentCodeOrigin(), info, Edge(child1), Edge(child2), Edge(child3));
+ ASSERT(op != Phi);
+ m_currentBlock->append(result);
+ return result;
+ }
+ Node* addToGraph(NodeType op, OpInfo info1, OpInfo info2, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
+ {
+ Node* result = m_graph.addNode(
+ SpecNone, op, currentCodeOrigin(), info1, info2,
+ Edge(child1), Edge(child2), Edge(child3));
+ ASSERT(op != Phi);
+ m_currentBlock->append(result);
+ return result;
+ }
+
+ Node* addToGraph(Node::VarArgTag, NodeType op, OpInfo info1, OpInfo info2)
+ {
+ Node* result = m_graph.addNode(
+ SpecNone, Node::VarArg, op, currentCodeOrigin(), info1, info2,
+ m_graph.m_varArgChildren.size() - m_numPassedVarArgs, m_numPassedVarArgs);
+ ASSERT(op != Phi);
+ m_currentBlock->append(result);
+
+ m_numPassedVarArgs = 0;
+
+ return result;
+ }
- if (nodePtr->op == NumberToInt32)
- nodePtr = &m_graph[nodePtr->child1];
+ void addVarArgChild(Node* child)
+ {
+ m_graph.m_varArgChildren.append(Edge(child));
+ m_numPassedVarArgs++;
+ }
+
+ Node* addCall(Interpreter* interpreter, Instruction* currentInstruction, NodeType op)
+ {
+ Instruction* putInstruction = currentInstruction + OPCODE_LENGTH(op_call);
- if (nodePtr->op == GetLocal)
- m_graph.predict(nodePtr->local(), PredictInt32);
+ SpeculatedType prediction = SpecNone;
+ if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result) {
+ m_currentProfilingIndex = m_currentIndex + OPCODE_LENGTH(op_call);
+ prediction = getPrediction();
+ }
+
+ addVarArgChild(get(currentInstruction[1].u.operand));
+ int argCount = currentInstruction[2].u.operand;
+ if (JSStack::CallFrameHeaderSize + (unsigned)argCount > m_parameterSlots)
+ m_parameterSlots = JSStack::CallFrameHeaderSize + argCount;
+
+ int registerOffset = currentInstruction[3].u.operand;
+ int dummyThisArgument = op == Call ? 0 : 1;
+ for (int i = 0 + dummyThisArgument; i < argCount; ++i)
+ addVarArgChild(get(registerOffset + argumentToOperand(i)));
+
+ Node* call = addToGraph(Node::VarArg, op, OpInfo(0), OpInfo(prediction));
+ if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result)
+ set(putInstruction[1].u.operand, call);
+ return call;
+ }
+
+ Node* addStructureTransitionCheck(JSCell* object, Structure* structure)
+ {
+ // Add a weak JS constant for the object regardless, since the code should
+ // be jettisoned if the object ever dies.
+ Node* objectNode = cellConstant(object);
+
+ if (object->structure() == structure && structure->transitionWatchpointSetIsStillValid()) {
+ addToGraph(StructureTransitionWatchpoint, OpInfo(structure), objectNode);
+ return objectNode;
+ }
+
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(structure)), objectNode);
+
+ return objectNode;
+ }
+
+ Node* addStructureTransitionCheck(JSCell* object)
+ {
+ return addStructureTransitionCheck(object, object->structure());
+ }
+
+ SpeculatedType getPredictionWithoutOSRExit(unsigned bytecodeIndex)
+ {
+ return m_inlineStackTop->m_profiledBlock->valueProfilePredictionForBytecodeOffset(bytecodeIndex);
}
- JSGlobalData* m_globalData;
+ SpeculatedType getPrediction(unsigned bytecodeIndex)
+ {
+ SpeculatedType prediction = getPredictionWithoutOSRExit(bytecodeIndex);
+
+ if (prediction == SpecNone) {
+ // We have no information about what values this node generates. Give up
+ // on executing this code, since we're likely to do more damage than good.
+ addToGraph(ForceOSRExit);
+ }
+
+ return prediction;
+ }
+
+ SpeculatedType getPredictionWithoutOSRExit()
+ {
+ return getPredictionWithoutOSRExit(m_currentProfilingIndex);
+ }
+
+ SpeculatedType getPrediction()
+ {
+ return getPrediction(m_currentProfilingIndex);
+ }
+
+ ArrayMode getArrayMode(ArrayProfile* profile, Array::Action action)
+ {
+ profile->computeUpdatedPrediction(m_inlineStackTop->m_codeBlock);
+ return ArrayMode::fromObserved(profile, action, false);
+ }
+
+ ArrayMode getArrayMode(ArrayProfile* profile)
+ {
+ return getArrayMode(profile, Array::Read);
+ }
+
+ ArrayMode getArrayModeAndEmitChecks(ArrayProfile* profile, Array::Action action, Node* base)
+ {
+ profile->computeUpdatedPrediction(m_inlineStackTop->m_codeBlock);
+
+#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
+ if (m_inlineStackTop->m_profiledBlock->numberOfRareCaseProfiles())
+ dataLogF("Slow case profile for bc#%u: %u\n", m_currentIndex, m_inlineStackTop->m_profiledBlock->rareCaseProfileForBytecodeOffset(m_currentIndex)->m_counter);
+ dataLogF("Array profile for bc#%u: %p%s%s, %u\n", m_currentIndex, profile->expectedStructure(), profile->structureIsPolymorphic() ? " (polymorphic)" : "", profile->mayInterceptIndexedAccesses() ? " (may intercept)" : "", profile->observedArrayModes());
+#endif
+
+ bool makeSafe =
+ m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex)
+ || profile->outOfBounds();
+
+ ArrayMode result = ArrayMode::fromObserved(profile, action, makeSafe);
+
+ if (profile->hasDefiniteStructure()
+ && result.benefitsFromStructureCheck()
+ && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache))
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(profile->expectedStructure())), base);
+
+ return result;
+ }
+
+ Node* makeSafe(Node* node)
+ {
+ bool likelyToTakeSlowCase;
+ if (!isX86() && node->op() == ArithMod)
+ likelyToTakeSlowCase = false;
+ else
+ likelyToTakeSlowCase = m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex);
+
+ if (!likelyToTakeSlowCase
+ && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)
+ && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
+ return node;
+
+ switch (node->op()) {
+ case UInt32ToNumber:
+ case ArithAdd:
+ case ArithSub:
+ case ArithNegate:
+ case ValueAdd:
+ case ArithMod: // for ArithMod "MayOverflow" means we tried to divide by zero, or we saw double.
+ node->mergeFlags(NodeMayOverflow);
+ break;
+
+ case ArithMul:
+ if (m_inlineStackTop->m_profiledBlock->likelyToTakeDeepestSlowCase(m_currentIndex)
+ || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)) {
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Making ArithMul @%u take deepest slow case.\n", node->index());
+#endif
+ node->mergeFlags(NodeMayOverflow | NodeMayNegZero);
+ } else if (m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex)
+ || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero)) {
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Making ArithMul @%u take faster slow case.\n", node->index());
+#endif
+ node->mergeFlags(NodeMayNegZero);
+ }
+ break;
+
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
+
+ return node;
+ }
+
+ Node* makeDivSafe(Node* node)
+ {
+ ASSERT(node->op() == ArithDiv);
+
+ // The main slow case counter for op_div in the old JIT counts only when
+ // the operands are not numbers. We don't care about that since we already
+ // have speculations in place that take care of that separately. We only
+ // care about when the outcome of the division is not an integer, which
+ // is what the special fast case counter tells us.
+
+ if (!m_inlineStackTop->m_profiledBlock->couldTakeSpecialFastCase(m_currentIndex)
+ && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)
+ && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
+ return node;
+
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Making %s @%u safe at bc#%u because special fast-case counter is at %u and exit profiles say %d, %d\n", Graph::opName(node->op()), node->index(), m_currentIndex, m_inlineStackTop->m_profiledBlock->specialFastCaseProfileForBytecodeOffset(m_currentIndex)->m_counter, m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow), m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero));
+#endif
+
+ // FIXME: It might be possible to make this more granular. The DFG certainly can
+ // distinguish between negative zero and overflow in its exit profiles.
+ node->mergeFlags(NodeMayOverflow | NodeMayNegZero);
+
+ return node;
+ }
+
+ bool structureChainIsStillValid(bool direct, Structure* previousStructure, StructureChain* chain)
+ {
+ if (direct)
+ return true;
+
+ if (!previousStructure->storedPrototype().isNull() && previousStructure->storedPrototype().asCell()->structure() != chain->head()->get())
+ return false;
+
+ for (WriteBarrier<Structure>* it = chain->head(); *it; ++it) {
+ if (!(*it)->storedPrototype().isNull() && (*it)->storedPrototype().asCell()->structure() != it[1].get())
+ return false;
+ }
+
+ return true;
+ }
+
+ void buildOperandMapsIfNecessary();
+
+ VM* m_vm;
CodeBlock* m_codeBlock;
+ CodeBlock* m_profiledBlock;
Graph& m_graph;
// The current block being generated.
BasicBlock* m_currentBlock;
// The bytecode index of the current instruction being generated.
unsigned m_currentIndex;
-
- // Record failures due to unimplemented functionality or regressions.
- bool m_parseFailed;
+ // The bytecode index of the value profile of the current instruction being generated.
+ unsigned m_currentProfilingIndex;
// We use these values during code generation, and to avoid the need for
// special handling we make sure they are available as constants in the
// constant pool, as necessary.
unsigned m_constantUndefined;
unsigned m_constantNull;
+ unsigned m_constantNaN;
unsigned m_constant1;
+ HashMap<JSCell*, unsigned> m_cellConstants;
+ HashMap<JSCell*, Node*> m_cellConstantNodes;
// A constant in the constant pool may be represented by more than one
// node in the graph, depending on the context in which it is being used.
struct ConstantRecord {
ConstantRecord()
- : asInt32(NoNode)
- , asNumeric(NoNode)
- , asJSValue(NoNode)
+ : asInt32(0)
+ , asNumeric(0)
+ , asJSValue(0)
+ {
+ }
+
+ Node* asInt32;
+ Node* asNumeric;
+ Node* asJSValue;
+ };
+
+ // Track the index of the node whose result is the current value for every
+ // register value in the bytecode - argument, local, and temporary.
+ Vector<ConstantRecord, 16> m_constants;
+
+ // The number of arguments passed to the function.
+ unsigned m_numArguments;
+ // The number of locals (vars + temporaries) used in the function.
+ unsigned m_numLocals;
+ // The set of registers we need to preserve across BasicBlock boundaries;
+ // typically equal to the set of vars, but we expand this to cover all
+ // temporaries that persist across blocks (dues to ?:, &&, ||, etc).
+ BitVector m_preservedVars;
+ // The number of slots (in units of sizeof(Register)) that we need to
+ // preallocate for calls emanating from this frame. This includes the
+ // size of the CallFrame, only if this is not a leaf function. (I.e.
+ // this is 0 if and only if this function is a leaf.)
+ unsigned m_parameterSlots;
+ // The number of var args passed to the next var arg node.
+ unsigned m_numPassedVarArgs;
+
+ HashMap<ConstantBufferKey, unsigned> m_constantBufferCache;
+
+ struct InlineStackEntry {
+ ByteCodeParser* m_byteCodeParser;
+
+ CodeBlock* m_codeBlock;
+ CodeBlock* m_profiledBlock;
+ InlineCallFrame* m_inlineCallFrame;
+
+ ScriptExecutable* executable() { return m_codeBlock->ownerExecutable(); }
+
+ QueryableExitProfile m_exitProfile;
+
+ // Remapping of identifier and constant numbers from the code block being
+ // inlined (inline callee) to the code block that we're inlining into
+ // (the machine code block, which is the transitive, though not necessarily
+ // direct, caller).
+ Vector<unsigned> m_identifierRemap;
+ Vector<unsigned> m_constantRemap;
+ Vector<unsigned> m_constantBufferRemap;
+
+ // Blocks introduced by this code block, which need successor linking.
+ // May include up to one basic block that includes the continuation after
+ // the callsite in the caller. These must be appended in the order that they
+ // are created, but their bytecodeBegin values need not be in order as they
+ // are ignored.
+ Vector<UnlinkedBlock> m_unlinkedBlocks;
+
+ // Potential block linking targets. Must be sorted by bytecodeBegin, and
+ // cannot have two blocks that have the same bytecodeBegin. For this very
+ // reason, this is not equivalent to
+ Vector<BlockIndex> m_blockLinkingTargets;
+
+ // If the callsite's basic block was split into two, then this will be
+ // the head of the callsite block. It needs its successors linked to the
+ // m_unlinkedBlocks, but not the other way around: there's no way for
+ // any blocks in m_unlinkedBlocks to jump back into this block.
+ BlockIndex m_callsiteBlockHead;
+
+ // Does the callsite block head need linking? This is typically true
+ // but will be false for the machine code block's inline stack entry
+ // (since that one is not inlined) and for cases where an inline callee
+ // did the linking for us.
+ bool m_callsiteBlockHeadNeedsLinking;
+
+ VirtualRegister m_returnValue;
+
+ // Speculations about variable types collected from the profiled code block,
+ // which are based on OSR exit profiles that past DFG compilatins of this
+ // code block had gathered.
+ LazyOperandValueProfileParser m_lazyOperands;
+
+ // Did we see any returns? We need to handle the (uncommon but necessary)
+ // case where a procedure that does not return was inlined.
+ bool m_didReturn;
+
+ // Did we have any early returns?
+ bool m_didEarlyReturn;
+
+ // Pointers to the argument position trackers for this slice of code.
+ Vector<ArgumentPosition*> m_argumentPositions;
+
+ InlineStackEntry* m_caller;
+
+ InlineStackEntry(
+ ByteCodeParser*,
+ CodeBlock*,
+ CodeBlock* profiledBlock,
+ BlockIndex callsiteBlockHead,
+ JSFunction* callee, // Null if this is a closure call.
+ VirtualRegister returnValueVR,
+ VirtualRegister inlineCallFrameStart,
+ int argumentCountIncludingThis,
+ CodeSpecializationKind);
+
+ ~InlineStackEntry()
{
+ m_byteCodeParser->m_inlineStackTop = m_caller;
}
+
+ int remapOperand(int operand) const
+ {
+ if (!m_inlineCallFrame)
+ return operand;
+
+ if (operand >= FirstConstantRegisterIndex) {
+ int result = m_constantRemap[operand - FirstConstantRegisterIndex];
+ ASSERT(result >= FirstConstantRegisterIndex);
+ return result;
+ }
+
+ ASSERT(operand != JSStack::Callee);
- NodeIndex asInt32;
- NodeIndex asNumeric;
- NodeIndex asJSValue;
+ return operand + m_inlineCallFrame->stackOffset;
+ }
};
+
+ InlineStackEntry* m_inlineStackTop;
+
+ // Have we built operand maps? We initialize them lazily, and only when doing
+ // inlining.
+ bool m_haveBuiltOperandMaps;
+ // Mapping between identifier names and numbers.
+ IdentifierMap m_identifierMap;
+ // Mapping between values and constant numbers.
+ JSValueMap m_jsValueMap;
+ // Index of the empty value, or UINT_MAX if there is no mapping. This is a horrible
+ // work-around for the fact that JSValueMap can't handle "empty" values.
+ unsigned m_emptyJSValueIndex;
+
+ Instruction* m_currentInstruction;
+};
+
+#define NEXT_OPCODE(name) \
+ m_currentIndex += OPCODE_LENGTH(name); \
+ continue
+
+#define LAST_OPCODE(name) \
+ m_currentIndex += OPCODE_LENGTH(name); \
+ return shouldContinueParsing
+
+
+void ByteCodeParser::handleCall(Interpreter* interpreter, Instruction* currentInstruction, NodeType op, CodeSpecializationKind kind)
+{
+ ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct));
+
+ Node* callTarget = get(currentInstruction[1].u.operand);
+
+ CallLinkStatus callLinkStatus;
+
+ if (m_graph.isConstant(callTarget))
+ callLinkStatus = CallLinkStatus(m_graph.valueOfJSConstant(callTarget)).setIsProved(true);
+ else {
+ callLinkStatus = CallLinkStatus::computeFor(m_inlineStackTop->m_profiledBlock, m_currentIndex);
+ callLinkStatus.setHasBadFunctionExitSite(m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadFunction));
+ callLinkStatus.setHasBadCacheExitSite(m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
+ callLinkStatus.setHasBadExecutableExitSite(m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadExecutable));
+ }
+
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLog("For call at bc#", m_currentIndex, ": ", callLinkStatus, "\n");
+#endif
+
+ if (!callLinkStatus.canOptimize()) {
+ // Oddly, this conflates calls that haven't executed with calls that behaved sufficiently polymorphically
+ // that we cannot optimize them.
+
+ addCall(interpreter, currentInstruction, op);
+ return;
+ }
+
+ int argumentCountIncludingThis = currentInstruction[2].u.operand;
+ int registerOffset = currentInstruction[3].u.operand;
+
+ // Do we have a result?
+ bool usesResult = false;
+ int resultOperand = 0; // make compiler happy
+ unsigned nextOffset = m_currentIndex + OPCODE_LENGTH(op_call);
+ Instruction* putInstruction = currentInstruction + OPCODE_LENGTH(op_call);
+ SpeculatedType prediction = SpecNone;
+ if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result) {
+ resultOperand = putInstruction[1].u.operand;
+ usesResult = true;
+ m_currentProfilingIndex = nextOffset;
+ prediction = getPrediction();
+ nextOffset += OPCODE_LENGTH(op_call_put_result);
+ }
+
+ if (InternalFunction* function = callLinkStatus.internalFunction()) {
+ if (handleConstantInternalFunction(usesResult, resultOperand, function, registerOffset, argumentCountIncludingThis, prediction, kind)) {
+ // This phantoming has to be *after* the code for the intrinsic, to signify that
+ // the inputs must be kept alive whatever exits the intrinsic may do.
+ addToGraph(Phantom, callTarget);
+ emitArgumentPhantoms(registerOffset, argumentCountIncludingThis, kind);
+ return;
+ }
+
+ // Can only handle this using the generic call handler.
+ addCall(interpreter, currentInstruction, op);
+ return;
+ }
+
+ Intrinsic intrinsic = callLinkStatus.intrinsicFor(kind);
+ if (intrinsic != NoIntrinsic) {
+ emitFunctionChecks(callLinkStatus, callTarget, registerOffset, kind);
+
+ if (handleIntrinsic(usesResult, resultOperand, intrinsic, registerOffset, argumentCountIncludingThis, prediction)) {
+ // This phantoming has to be *after* the code for the intrinsic, to signify that
+ // the inputs must be kept alive whatever exits the intrinsic may do.
+ addToGraph(Phantom, callTarget);
+ emitArgumentPhantoms(registerOffset, argumentCountIncludingThis, kind);
+ if (m_graph.m_compilation)
+ m_graph.m_compilation->noticeInlinedCall();
+ return;
+ }
+ } else if (handleInlining(usesResult, callTarget, resultOperand, callLinkStatus, registerOffset, argumentCountIncludingThis, nextOffset, kind)) {
+ if (m_graph.m_compilation)
+ m_graph.m_compilation->noticeInlinedCall();
+ return;
+ }
+
+ addCall(interpreter, currentInstruction, op);
+}
+
+void ByteCodeParser::emitFunctionChecks(const CallLinkStatus& callLinkStatus, Node* callTarget, int registerOffset, CodeSpecializationKind kind)
+{
+ Node* thisArgument;
+ if (kind == CodeForCall)
+ thisArgument = get(registerOffset + argumentToOperand(0));
+ else
+ thisArgument = 0;
+
+ if (callLinkStatus.isProved()) {
+ addToGraph(Phantom, callTarget, thisArgument);
+ return;
+ }
+
+ ASSERT(callLinkStatus.canOptimize());
+
+ if (JSFunction* function = callLinkStatus.function())
+ addToGraph(CheckFunction, OpInfo(function), callTarget, thisArgument);
+ else {
+ ASSERT(callLinkStatus.structure());
+ ASSERT(callLinkStatus.executable());
+
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(callLinkStatus.structure())), callTarget);
+ addToGraph(CheckExecutable, OpInfo(callLinkStatus.executable()), callTarget, thisArgument);
+ }
+}
+
+void ByteCodeParser::emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind kind)
+{
+ for (int i = kind == CodeForCall ? 0 : 1; i < argumentCountIncludingThis; ++i)
+ addToGraph(Phantom, get(registerOffset + argumentToOperand(i)));
+}
+
+bool ByteCodeParser::handleInlining(bool usesResult, Node* callTargetNode, int resultOperand, const CallLinkStatus& callLinkStatus, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, CodeSpecializationKind kind)
+{
+ // First, the really simple checks: do we have an actual JS function?
+ if (!callLinkStatus.executable())
+ return false;
+ if (callLinkStatus.executable()->isHostFunction())
+ return false;
+
+ FunctionExecutable* executable = jsCast<FunctionExecutable*>(callLinkStatus.executable());
+
+ // Does the number of arguments we're passing match the arity of the target? We currently
+ // inline only if the number of arguments passed is greater than or equal to the number
+ // arguments expected.
+ if (static_cast<int>(executable->parameterCount()) + 1 > argumentCountIncludingThis)
+ return false;
+
+ // Have we exceeded inline stack depth, or are we trying to inline a recursive call?
+ // If either of these are detected, then don't inline.
+ unsigned depth = 0;
+ for (InlineStackEntry* entry = m_inlineStackTop; entry; entry = entry->m_caller) {
+ ++depth;
+ if (depth >= Options::maximumInliningDepth())
+ return false; // Depth exceeded.
+
+ if (entry->executable() == executable)
+ return false; // Recursion detected.
+ }
+
+ // Do we have a code block, and does the code block's size match the heuristics/requirements for
+ // being an inline candidate? We might not have a code block if code was thrown away or if we
+ // simply hadn't actually made this call yet. We could still theoretically attempt to inline it
+ // if we had a static proof of what was being called; this might happen for example if you call a
+ // global function, where watchpointing gives us static information. Overall, it's a rare case
+ // because we expect that any hot callees would have already been compiled.
+ CodeBlock* codeBlock = executable->baselineCodeBlockFor(kind);
+ if (!codeBlock)
+ return false;
+ if (!canInlineFunctionFor(codeBlock, kind, callLinkStatus.isClosureCall()))
+ return false;
+
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Inlining executable %p.\n", executable);
+#endif
+
+ // Now we know without a doubt that we are committed to inlining. So begin the process
+ // by checking the callee (if necessary) and making sure that arguments and the callee
+ // are flushed.
+ emitFunctionChecks(callLinkStatus, callTargetNode, registerOffset, kind);
+
+ // FIXME: Don't flush constants!
+
+ int inlineCallFrameStart = m_inlineStackTop->remapOperand(registerOffset) - JSStack::CallFrameHeaderSize;
+
+ // Make sure that the area used by the call frame is reserved.
+ for (int arg = inlineCallFrameStart + JSStack::CallFrameHeaderSize + codeBlock->m_numVars; arg-- > inlineCallFrameStart;)
+ m_preservedVars.set(arg);
+
+ // Make sure that we have enough locals.
+ unsigned newNumLocals = inlineCallFrameStart + JSStack::CallFrameHeaderSize + codeBlock->m_numCalleeRegisters;
+ if (newNumLocals > m_numLocals) {
+ m_numLocals = newNumLocals;
+ for (size_t i = 0; i < m_graph.m_blocks.size(); ++i)
+ m_graph.m_blocks[i]->ensureLocals(newNumLocals);
+ }
+
+ size_t argumentPositionStart = m_graph.m_argumentPositions.size();
+
+ InlineStackEntry inlineStackEntry(
+ this, codeBlock, codeBlock, m_graph.m_blocks.size() - 1,
+ callLinkStatus.function(), (VirtualRegister)m_inlineStackTop->remapOperand(
+ usesResult ? resultOperand : InvalidVirtualRegister),
+ (VirtualRegister)inlineCallFrameStart, argumentCountIncludingThis, kind);
+
+ // This is where the actual inlining really happens.
+ unsigned oldIndex = m_currentIndex;
+ unsigned oldProfilingIndex = m_currentProfilingIndex;
+ m_currentIndex = 0;
+ m_currentProfilingIndex = 0;
+
+ addToGraph(InlineStart, OpInfo(argumentPositionStart));
+ if (callLinkStatus.isClosureCall()) {
+ addToGraph(SetCallee, callTargetNode);
+ addToGraph(SetMyScope, addToGraph(GetScope, callTargetNode));
+ }
+
+ parseCodeBlock();
+
+ m_currentIndex = oldIndex;
+ m_currentProfilingIndex = oldProfilingIndex;
+
+ // If the inlined code created some new basic blocks, then we have linking to do.
+ if (inlineStackEntry.m_callsiteBlockHead != m_graph.m_blocks.size() - 1) {
+
+ ASSERT(!inlineStackEntry.m_unlinkedBlocks.isEmpty());
+ if (inlineStackEntry.m_callsiteBlockHeadNeedsLinking)
+ linkBlock(m_graph.m_blocks[inlineStackEntry.m_callsiteBlockHead].get(), inlineStackEntry.m_blockLinkingTargets);
+ else
+ ASSERT(m_graph.m_blocks[inlineStackEntry.m_callsiteBlockHead]->isLinked);
+
+ // It's possible that the callsite block head is not owned by the caller.
+ if (!inlineStackEntry.m_caller->m_unlinkedBlocks.isEmpty()) {
+ // It's definitely owned by the caller, because the caller created new blocks.
+ // Assert that this all adds up.
+ ASSERT(inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_blockIndex == inlineStackEntry.m_callsiteBlockHead);
+ ASSERT(inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_needsNormalLinking);
+ inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_needsNormalLinking = false;
+ } else {
+ // It's definitely not owned by the caller. Tell the caller that he does not
+ // need to link his callsite block head, because we did it for him.
+ ASSERT(inlineStackEntry.m_caller->m_callsiteBlockHeadNeedsLinking);
+ ASSERT(inlineStackEntry.m_caller->m_callsiteBlockHead == inlineStackEntry.m_callsiteBlockHead);
+ inlineStackEntry.m_caller->m_callsiteBlockHeadNeedsLinking = false;
+ }
+
+ linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets);
+ } else
+ ASSERT(inlineStackEntry.m_unlinkedBlocks.isEmpty());
+
+ BasicBlock* lastBlock = m_graph.m_blocks.last().get();
+ // If there was a return, but no early returns, then we're done. We allow parsing of
+ // the caller to continue in whatever basic block we're in right now.
+ if (!inlineStackEntry.m_didEarlyReturn && inlineStackEntry.m_didReturn) {
+ ASSERT(lastBlock->isEmpty() || !lastBlock->last()->isTerminal());
+
+ // If we created new blocks then the last block needs linking, but in the
+ // caller. It doesn't need to be linked to, but it needs outgoing links.
+ if (!inlineStackEntry.m_unlinkedBlocks.isEmpty()) {
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Reascribing bytecode index of block %p from bc#%u to bc#%u (inline return case).\n", lastBlock, lastBlock->bytecodeBegin, m_currentIndex);
+#endif
+ // For debugging purposes, set the bytecodeBegin. Note that this doesn't matter
+ // for release builds because this block will never serve as a potential target
+ // in the linker's binary search.
+ lastBlock->bytecodeBegin = m_currentIndex;
+ m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.m_blocks.size() - 1));
+ }
+
+ m_currentBlock = m_graph.m_blocks.last().get();
+
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Done inlining executable %p, continuing code generation at epilogue.\n", executable);
+#endif
+ return true;
+ }
+
+ // If we get to this point then all blocks must end in some sort of terminals.
+ ASSERT(lastBlock->last()->isTerminal());
+
+ // Link the early returns to the basic block we're about to create.
+ for (size_t i = 0; i < inlineStackEntry.m_unlinkedBlocks.size(); ++i) {
+ if (!inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking)
+ continue;
+ BasicBlock* block = m_graph.m_blocks[inlineStackEntry.m_unlinkedBlocks[i].m_blockIndex].get();
+ ASSERT(!block->isLinked);
+ Node* node = block->last();
+ ASSERT(node->op() == Jump);
+ ASSERT(node->takenBlockIndex() == NoBlock);
+ node->setTakenBlockIndex(m_graph.m_blocks.size());
+ inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking = false;
+#if !ASSERT_DISABLED
+ block->isLinked = true;
+#endif
+ }
+
+ // Need to create a new basic block for the continuation at the caller.
+ OwnPtr<BasicBlock> block = adoptPtr(new BasicBlock(nextOffset, m_numArguments, m_numLocals));
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Creating inline epilogue basic block %p, #%zu for %p bc#%u at inline depth %u.\n", block.get(), m_graph.m_blocks.size(), m_inlineStackTop->executable(), m_currentIndex, CodeOrigin::inlineDepthForCallFrame(inlineCallFrame()));
+#endif
+ m_currentBlock = block.get();
+ ASSERT(m_inlineStackTop->m_caller->m_blockLinkingTargets.isEmpty() || m_graph.m_blocks[m_inlineStackTop->m_caller->m_blockLinkingTargets.last()]->bytecodeBegin < nextOffset);
+ m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.m_blocks.size()));
+ m_inlineStackTop->m_caller->m_blockLinkingTargets.append(m_graph.m_blocks.size());
+ m_graph.m_blocks.append(block.release());
+ prepareToParseBlock();
+
+ // At this point we return and continue to generate code for the caller, but
+ // in the new basic block.
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Done inlining executable %p, continuing code generation in new block.\n", executable);
+#endif
+ return true;
+}
+
+void ByteCodeParser::setIntrinsicResult(bool usesResult, int resultOperand, Node* node)
+{
+ if (!usesResult)
+ return;
+ set(resultOperand, node);
+}
+
+bool ByteCodeParser::handleMinMax(bool usesResult, int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis)
+{
+ if (argumentCountIncludingThis == 1) { // Math.min()
+ setIntrinsicResult(usesResult, resultOperand, constantNaN());
+ return true;
+ }
+
+ if (argumentCountIncludingThis == 2) { // Math.min(x)
+ Node* result = get(registerOffset + argumentToOperand(1));
+ addToGraph(Phantom, Edge(result, NumberUse));
+ setIntrinsicResult(usesResult, resultOperand, result);
+ return true;
+ }
+
+ if (argumentCountIncludingThis == 3) { // Math.min(x, y)
+ setIntrinsicResult(usesResult, resultOperand, addToGraph(op, get(registerOffset + argumentToOperand(1)), get(registerOffset + argumentToOperand(2))));
+ return true;
+ }
+
+ // Don't handle >=3 arguments for now.
+ return false;
+}
+
+// FIXME: We dead-code-eliminate unused Math intrinsics, but that's invalid because
+// they need to perform the ToNumber conversion, which can have side-effects.
+bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrinsic intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction)
+{
+ switch (intrinsic) {
+ case AbsIntrinsic: {
+ if (argumentCountIncludingThis == 1) { // Math.abs()
+ setIntrinsicResult(usesResult, resultOperand, constantNaN());
+ return true;
+ }
+
+ if (!MacroAssembler::supportsFloatingPointAbs())
+ return false;
+
+ Node* node = addToGraph(ArithAbs, get(registerOffset + argumentToOperand(1)));
+ if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
+ node->mergeFlags(NodeMayOverflow);
+ setIntrinsicResult(usesResult, resultOperand, node);
+ return true;
+ }
+
+ case MinIntrinsic:
+ return handleMinMax(usesResult, resultOperand, ArithMin, registerOffset, argumentCountIncludingThis);
+
+ case MaxIntrinsic:
+ return handleMinMax(usesResult, resultOperand, ArithMax, registerOffset, argumentCountIncludingThis);
+
+ case SqrtIntrinsic: {
+ if (argumentCountIncludingThis == 1) { // Math.sqrt()
+ setIntrinsicResult(usesResult, resultOperand, constantNaN());
+ return true;
+ }
+
+ if (!MacroAssembler::supportsFloatingPointSqrt())
+ return false;
+
+ setIntrinsicResult(usesResult, resultOperand, addToGraph(ArithSqrt, get(registerOffset + argumentToOperand(1))));
+ return true;
+ }
+
+ case ArrayPushIntrinsic: {
+ if (argumentCountIncludingThis != 2)
+ return false;
+
+ ArrayMode arrayMode = getArrayMode(m_currentInstruction[5].u.arrayProfile);
+ if (!arrayMode.isJSArray())
+ return false;
+ switch (arrayMode.type()) {
+ case Array::Undecided:
+ case Array::Int32:
+ case Array::Double:
+ case Array::Contiguous:
+ case Array::ArrayStorage: {
+ Node* arrayPush = addToGraph(ArrayPush, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(registerOffset + argumentToOperand(0)), get(registerOffset + argumentToOperand(1)));
+ if (usesResult)
+ set(resultOperand, arrayPush);
+
+ return true;
+ }
+
+ default:
+ return false;
+ }
+ }
+
+ case ArrayPopIntrinsic: {
+ if (argumentCountIncludingThis != 1)
+ return false;
+
+ ArrayMode arrayMode = getArrayMode(m_currentInstruction[5].u.arrayProfile);
+ if (!arrayMode.isJSArray())
+ return false;
+ switch (arrayMode.type()) {
+ case Array::Int32:
+ case Array::Double:
+ case Array::Contiguous:
+ case Array::ArrayStorage: {
+ Node* arrayPop = addToGraph(ArrayPop, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(registerOffset + argumentToOperand(0)));
+ if (usesResult)
+ set(resultOperand, arrayPop);
+ return true;
+ }
+
+ default:
+ return false;
+ }
+ }
+
+ case CharCodeAtIntrinsic: {
+ if (argumentCountIncludingThis != 2)
+ return false;
+
+ int thisOperand = registerOffset + argumentToOperand(0);
+ int indexOperand = registerOffset + argumentToOperand(1);
+ Node* charCode = addToGraph(StringCharCodeAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), getToInt32(indexOperand));
+
+ if (usesResult)
+ set(resultOperand, charCode);
+ return true;
+ }
+
+ case CharAtIntrinsic: {
+ if (argumentCountIncludingThis != 2)
+ return false;
+
+ int thisOperand = registerOffset + argumentToOperand(0);
+ int indexOperand = registerOffset + argumentToOperand(1);
+ Node* charCode = addToGraph(StringCharAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), getToInt32(indexOperand));
+
+ if (usesResult)
+ set(resultOperand, charCode);
+ return true;
+ }
+ case FromCharCodeIntrinsic: {
+ if (argumentCountIncludingThis != 2)
+ return false;
+
+ int indexOperand = registerOffset + argumentToOperand(1);
+ Node* charCode = addToGraph(StringFromCharCode, getToInt32(indexOperand));
+
+ if (usesResult)
+ set(resultOperand, charCode);
+
+ return true;
+ }
+
+ case RegExpExecIntrinsic: {
+ if (argumentCountIncludingThis != 2)
+ return false;
+
+ Node* regExpExec = addToGraph(RegExpExec, OpInfo(0), OpInfo(prediction), get(registerOffset + argumentToOperand(0)), get(registerOffset + argumentToOperand(1)));
+ if (usesResult)
+ set(resultOperand, regExpExec);
+
+ return true;
+ }
+
+ case RegExpTestIntrinsic: {
+ if (argumentCountIncludingThis != 2)
+ return false;
+
+ Node* regExpExec = addToGraph(RegExpTest, OpInfo(0), OpInfo(prediction), get(registerOffset + argumentToOperand(0)), get(registerOffset + argumentToOperand(1)));
+ if (usesResult)
+ set(resultOperand, regExpExec);
+
+ return true;
+ }
+
+ case IMulIntrinsic: {
+ if (argumentCountIncludingThis != 3)
+ return false;
+ int leftOperand = registerOffset + argumentToOperand(1);
+ int rightOperand = registerOffset + argumentToOperand(2);
+ Node* left = getToInt32(leftOperand);
+ Node* right = getToInt32(rightOperand);
+ setIntrinsicResult(usesResult, resultOperand, addToGraph(ArithIMul, left, right));
+ return true;
+ }
+
+ default:
+ return false;
+ }
+}
+
+bool ByteCodeParser::handleConstantInternalFunction(
+ bool usesResult, int resultOperand, InternalFunction* function, int registerOffset,
+ int argumentCountIncludingThis, SpeculatedType prediction, CodeSpecializationKind kind)
+{
+ // If we ever find that we have a lot of internal functions that we specialize for,
+ // then we should probably have some sort of hashtable dispatch, or maybe even
+ // dispatch straight through the MethodTable of the InternalFunction. But for now,
+ // it seems that this case is hit infrequently enough, and the number of functions
+ // we know about is small enough, that having just a linear cascade of if statements
+ // is good enough.
+
+ UNUSED_PARAM(prediction); // Remove this once we do more things.
+
+ if (function->classInfo() == &ArrayConstructor::s_info) {
+ if (argumentCountIncludingThis == 2) {
+ setIntrinsicResult(
+ usesResult, resultOperand,
+ addToGraph(NewArrayWithSize, OpInfo(ArrayWithUndecided), get(registerOffset + argumentToOperand(1))));
+ return true;
+ }
+
+ for (int i = 1; i < argumentCountIncludingThis; ++i)
+ addVarArgChild(get(registerOffset + argumentToOperand(i)));
+ setIntrinsicResult(
+ usesResult, resultOperand,
+ addToGraph(Node::VarArg, NewArray, OpInfo(ArrayWithUndecided), OpInfo(0)));
+ return true;
+ } else if (function->classInfo() == &StringConstructor::s_info) {
+ Node* result;
+
+ if (argumentCountIncludingThis <= 1)
+ result = cellConstant(m_vm->smallStrings.emptyString());
+ else
+ result = addToGraph(ToString, get(registerOffset + argumentToOperand(1)));
+
+ if (kind == CodeForConstruct)
+ result = addToGraph(NewStringObject, OpInfo(function->globalObject()->stringObjectStructure()), result);
+
+ setIntrinsicResult(usesResult, resultOperand, result);
+ return true;
+ }
+
+ return false;
+}
- // Track the index of the node whose result is the current value for every
- // register value in the bytecode - argument, local, and temporary.
- Vector<ConstantRecord, 16> m_constants;
+Node* ByteCodeParser::handleGetByOffset(SpeculatedType prediction, Node* base, unsigned identifierNumber, PropertyOffset offset)
+{
+ Node* propertyStorage;
+ if (isInlineOffset(offset))
+ propertyStorage = base;
+ else
+ propertyStorage = addToGraph(GetButterfly, base);
+ // FIXME: It would be far more efficient for load elimination (and safer from
+ // an OSR standpoint) if GetByOffset also referenced the object we were loading
+ // from, and if we could load eliminate a GetByOffset even if the butterfly
+ // had changed. That would be a great success.
+ Node* getByOffset = addToGraph(GetByOffset, OpInfo(m_graph.m_storageAccessData.size()), OpInfo(prediction), propertyStorage);
+
+ StorageAccessData storageAccessData;
+ storageAccessData.offset = indexRelativeToBase(offset);
+ storageAccessData.identifierNumber = identifierNumber;
+ m_graph.m_storageAccessData.append(storageAccessData);
+
+ return getByOffset;
+}
- // The number of arguments passed to the function.
- unsigned m_numArguments;
- // The number of locals (vars + temporaries) used in the function.
- unsigned m_numLocals;
- // The number of registers we need to preserve across BasicBlock boundaries;
- // typically equal to the number vars, but we expand this to cover all
- // temporaries that persist across blocks (dues to ?:, &&, ||, etc).
- unsigned m_preservedVars;
+void ByteCodeParser::handleGetByOffset(
+ int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber,
+ PropertyOffset offset)
+{
+ set(destinationOperand, handleGetByOffset(prediction, base, identifierNumber, offset));
+}
- struct PhiStackEntry {
- PhiStackEntry(BasicBlock* block, NodeIndex phi, unsigned varNo)
- : m_block(block)
- , m_phi(phi)
- , m_varNo(varNo)
- {
+void ByteCodeParser::handleGetById(
+ int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber,
+ const GetByIdStatus& getByIdStatus)
+{
+ if (!getByIdStatus.isSimple()
+ || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
+ || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadWeakConstantCache)) {
+ set(destinationOperand,
+ addToGraph(
+ getByIdStatus.makesCalls() ? GetByIdFlush : GetById,
+ OpInfo(identifierNumber), OpInfo(prediction), base));
+ return;
+ }
+
+ ASSERT(getByIdStatus.structureSet().size());
+
+ // The implementation of GetByOffset does not know to terminate speculative
+ // execution if it doesn't have a prediction, so we do it manually.
+ if (prediction == SpecNone)
+ addToGraph(ForceOSRExit);
+ else if (m_graph.m_compilation)
+ m_graph.m_compilation->noticeInlinedGetById();
+
+ Node* originalBaseForBaselineJIT = base;
+
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(getByIdStatus.structureSet())), base);
+
+ if (!getByIdStatus.chain().isEmpty()) {
+ Structure* currentStructure = getByIdStatus.structureSet().singletonStructure();
+ JSObject* currentObject = 0;
+ for (unsigned i = 0; i < getByIdStatus.chain().size(); ++i) {
+ currentObject = asObject(currentStructure->prototypeForLookup(m_inlineStackTop->m_codeBlock));
+ currentStructure = getByIdStatus.chain()[i];
+ base = addStructureTransitionCheck(currentObject, currentStructure);
}
+ }
+
+ // Unless we want bugs like https://bugs.webkit.org/show_bug.cgi?id=88783, we need to
+ // ensure that the base of the original get_by_id is kept alive until we're done with
+ // all of the speculations. We only insert the Phantom if there had been a CheckStructure
+ // on something other than the base following the CheckStructure on base, or if the
+ // access was compiled to a WeakJSConstant specific value, in which case we might not
+ // have any explicit use of the base at all.
+ if (getByIdStatus.specificValue() || originalBaseForBaselineJIT != base)
+ addToGraph(Phantom, originalBaseForBaselineJIT);
+
+ if (getByIdStatus.specificValue()) {
+ ASSERT(getByIdStatus.specificValue().isCell());
+
+ set(destinationOperand, cellConstant(getByIdStatus.specificValue().asCell()));
+ return;
+ }
+
+ handleGetByOffset(
+ destinationOperand, prediction, base, identifierNumber, getByIdStatus.offset());
+}
- BasicBlock* m_block;
- NodeIndex m_phi;
- unsigned m_varNo;
- };
- Vector<PhiStackEntry, 16> m_argumentPhiStack;
- Vector<PhiStackEntry, 16> m_localPhiStack;
+void ByteCodeParser::prepareToParseBlock()
+{
+ for (unsigned i = 0; i < m_constants.size(); ++i)
+ m_constants[i] = ConstantRecord();
+ m_cellConstantNodes.clear();
+}
- // These maps are used to unique ToNumber and ToInt32 operations.
- typedef HashMap<NodeIndex, NodeIndex> UnaryOpMap;
- UnaryOpMap m_int32ToNumberNodes;
- UnaryOpMap m_numberToInt32Nodes;
-};
+Node* ByteCodeParser::getScope(bool skipTop, unsigned skipCount)
+{
+ Node* localBase;
+ if (inlineCallFrame() && !inlineCallFrame()->isClosureCall()) {
+ ASSERT(inlineCallFrame()->callee);
+ localBase = cellConstant(inlineCallFrame()->callee->scope());
+ } else
+ localBase = addToGraph(GetMyScope);
+ if (skipTop) {
+ ASSERT(!inlineCallFrame());
+ localBase = addToGraph(SkipTopScope, localBase);
+ }
+ for (unsigned n = skipCount; n--;)
+ localBase = addToGraph(SkipScope, localBase);
+ return localBase;
+}
-#define NEXT_OPCODE(name) \
- m_currentIndex += OPCODE_LENGTH(name); \
- continue
+bool ByteCodeParser::parseResolveOperations(SpeculatedType prediction, unsigned identifier, ResolveOperations* resolveOperations, PutToBaseOperation* putToBaseOperation, Node** base, Node** value)
+{
+ if (resolveOperations->isEmpty()) {
+ addToGraph(ForceOSRExit);
+ return false;
+ }
+ JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
+ int skipCount = 0;
+ bool skipTop = false;
+ bool skippedScopes = false;
+ bool setBase = false;
+ ResolveOperation* pc = resolveOperations->data();
+ Node* localBase = 0;
+ bool resolvingBase = true;
+ while (resolvingBase) {
+ switch (pc->m_operation) {
+ case ResolveOperation::ReturnGlobalObjectAsBase:
+ *base = cellConstant(globalObject);
+ ASSERT(!value);
+ return true;
+
+ case ResolveOperation::SetBaseToGlobal:
+ *base = cellConstant(globalObject);
+ setBase = true;
+ resolvingBase = false;
+ ++pc;
+ break;
+
+ case ResolveOperation::SetBaseToUndefined:
+ *base = constantUndefined();
+ setBase = true;
+ resolvingBase = false;
+ ++pc;
+ break;
+
+ case ResolveOperation::SetBaseToScope:
+ localBase = getScope(skipTop, skipCount);
+ *base = localBase;
+ setBase = true;
+
+ resolvingBase = false;
+
+ // Reset the scope skipping as we've already loaded it
+ skippedScopes = false;
+ ++pc;
+ break;
+ case ResolveOperation::ReturnScopeAsBase:
+ *base = getScope(skipTop, skipCount);
+ ASSERT(!value);
+ return true;
+
+ case ResolveOperation::SkipTopScopeNode:
+ ASSERT(!inlineCallFrame());
+ skipTop = true;
+ skippedScopes = true;
+ ++pc;
+ break;
+
+ case ResolveOperation::SkipScopes:
+ skipCount += pc->m_scopesToSkip;
+ skippedScopes = true;
+ ++pc;
+ break;
+
+ case ResolveOperation::CheckForDynamicEntriesBeforeGlobalScope:
+ return false;
-#define LAST_OPCODE(name) \
- m_currentIndex += OPCODE_LENGTH(name); \
- return !m_parseFailed
+ case ResolveOperation::Fail:
+ return false;
+
+ default:
+ resolvingBase = false;
+ }
+ }
+ if (skippedScopes)
+ localBase = getScope(skipTop, skipCount);
+
+ if (base && !setBase)
+ *base = localBase;
+
+ ASSERT(value);
+ ResolveOperation* resolveValueOperation = pc;
+ switch (resolveValueOperation->m_operation) {
+ case ResolveOperation::GetAndReturnGlobalProperty: {
+ ResolveGlobalStatus status = ResolveGlobalStatus::computeFor(m_inlineStackTop->m_profiledBlock, m_currentIndex, resolveValueOperation, m_codeBlock->identifier(identifier));
+ if (status.isSimple()) {
+ ASSERT(status.structure());
+
+ Node* globalObjectNode = addStructureTransitionCheck(globalObject, status.structure());
+
+ if (status.specificValue()) {
+ ASSERT(status.specificValue().isCell());
+ *value = cellConstant(status.specificValue().asCell());
+ } else
+ *value = handleGetByOffset(prediction, globalObjectNode, identifier, status.offset());
+ return true;
+ }
+
+ Node* resolve = addToGraph(ResolveGlobal, OpInfo(m_graph.m_resolveGlobalData.size()), OpInfo(prediction));
+ m_graph.m_resolveGlobalData.append(ResolveGlobalData());
+ ResolveGlobalData& data = m_graph.m_resolveGlobalData.last();
+ data.identifierNumber = identifier;
+ data.resolveOperations = resolveOperations;
+ data.putToBaseOperation = putToBaseOperation;
+ data.resolvePropertyIndex = resolveValueOperation - resolveOperations->data();
+ *value = resolve;
+ return true;
+ }
+ case ResolveOperation::GetAndReturnGlobalVar: {
+ *value = addToGraph(
+ GetGlobalVar,
+ OpInfo(globalObject->assertRegisterIsInThisObject(pc->m_registerAddress)),
+ OpInfo(prediction));
+ return true;
+ }
+ case ResolveOperation::GetAndReturnGlobalVarWatchable: {
+ SpeculatedType prediction = getPrediction();
+
+ JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
+
+ Identifier ident = m_codeBlock->identifier(identifier);
+ SymbolTableEntry entry = globalObject->symbolTable()->get(ident.impl());
+ if (!entry.couldBeWatched()) {
+ *value = addToGraph(GetGlobalVar, OpInfo(globalObject->assertRegisterIsInThisObject(pc->m_registerAddress)), OpInfo(prediction));
+ return true;
+ }
+
+ // The watchpoint is still intact! This means that we will get notified if the
+ // current value in the global variable changes. So, we can inline that value.
+ // Moreover, currently we can assume that this value is a JSFunction*, which
+ // implies that it's a cell. This simplifies things, since in general we'd have
+ // to use a JSConstant for non-cells and a WeakJSConstant for cells. So instead
+ // of having both cases we just assert that the value is a cell.
+
+ // NB. If it wasn't for CSE, GlobalVarWatchpoint would have no need for the
+ // register pointer. But CSE tracks effects on global variables by comparing
+ // register pointers. Because CSE executes multiple times while the backend
+ // executes once, we use the following performance trade-off:
+ // - The node refers directly to the register pointer to make CSE super cheap.
+ // - To perform backend code generation, the node only contains the identifier
+ // number, from which it is possible to get (via a few average-time O(1)
+ // lookups) to the WatchpointSet.
+
+ addToGraph(GlobalVarWatchpoint, OpInfo(globalObject->assertRegisterIsInThisObject(pc->m_registerAddress)), OpInfo(identifier));
+
+ JSValue specificValue = globalObject->registerAt(entry.getIndex()).get();
+ ASSERT(specificValue.isCell());
+ *value = cellConstant(specificValue.asCell());
+ return true;
+ }
+ case ResolveOperation::GetAndReturnScopedVar: {
+ Node* getScopeRegisters = addToGraph(GetScopeRegisters, localBase);
+ *value = addToGraph(GetScopedVar, OpInfo(resolveValueOperation->m_offset), OpInfo(prediction), getScopeRegisters);
+ return true;
+ }
+ default:
+ CRASH();
+ return false;
+ }
+
+}
bool ByteCodeParser::parseBlock(unsigned limit)
{
- // No need to reset state initially, since it has been set by the constructor.
- if (m_currentIndex) {
- for (unsigned i = 0; i < m_constants.size(); ++i)
- m_constants[i] = ConstantRecord();
+ bool shouldContinueParsing = true;
+
+ Interpreter* interpreter = m_vm->interpreter;
+ Instruction* instructionsBegin = m_inlineStackTop->m_codeBlock->instructions().begin();
+ unsigned blockBegin = m_currentIndex;
+
+ // If we are the first basic block, introduce markers for arguments. This allows
+ // us to track if a use of an argument may use the actual argument passed, as
+ // opposed to using a value we set explicitly.
+ if (m_currentBlock == m_graph.m_blocks[0].get() && !inlineCallFrame()) {
+ m_graph.m_arguments.resize(m_numArguments);
+ for (unsigned argument = 0; argument < m_numArguments; ++argument) {
+ VariableAccessData* variable = newVariableAccessData(
+ argumentToOperand(argument), m_codeBlock->isCaptured(argumentToOperand(argument)));
+ variable->mergeStructureCheckHoistingFailed(
+ m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
+
+ Node* setArgument = addToGraph(SetArgument, OpInfo(variable));
+ m_graph.m_arguments[argument] = setArgument;
+ m_currentBlock->variablesAtTail.setArgumentFirstTime(argument, setArgument);
+ }
}
- AliasTracker aliases(m_graph);
-
- Interpreter* interpreter = m_globalData->interpreter;
- Instruction* instructionsBegin = m_codeBlock->instructions().begin();
while (true) {
+ m_currentProfilingIndex = m_currentIndex;
+
// Don't extend over jump destinations.
if (m_currentIndex == limit) {
- addToGraph(Jump, OpInfo(m_currentIndex));
- return !m_parseFailed;
+ // Ordinarily we want to plant a jump. But refuse to do this if the block is
+ // empty. This is a special case for inlining, which might otherwise create
+ // some empty blocks in some cases. When parseBlock() returns with an empty
+ // block, it will get repurposed instead of creating a new one. Note that this
+ // logic relies on every bytecode resulting in one or more nodes, which would
+ // be true anyway except for op_loop_hint, which emits a Phantom to force this
+ // to be true.
+ if (!m_currentBlock->isEmpty())
+ addToGraph(Jump, OpInfo(m_currentIndex));
+ else {
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Refusing to plant jump at limit %u because block %p is empty.\n", limit, m_currentBlock);
+#endif
+ }
+ return shouldContinueParsing;
}
-
+
// Switch on the current bytecode opcode.
Instruction* currentInstruction = instructionsBegin + m_currentIndex;
- switch (interpreter->getOpcodeID(currentInstruction->u.opcode)) {
+ m_currentInstruction = currentInstruction; // Some methods want to use this, and we'd rather not thread it through calls.
+ OpcodeID opcodeID = interpreter->getOpcodeID(currentInstruction->u.opcode);
+
+ if (m_graph.m_compilation && opcodeID != op_call_put_result) {
+ addToGraph(CountExecution, OpInfo(m_graph.m_compilation->executionCounterFor(
+ Profiler::OriginStack(*m_vm->m_perBytecodeProfiler, m_codeBlock, currentCodeOrigin()))));
+ }
+
+ switch (opcodeID) {
// === Function entry opcodes ===
case op_enter:
// Initialize all locals to undefined.
- for (int i = 0; i < m_codeBlock->m_numVars; ++i)
- set(i, constantUndefined());
+ for (int i = 0; i < m_inlineStackTop->m_codeBlock->m_numVars; ++i)
+ set(i, constantUndefined(), SetOnEntry);
NEXT_OPCODE(op_enter);
case op_convert_this: {
- NodeIndex op1 = getThis();
- setThis(addToGraph(ConvertThis, op1));
+ Node* op1 = getThis();
+ if (op1->op() != ConvertThis) {
+ ValueProfile* profile =
+ m_inlineStackTop->m_profiledBlock->valueProfileForBytecodeOffset(m_currentProfilingIndex);
+ profile->computeUpdatedPrediction();
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("[bc#%u]: profile %p: ", m_currentProfilingIndex, profile);
+ profile->dump(WTF::dataFile());
+ dataLogF("\n");
+#endif
+ if (profile->m_singletonValueIsTop
+ || !profile->m_singletonValue
+ || !profile->m_singletonValue.isCell()
+ || profile->m_singletonValue.asCell()->classInfo() != &Structure::s_info)
+ setThis(addToGraph(ConvertThis, op1));
+ else {
+ addToGraph(
+ CheckStructure,
+ OpInfo(m_graph.addStructureSet(jsCast<Structure*>(profile->m_singletonValue.asCell()))),
+ op1);
+ }
+ }
NEXT_OPCODE(op_convert_this);
}
+ case op_create_this: {
+ int calleeOperand = currentInstruction[2].u.operand;
+ Node* callee = get(calleeOperand);
+ bool alreadyEmitted = false;
+ if (callee->op() == WeakJSConstant) {
+ JSCell* cell = callee->weakConstant();
+ ASSERT(cell->inherits(&JSFunction::s_info));
+
+ JSFunction* function = jsCast<JSFunction*>(cell);
+ ObjectAllocationProfile* allocationProfile = function->tryGetAllocationProfile();
+ if (allocationProfile) {
+ addToGraph(AllocationProfileWatchpoint, OpInfo(function));
+ // The callee is still live up to this point.
+ addToGraph(Phantom, callee);
+ set(currentInstruction[1].u.operand,
+ addToGraph(NewObject, OpInfo(allocationProfile->structure())));
+ alreadyEmitted = true;
+ }
+ }
+ if (!alreadyEmitted)
+ set(currentInstruction[1].u.operand,
+ addToGraph(CreateThis, OpInfo(currentInstruction[3].u.operand), callee));
+ NEXT_OPCODE(op_create_this);
+ }
+
+ case op_new_object: {
+ set(currentInstruction[1].u.operand,
+ addToGraph(NewObject,
+ OpInfo(currentInstruction[3].u.objectAllocationProfile->structure())));
+ NEXT_OPCODE(op_new_object);
+ }
+
+ case op_new_array: {
+ int startOperand = currentInstruction[2].u.operand;
+ int numOperands = currentInstruction[3].u.operand;
+ ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile;
+ for (int operandIdx = startOperand; operandIdx < startOperand + numOperands; ++operandIdx)
+ addVarArgChild(get(operandIdx));
+ set(currentInstruction[1].u.operand, addToGraph(Node::VarArg, NewArray, OpInfo(profile->selectIndexingType()), OpInfo(0)));
+ NEXT_OPCODE(op_new_array);
+ }
+
+ case op_new_array_with_size: {
+ int lengthOperand = currentInstruction[2].u.operand;
+ ArrayAllocationProfile* profile = currentInstruction[3].u.arrayAllocationProfile;
+ set(currentInstruction[1].u.operand, addToGraph(NewArrayWithSize, OpInfo(profile->selectIndexingType()), get(lengthOperand)));
+ NEXT_OPCODE(op_new_array_with_size);
+ }
+
+ case op_new_array_buffer: {
+ int startConstant = currentInstruction[2].u.operand;
+ int numConstants = currentInstruction[3].u.operand;
+ ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile;
+ NewArrayBufferData data;
+ data.startConstant = m_inlineStackTop->m_constantBufferRemap[startConstant];
+ data.numConstants = numConstants;
+ data.indexingType = profile->selectIndexingType();
+
+ // If this statement has never executed, we'll have the wrong indexing type in the profile.
+ for (int i = 0; i < numConstants; ++i) {
+ data.indexingType =
+ leastUpperBoundOfIndexingTypeAndValue(
+ data.indexingType,
+ m_codeBlock->constantBuffer(data.startConstant)[i]);
+ }
+
+ m_graph.m_newArrayBufferData.append(data);
+ set(currentInstruction[1].u.operand, addToGraph(NewArrayBuffer, OpInfo(&m_graph.m_newArrayBufferData.last())));
+ NEXT_OPCODE(op_new_array_buffer);
+ }
+
+ case op_new_regexp: {
+ set(currentInstruction[1].u.operand, addToGraph(NewRegexp, OpInfo(currentInstruction[2].u.operand)));
+ NEXT_OPCODE(op_new_regexp);
+ }
+
+ case op_get_callee: {
+ ValueProfile* profile = currentInstruction[2].u.profile;
+ profile->computeUpdatedPrediction();
+ if (profile->m_singletonValueIsTop
+ || !profile->m_singletonValue
+ || !profile->m_singletonValue.isCell())
+ set(currentInstruction[1].u.operand, get(JSStack::Callee));
+ else {
+ ASSERT(profile->m_singletonValue.asCell()->inherits(&JSFunction::s_info));
+ Node* actualCallee = get(JSStack::Callee);
+ addToGraph(CheckFunction, OpInfo(profile->m_singletonValue.asCell()), actualCallee);
+ set(currentInstruction[1].u.operand, addToGraph(WeakJSConstant, OpInfo(profile->m_singletonValue.asCell())));
+ }
+ NEXT_OPCODE(op_get_callee);
+ }
+
// === Bitwise operations ===
case op_bitand: {
- NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
- NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
- predictInt32(op1);
- predictInt32(op2);
- set(currentInstruction[1].u.operand, addToGraph(BitAnd, op1, op2), PredictInt32);
+ Node* op1 = getToInt32(currentInstruction[2].u.operand);
+ Node* op2 = getToInt32(currentInstruction[3].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(BitAnd, op1, op2));
NEXT_OPCODE(op_bitand);
}
case op_bitor: {
- NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
- NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
- predictInt32(op1);
- predictInt32(op2);
- set(currentInstruction[1].u.operand, addToGraph(BitOr, op1, op2), PredictInt32);
+ Node* op1 = getToInt32(currentInstruction[2].u.operand);
+ Node* op2 = getToInt32(currentInstruction[3].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(BitOr, op1, op2));
NEXT_OPCODE(op_bitor);
}
case op_bitxor: {
- NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
- NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
- predictInt32(op1);
- predictInt32(op2);
- set(currentInstruction[1].u.operand, addToGraph(BitXor, op1, op2), PredictInt32);
+ Node* op1 = getToInt32(currentInstruction[2].u.operand);
+ Node* op2 = getToInt32(currentInstruction[3].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(BitXor, op1, op2));
NEXT_OPCODE(op_bitxor);
}
case op_rshift: {
- NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
- NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
- predictInt32(op1);
- predictInt32(op2);
- NodeIndex result;
+ Node* op1 = getToInt32(currentInstruction[2].u.operand);
+ Node* op2 = getToInt32(currentInstruction[3].u.operand);
+ Node* result;
// Optimize out shifts by zero.
if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f))
result = op1;
else
result = addToGraph(BitRShift, op1, op2);
- set(currentInstruction[1].u.operand, result, PredictInt32);
+ set(currentInstruction[1].u.operand, result);
NEXT_OPCODE(op_rshift);
}
case op_lshift: {
- NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
- NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
- predictInt32(op1);
- predictInt32(op2);
- NodeIndex result;
+ Node* op1 = getToInt32(currentInstruction[2].u.operand);
+ Node* op2 = getToInt32(currentInstruction[3].u.operand);
+ Node* result;
// Optimize out shifts by zero.
if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f))
result = op1;
else
result = addToGraph(BitLShift, op1, op2);
- set(currentInstruction[1].u.operand, result, PredictInt32);
+ set(currentInstruction[1].u.operand, result);
NEXT_OPCODE(op_lshift);
}
case op_urshift: {
- NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
- NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
- predictInt32(op1);
- predictInt32(op2);
- NodeIndex result;
+ Node* op1 = getToInt32(currentInstruction[2].u.operand);
+ Node* op2 = getToInt32(currentInstruction[3].u.operand);
+ Node* result;
// The result of a zero-extending right shift is treated as an unsigned value.
// This means that if the top bit is set, the result is not in the int32 range,
// and as such must be stored as a double. If the shift amount is a constant,
if (valueOfInt32Constant(op2) & 0x1f)
result = addToGraph(BitURShift, op1, op2);
else
- result = addToGraph(UInt32ToNumber, op1);
+ result = makeSafe(addToGraph(UInt32ToNumber, op1));
} else {
// Cannot optimize at this stage; shift & potentially rebox as a double.
result = addToGraph(BitURShift, op1, op2);
- result = addToGraph(UInt32ToNumber, result);
+ result = makeSafe(addToGraph(UInt32ToNumber, result));
}
- set(currentInstruction[1].u.operand, result, PredictInt32);
+ set(currentInstruction[1].u.operand, result);
NEXT_OPCODE(op_urshift);
}
// === Increment/Decrement opcodes ===
- case op_pre_inc: {
+ case op_inc: {
unsigned srcDst = currentInstruction[1].u.operand;
- NodeIndex op = getToNumber(srcDst);
- predictInt32(op);
- set(srcDst, addToGraph(ArithAdd, op, one()));
- NEXT_OPCODE(op_pre_inc);
+ Node* op = get(srcDst);
+ set(srcDst, makeSafe(addToGraph(ArithAdd, op, one())));
+ NEXT_OPCODE(op_inc);
}
- case op_post_inc: {
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
- NodeIndex op = getToNumber(srcDst);
- predictInt32(op);
- set(result, op);
- set(srcDst, addToGraph(ArithAdd, op, one()));
- NEXT_OPCODE(op_post_inc);
- }
-
- case op_pre_dec: {
+ case op_dec: {
unsigned srcDst = currentInstruction[1].u.operand;
- NodeIndex op = getToNumber(srcDst);
- predictInt32(op);
- set(srcDst, addToGraph(ArithSub, op, one()));
- NEXT_OPCODE(op_pre_dec);
- }
-
- case op_post_dec: {
- unsigned result = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
- NodeIndex op = getToNumber(srcDst);
- predictInt32(op);
- set(result, op);
- set(srcDst, addToGraph(ArithSub, op, one()));
- NEXT_OPCODE(op_post_dec);
+ Node* op = get(srcDst);
+ set(srcDst, makeSafe(addToGraph(ArithSub, op, one())));
+ NEXT_OPCODE(op_dec);
}
// === Arithmetic operations ===
case op_add: {
- ARITHMETIC_OP();
- NodeIndex op1 = get(currentInstruction[2].u.operand);
- NodeIndex op2 = get(currentInstruction[3].u.operand);
- // If both operands can statically be determined to the numbers, then this is an arithmetic add.
- // Otherwise, we must assume this may be performing a concatenation to a string.
- if (m_graph[op1].hasNumericResult() && m_graph[op2].hasNumericResult())
- set(currentInstruction[1].u.operand, addToGraph(ArithAdd, toNumber(op1), toNumber(op2)));
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ if (op1->hasNumberResult() && op2->hasNumberResult())
+ set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithAdd, op1, op2)));
else
- set(currentInstruction[1].u.operand, addToGraph(ValueAdd, op1, op2));
+ set(currentInstruction[1].u.operand, makeSafe(addToGraph(ValueAdd, op1, op2)));
NEXT_OPCODE(op_add);
}
case op_sub: {
- ARITHMETIC_OP();
- NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
- NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(ArithSub, op1, op2));
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithSub, op1, op2)));
NEXT_OPCODE(op_sub);
}
+ case op_negate: {
+ Node* op1 = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithNegate, op1)));
+ NEXT_OPCODE(op_negate);
+ }
+
case op_mul: {
- ARITHMETIC_OP();
- NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
- NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(ArithMul, op1, op2));
+ // Multiply requires that the inputs are not truncated, unfortunately.
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithMul, op1, op2)));
NEXT_OPCODE(op_mul);
}
case op_mod: {
- ARITHMETIC_OP();
- NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
- NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(ArithMod, op1, op2));
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithMod, op1, op2)));
NEXT_OPCODE(op_mod);
}
case op_div: {
- ARITHMETIC_OP();
- NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
- NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(ArithDiv, op1, op2));
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ set(currentInstruction[1].u.operand, makeDivSafe(addToGraph(ArithDiv, op1, op2)));
NEXT_OPCODE(op_div);
}
// === Misc operations ===
+#if ENABLE(DEBUG_WITH_BREAKPOINT)
+ case op_debug:
+ addToGraph(Breakpoint);
+ NEXT_OPCODE(op_debug);
+#endif
case op_mov: {
- NodeIndex op = get(currentInstruction[2].u.operand);
+ Node* op = get(currentInstruction[2].u.operand);
set(currentInstruction[1].u.operand, op);
NEXT_OPCODE(op_mov);
}
+ case op_check_has_instance:
+ addToGraph(CheckHasInstance, get(currentInstruction[3].u.operand));
+ NEXT_OPCODE(op_check_has_instance);
+
+ case op_instanceof: {
+ Node* value = get(currentInstruction[2].u.operand);
+ Node* prototype = get(currentInstruction[3].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(InstanceOf, value, prototype));
+ NEXT_OPCODE(op_instanceof);
+ }
+
+ case op_is_undefined: {
+ Node* value = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(IsUndefined, value));
+ NEXT_OPCODE(op_is_undefined);
+ }
+
+ case op_is_boolean: {
+ Node* value = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(IsBoolean, value));
+ NEXT_OPCODE(op_is_boolean);
+ }
+
+ case op_is_number: {
+ Node* value = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(IsNumber, value));
+ NEXT_OPCODE(op_is_number);
+ }
+
+ case op_is_string: {
+ Node* value = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(IsString, value));
+ NEXT_OPCODE(op_is_string);
+ }
+
+ case op_is_object: {
+ Node* value = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(IsObject, value));
+ NEXT_OPCODE(op_is_object);
+ }
+
+ case op_is_function: {
+ Node* value = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(IsFunction, value));
+ NEXT_OPCODE(op_is_function);
+ }
+
case op_not: {
- ARITHMETIC_OP();
- NodeIndex value = get(currentInstruction[2].u.operand);
+ Node* value = get(currentInstruction[2].u.operand);
set(currentInstruction[1].u.operand, addToGraph(LogicalNot, value));
NEXT_OPCODE(op_not);
}
+
+ case op_to_primitive: {
+ Node* value = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(ToPrimitive, value));
+ NEXT_OPCODE(op_to_primitive);
+ }
+
+ case op_strcat: {
+ int startOperand = currentInstruction[2].u.operand;
+ int numOperands = currentInstruction[3].u.operand;
+#if CPU(X86)
+ // X86 doesn't have enough registers to compile MakeRope with three arguments.
+ // Rather than try to be clever, we just make MakeRope dumber on this processor.
+ const unsigned maxRopeArguments = 2;
+#else
+ const unsigned maxRopeArguments = 3;
+#endif
+ OwnArrayPtr<Node*> toStringNodes = adoptArrayPtr(new Node*[numOperands]);
+ for (int i = 0; i < numOperands; i++)
+ toStringNodes[i] = addToGraph(ToString, get(startOperand + i));
+
+ for (int i = 0; i < numOperands; i++)
+ addToGraph(Phantom, toStringNodes[i]);
+
+ Node* operands[AdjacencyList::Size];
+ unsigned indexInOperands = 0;
+ for (unsigned i = 0; i < AdjacencyList::Size; ++i)
+ operands[i] = 0;
+ for (int operandIdx = 0; operandIdx < numOperands; ++operandIdx) {
+ if (indexInOperands == maxRopeArguments) {
+ operands[0] = addToGraph(MakeRope, operands[0], operands[1], operands[2]);
+ for (unsigned i = 1; i < AdjacencyList::Size; ++i)
+ operands[i] = 0;
+ indexInOperands = 1;
+ }
+
+ ASSERT(indexInOperands < AdjacencyList::Size);
+ ASSERT(indexInOperands < maxRopeArguments);
+ operands[indexInOperands++] = toStringNodes[operandIdx];
+ }
+ set(currentInstruction[1].u.operand,
+ addToGraph(MakeRope, operands[0], operands[1], operands[2]));
+ NEXT_OPCODE(op_strcat);
+ }
case op_less: {
- ARITHMETIC_OP();
- NodeIndex op1 = get(currentInstruction[2].u.operand);
- NodeIndex op2 = get(currentInstruction[3].u.operand);
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue a = valueOfJSConstant(op1);
+ JSValue b = valueOfJSConstant(op2);
+ if (a.isNumber() && b.isNumber()) {
+ set(currentInstruction[1].u.operand,
+ getJSConstantForValue(jsBoolean(a.asNumber() < b.asNumber())));
+ NEXT_OPCODE(op_less);
+ }
+ }
set(currentInstruction[1].u.operand, addToGraph(CompareLess, op1, op2));
NEXT_OPCODE(op_less);
}
case op_lesseq: {
- ARITHMETIC_OP();
- NodeIndex op1 = get(currentInstruction[2].u.operand);
- NodeIndex op2 = get(currentInstruction[3].u.operand);
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue a = valueOfJSConstant(op1);
+ JSValue b = valueOfJSConstant(op2);
+ if (a.isNumber() && b.isNumber()) {
+ set(currentInstruction[1].u.operand,
+ getJSConstantForValue(jsBoolean(a.asNumber() <= b.asNumber())));
+ NEXT_OPCODE(op_lesseq);
+ }
+ }
set(currentInstruction[1].u.operand, addToGraph(CompareLessEq, op1, op2));
NEXT_OPCODE(op_lesseq);
}
+ case op_greater: {
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue a = valueOfJSConstant(op1);
+ JSValue b = valueOfJSConstant(op2);
+ if (a.isNumber() && b.isNumber()) {
+ set(currentInstruction[1].u.operand,
+ getJSConstantForValue(jsBoolean(a.asNumber() > b.asNumber())));
+ NEXT_OPCODE(op_greater);
+ }
+ }
+ set(currentInstruction[1].u.operand, addToGraph(CompareGreater, op1, op2));
+ NEXT_OPCODE(op_greater);
+ }
+
+ case op_greatereq: {
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue a = valueOfJSConstant(op1);
+ JSValue b = valueOfJSConstant(op2);
+ if (a.isNumber() && b.isNumber()) {
+ set(currentInstruction[1].u.operand,
+ getJSConstantForValue(jsBoolean(a.asNumber() >= b.asNumber())));
+ NEXT_OPCODE(op_greatereq);
+ }
+ }
+ set(currentInstruction[1].u.operand, addToGraph(CompareGreaterEq, op1, op2));
+ NEXT_OPCODE(op_greatereq);
+ }
+
case op_eq: {
- ARITHMETIC_OP();
- NodeIndex op1 = get(currentInstruction[2].u.operand);
- NodeIndex op2 = get(currentInstruction[3].u.operand);
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue a = valueOfJSConstant(op1);
+ JSValue b = valueOfJSConstant(op2);
+ set(currentInstruction[1].u.operand,
+ getJSConstantForValue(jsBoolean(JSValue::equal(m_codeBlock->globalObject()->globalExec(), a, b))));
+ NEXT_OPCODE(op_eq);
+ }
set(currentInstruction[1].u.operand, addToGraph(CompareEq, op1, op2));
NEXT_OPCODE(op_eq);
}
case op_eq_null: {
- ARITHMETIC_OP();
- NodeIndex value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(CompareEq, value, constantNull()));
+ Node* value = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(CompareEqConstant, value, constantNull()));
NEXT_OPCODE(op_eq_null);
}
case op_stricteq: {
- ARITHMETIC_OP();
- NodeIndex op1 = get(currentInstruction[2].u.operand);
- NodeIndex op2 = get(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(CompareStrictEq, op1, op2));
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue a = valueOfJSConstant(op1);
+ JSValue b = valueOfJSConstant(op2);
+ set(currentInstruction[1].u.operand,
+ getJSConstantForValue(jsBoolean(JSValue::strictEqual(m_codeBlock->globalObject()->globalExec(), a, b))));
+ NEXT_OPCODE(op_stricteq);
+ }
+ if (isConstantForCompareStrictEq(op1))
+ set(currentInstruction[1].u.operand, addToGraph(CompareStrictEqConstant, op2, op1));
+ else if (isConstantForCompareStrictEq(op2))
+ set(currentInstruction[1].u.operand, addToGraph(CompareStrictEqConstant, op1, op2));
+ else
+ set(currentInstruction[1].u.operand, addToGraph(CompareStrictEq, op1, op2));
NEXT_OPCODE(op_stricteq);
}
case op_neq: {
- ARITHMETIC_OP();
- NodeIndex op1 = get(currentInstruction[2].u.operand);
- NodeIndex op2 = get(currentInstruction[3].u.operand);
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue a = valueOfJSConstant(op1);
+ JSValue b = valueOfJSConstant(op2);
+ set(currentInstruction[1].u.operand,
+ getJSConstantForValue(jsBoolean(!JSValue::equal(m_codeBlock->globalObject()->globalExec(), a, b))));
+ NEXT_OPCODE(op_neq);
+ }
set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareEq, op1, op2)));
NEXT_OPCODE(op_neq);
}
case op_neq_null: {
- ARITHMETIC_OP();
- NodeIndex value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareEq, value, constantNull())));
+ Node* value = get(currentInstruction[2].u.operand);
+ set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareEqConstant, value, constantNull())));
NEXT_OPCODE(op_neq_null);
}
case op_nstricteq: {
- ARITHMETIC_OP();
- NodeIndex op1 = get(currentInstruction[2].u.operand);
- NodeIndex op2 = get(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareStrictEq, op1, op2)));
+ Node* op1 = get(currentInstruction[2].u.operand);
+ Node* op2 = get(currentInstruction[3].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue a = valueOfJSConstant(op1);
+ JSValue b = valueOfJSConstant(op2);
+ set(currentInstruction[1].u.operand,
+ getJSConstantForValue(jsBoolean(!JSValue::strictEqual(m_codeBlock->globalObject()->globalExec(), a, b))));
+ NEXT_OPCODE(op_nstricteq);
+ }
+ Node* invertedResult;
+ if (isConstantForCompareStrictEq(op1))
+ invertedResult = addToGraph(CompareStrictEqConstant, op2, op1);
+ else if (isConstantForCompareStrictEq(op2))
+ invertedResult = addToGraph(CompareStrictEqConstant, op1, op2);
+ else
+ invertedResult = addToGraph(CompareStrictEq, op1, op2);
+ set(currentInstruction[1].u.operand, addToGraph(LogicalNot, invertedResult));
NEXT_OPCODE(op_nstricteq);
}
// === Property access operations ===
case op_get_by_val: {
- NodeIndex base = get(currentInstruction[2].u.operand);
- NodeIndex property = get(currentInstruction[3].u.operand);
- predictArray(base);
- predictInt32(property);
-
- NodeIndex getByVal = addToGraph(GetByVal, base, property, aliases.lookupGetByVal(base, property));
+ SpeculatedType prediction = getPrediction();
+
+ Node* base = get(currentInstruction[2].u.operand);
+ ArrayMode arrayMode = getArrayModeAndEmitChecks(currentInstruction[4].u.arrayProfile, Array::Read, base);
+ Node* property = get(currentInstruction[3].u.operand);
+ Node* getByVal = addToGraph(GetByVal, OpInfo(arrayMode.asWord()), OpInfo(prediction), base, property);
set(currentInstruction[1].u.operand, getByVal);
- aliases.recordGetByVal(getByVal);
NEXT_OPCODE(op_get_by_val);
}
case op_put_by_val: {
- NodeIndex base = get(currentInstruction[1].u.operand);
- NodeIndex property = get(currentInstruction[2].u.operand);
- NodeIndex value = get(currentInstruction[3].u.operand);
- predictArray(base);
- predictInt32(property);
-
- NodeIndex aliasedGet = aliases.lookupGetByVal(base, property);
- NodeIndex putByVal = addToGraph(aliasedGet != NoNode ? PutByValAlias : PutByVal, base, property, value);
- aliases.recordPutByVal(putByVal);
+ Node* base = get(currentInstruction[1].u.operand);
+
+ ArrayMode arrayMode = getArrayModeAndEmitChecks(currentInstruction[4].u.arrayProfile, Array::Write, base);
+
+ Node* property = get(currentInstruction[2].u.operand);
+ Node* value = get(currentInstruction[3].u.operand);
+
+ addVarArgChild(base);
+ addVarArgChild(property);
+ addVarArgChild(value);
+ addVarArgChild(0); // Leave room for property storage.
+ addToGraph(Node::VarArg, PutByVal, OpInfo(arrayMode.asWord()), OpInfo(0));
NEXT_OPCODE(op_put_by_val);
}
-
- case op_get_by_id: {
- NodeIndex base = get(currentInstruction[2].u.operand);
- unsigned identifier = currentInstruction[3].u.operand;
-
- NodeIndex getById = addToGraph(GetById, OpInfo(identifier), base);
- set(currentInstruction[1].u.operand, getById);
- aliases.recordGetById(getById);
+
+ case op_get_by_id:
+ case op_get_by_id_out_of_line:
+ case op_get_array_length: {
+ SpeculatedType prediction = getPrediction();
+
+ Node* base = get(currentInstruction[2].u.operand);
+ unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
+
+ Identifier identifier = m_codeBlock->identifier(identifierNumber);
+ GetByIdStatus getByIdStatus = GetByIdStatus::computeFor(
+ m_inlineStackTop->m_profiledBlock, m_currentIndex, identifier);
+
+ handleGetById(
+ currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus);
NEXT_OPCODE(op_get_by_id);
}
-
- case op_put_by_id: {
- NodeIndex value = get(currentInstruction[3].u.operand);
- NodeIndex base = get(currentInstruction[1].u.operand);
- unsigned identifier = currentInstruction[2].u.operand;
+ case op_put_by_id:
+ case op_put_by_id_out_of_line:
+ case op_put_by_id_transition_direct:
+ case op_put_by_id_transition_normal:
+ case op_put_by_id_transition_direct_out_of_line:
+ case op_put_by_id_transition_normal_out_of_line: {
+ Node* value = get(currentInstruction[3].u.operand);
+ Node* base = get(currentInstruction[1].u.operand);
+ unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
bool direct = currentInstruction[8].u.operand;
- if (direct) {
- NodeIndex putByIdDirect = addToGraph(PutByIdDirect, OpInfo(identifier), base, value);
- aliases.recordPutByIdDirect(putByIdDirect);
+ PutByIdStatus putByIdStatus = PutByIdStatus::computeFor(
+ m_inlineStackTop->m_profiledBlock,
+ m_currentIndex,
+ m_codeBlock->identifier(identifierNumber));
+ bool canCountAsInlined = true;
+ if (!putByIdStatus.isSet()) {
+ addToGraph(ForceOSRExit);
+ canCountAsInlined = false;
+ }
+
+ bool hasExitSite =
+ m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
+ || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadWeakConstantCache);
+
+ if (!hasExitSite && putByIdStatus.isSimpleReplace()) {
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(putByIdStatus.oldStructure())), base);
+ Node* propertyStorage;
+ if (isInlineOffset(putByIdStatus.offset()))
+ propertyStorage = base;
+ else
+ propertyStorage = addToGraph(GetButterfly, base);
+ addToGraph(PutByOffset, OpInfo(m_graph.m_storageAccessData.size()), propertyStorage, base, value);
+
+ StorageAccessData storageAccessData;
+ storageAccessData.offset = indexRelativeToBase(putByIdStatus.offset());
+ storageAccessData.identifierNumber = identifierNumber;
+ m_graph.m_storageAccessData.append(storageAccessData);
+ } else if (!hasExitSite
+ && putByIdStatus.isSimpleTransition()
+ && structureChainIsStillValid(
+ direct,
+ putByIdStatus.oldStructure(),
+ putByIdStatus.structureChain())) {
+
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(putByIdStatus.oldStructure())), base);
+ if (!direct) {
+ if (!putByIdStatus.oldStructure()->storedPrototype().isNull()) {
+ addStructureTransitionCheck(
+ putByIdStatus.oldStructure()->storedPrototype().asCell());
+ }
+
+ for (WriteBarrier<Structure>* it = putByIdStatus.structureChain()->head(); *it; ++it) {
+ JSValue prototype = (*it)->storedPrototype();
+ if (prototype.isNull())
+ continue;
+ ASSERT(prototype.isCell());
+ addStructureTransitionCheck(prototype.asCell());
+ }
+ }
+ ASSERT(putByIdStatus.oldStructure()->transitionWatchpointSetHasBeenInvalidated());
+
+ Node* propertyStorage;
+ StructureTransitionData* transitionData =
+ m_graph.addStructureTransitionData(
+ StructureTransitionData(
+ putByIdStatus.oldStructure(),
+ putByIdStatus.newStructure()));
+
+ if (putByIdStatus.oldStructure()->outOfLineCapacity()
+ != putByIdStatus.newStructure()->outOfLineCapacity()) {
+
+ // If we're growing the property storage then it must be because we're
+ // storing into the out-of-line storage.
+ ASSERT(!isInlineOffset(putByIdStatus.offset()));
+
+ if (!putByIdStatus.oldStructure()->outOfLineCapacity()) {
+ propertyStorage = addToGraph(
+ AllocatePropertyStorage, OpInfo(transitionData), base);
+ } else {
+ propertyStorage = addToGraph(
+ ReallocatePropertyStorage, OpInfo(transitionData),
+ base, addToGraph(GetButterfly, base));
+ }
+ } else {
+ if (isInlineOffset(putByIdStatus.offset()))
+ propertyStorage = base;
+ else
+ propertyStorage = addToGraph(GetButterfly, base);
+ }
+
+ addToGraph(PutStructure, OpInfo(transitionData), base);
+
+ addToGraph(
+ PutByOffset,
+ OpInfo(m_graph.m_storageAccessData.size()),
+ propertyStorage,
+ base,
+ value);
+
+ StorageAccessData storageAccessData;
+ storageAccessData.offset = indexRelativeToBase(putByIdStatus.offset());
+ storageAccessData.identifierNumber = identifierNumber;
+ m_graph.m_storageAccessData.append(storageAccessData);
} else {
- NodeIndex putById = addToGraph(PutById, OpInfo(identifier), base, value);
- aliases.recordPutById(putById);
+ if (direct)
+ addToGraph(PutByIdDirect, OpInfo(identifierNumber), base, value);
+ else
+ addToGraph(PutById, OpInfo(identifierNumber), base, value);
+ canCountAsInlined = false;
}
+
+ if (canCountAsInlined && m_graph.m_compilation)
+ m_graph.m_compilation->noticeInlinedPutById();
NEXT_OPCODE(op_put_by_id);
}
- case op_get_global_var: {
- NodeIndex getGlobalVar = addToGraph(GetGlobalVar, OpInfo(currentInstruction[2].u.operand));
- set(currentInstruction[1].u.operand, getGlobalVar);
- NEXT_OPCODE(op_get_global_var);
+ case op_init_global_const_nop: {
+ NEXT_OPCODE(op_init_global_const_nop);
+ }
+
+ case op_init_global_const: {
+ Node* value = get(currentInstruction[2].u.operand);
+ addToGraph(
+ PutGlobalVar,
+ OpInfo(m_inlineStackTop->m_codeBlock->globalObject()->assertRegisterIsInThisObject(currentInstruction[1].u.registerPointer)),
+ value);
+ NEXT_OPCODE(op_init_global_const);
+ }
+
+ case op_init_global_const_check: {
+ Node* value = get(currentInstruction[2].u.operand);
+ CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock;
+ JSGlobalObject* globalObject = codeBlock->globalObject();
+ unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[4].u.operand];
+ Identifier identifier = m_codeBlock->identifier(identifierNumber);
+ SymbolTableEntry entry = globalObject->symbolTable()->get(identifier.impl());
+ if (!entry.couldBeWatched()) {
+ addToGraph(
+ PutGlobalVar,
+ OpInfo(globalObject->assertRegisterIsInThisObject(currentInstruction[1].u.registerPointer)),
+ value);
+ NEXT_OPCODE(op_init_global_const_check);
+ }
+ addToGraph(
+ PutGlobalVarCheck,
+ OpInfo(codeBlock->globalObject()->assertRegisterIsInThisObject(currentInstruction[1].u.registerPointer)),
+ OpInfo(identifierNumber),
+ value);
+ NEXT_OPCODE(op_init_global_const_check);
}
- case op_put_global_var: {
- NodeIndex value = get(currentInstruction[2].u.operand);
- addToGraph(PutGlobalVar, OpInfo(currentInstruction[1].u.operand), value);
- NEXT_OPCODE(op_put_global_var);
- }
// === Block terminators. ===
LAST_OPCODE(op_jmp);
}
- case op_loop: {
- unsigned relativeOffset = currentInstruction[1].u.operand;
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_loop);
- }
-
case op_jtrue: {
unsigned relativeOffset = currentInstruction[2].u.operand;
- NodeIndex condition = get(currentInstruction[1].u.operand);
+ Node* condition = get(currentInstruction[1].u.operand);
+ if (canFold(condition)) {
+ TriState state = valueOfJSConstant(condition).pureToBoolean();
+ if (state == TrueTriState) {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jtrue);
+ } else if (state == FalseTriState) {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jtrue);
+ }
+ }
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jtrue)), condition);
LAST_OPCODE(op_jtrue);
}
case op_jfalse: {
unsigned relativeOffset = currentInstruction[2].u.operand;
- NodeIndex condition = get(currentInstruction[1].u.operand);
+ Node* condition = get(currentInstruction[1].u.operand);
+ if (canFold(condition)) {
+ TriState state = valueOfJSConstant(condition).pureToBoolean();
+ if (state == FalseTriState) {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jfalse);
+ } else if (state == TrueTriState) {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jfalse);
+ }
+ }
addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jfalse)), OpInfo(m_currentIndex + relativeOffset), condition);
LAST_OPCODE(op_jfalse);
}
- case op_loop_if_true: {
- unsigned relativeOffset = currentInstruction[2].u.operand;
- NodeIndex condition = get(currentInstruction[1].u.operand);
- addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_true)), condition);
- LAST_OPCODE(op_loop_if_true);
- }
-
- case op_loop_if_false: {
- unsigned relativeOffset = currentInstruction[2].u.operand;
- NodeIndex condition = get(currentInstruction[1].u.operand);
- addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_false)), OpInfo(m_currentIndex + relativeOffset), condition);
- LAST_OPCODE(op_loop_if_false);
- }
-
case op_jeq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
- NodeIndex value = get(currentInstruction[1].u.operand);
- NodeIndex condition = addToGraph(CompareEq, value, constantNull());
+ Node* value = get(currentInstruction[1].u.operand);
+ Node* condition = addToGraph(CompareEqConstant, value, constantNull());
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jeq_null)), condition);
LAST_OPCODE(op_jeq_null);
}
case op_jneq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
- NodeIndex value = get(currentInstruction[1].u.operand);
- NodeIndex condition = addToGraph(CompareEq, value, constantNull());
+ Node* value = get(currentInstruction[1].u.operand);
+ Node* condition = addToGraph(CompareEqConstant, value, constantNull());
addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_null)), OpInfo(m_currentIndex + relativeOffset), condition);
LAST_OPCODE(op_jneq_null);
}
- case op_jnless: {
- unsigned relativeOffset = currentInstruction[3].u.operand;
- NodeIndex op1 = get(currentInstruction[1].u.operand);
- NodeIndex op2 = get(currentInstruction[2].u.operand);
- NodeIndex condition = addToGraph(CompareLess, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnless)), OpInfo(m_currentIndex + relativeOffset), condition);
- LAST_OPCODE(op_jnless);
- }
-
- case op_jnlesseq: {
- unsigned relativeOffset = currentInstruction[3].u.operand;
- NodeIndex op1 = get(currentInstruction[1].u.operand);
- NodeIndex op2 = get(currentInstruction[2].u.operand);
- NodeIndex condition = addToGraph(CompareLessEq, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnlesseq)), OpInfo(m_currentIndex + relativeOffset), condition);
- LAST_OPCODE(op_jnlesseq);
- }
-
case op_jless: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- NodeIndex op1 = get(currentInstruction[1].u.operand);
- NodeIndex op2 = get(currentInstruction[2].u.operand);
- NodeIndex condition = addToGraph(CompareLess, op1, op2);
+ Node* op1 = get(currentInstruction[1].u.operand);
+ Node* op2 = get(currentInstruction[2].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue aValue = valueOfJSConstant(op1);
+ JSValue bValue = valueOfJSConstant(op2);
+ if (aValue.isNumber() && bValue.isNumber()) {
+ double a = aValue.asNumber();
+ double b = bValue.asNumber();
+ if (a < b) {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jless);
+ } else {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jless);
+ }
+ }
+ }
+ Node* condition = addToGraph(CompareLess, op1, op2);
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jless)), condition);
LAST_OPCODE(op_jless);
}
case op_jlesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- NodeIndex op1 = get(currentInstruction[1].u.operand);
- NodeIndex op2 = get(currentInstruction[2].u.operand);
- NodeIndex condition = addToGraph(CompareLessEq, op1, op2);
+ Node* op1 = get(currentInstruction[1].u.operand);
+ Node* op2 = get(currentInstruction[2].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue aValue = valueOfJSConstant(op1);
+ JSValue bValue = valueOfJSConstant(op2);
+ if (aValue.isNumber() && bValue.isNumber()) {
+ double a = aValue.asNumber();
+ double b = bValue.asNumber();
+ if (a <= b) {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jlesseq);
+ } else {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jlesseq);
+ }
+ }
+ }
+ Node* condition = addToGraph(CompareLessEq, op1, op2);
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jlesseq)), condition);
LAST_OPCODE(op_jlesseq);
}
- case op_loop_if_less: {
+ case op_jgreater: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- NodeIndex op1 = get(currentInstruction[1].u.operand);
- NodeIndex op2 = get(currentInstruction[2].u.operand);
- NodeIndex condition = addToGraph(CompareLess, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_less)), condition);
- LAST_OPCODE(op_loop_if_less);
+ Node* op1 = get(currentInstruction[1].u.operand);
+ Node* op2 = get(currentInstruction[2].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue aValue = valueOfJSConstant(op1);
+ JSValue bValue = valueOfJSConstant(op2);
+ if (aValue.isNumber() && bValue.isNumber()) {
+ double a = aValue.asNumber();
+ double b = bValue.asNumber();
+ if (a > b) {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jgreater);
+ } else {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jgreater);
+ }
+ }
+ }
+ Node* condition = addToGraph(CompareGreater, op1, op2);
+ addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jgreater)), condition);
+ LAST_OPCODE(op_jgreater);
}
- case op_loop_if_lesseq: {
+ case op_jgreatereq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- NodeIndex op1 = get(currentInstruction[1].u.operand);
- NodeIndex op2 = get(currentInstruction[2].u.operand);
- NodeIndex condition = addToGraph(CompareLessEq, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_lesseq)), condition);
- LAST_OPCODE(op_loop_if_lesseq);
+ Node* op1 = get(currentInstruction[1].u.operand);
+ Node* op2 = get(currentInstruction[2].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue aValue = valueOfJSConstant(op1);
+ JSValue bValue = valueOfJSConstant(op2);
+ if (aValue.isNumber() && bValue.isNumber()) {
+ double a = aValue.asNumber();
+ double b = bValue.asNumber();
+ if (a >= b) {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jgreatereq);
+ } else {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jgreatereq);
+ }
+ }
+ }
+ Node* condition = addToGraph(CompareGreaterEq, op1, op2);
+ addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jgreatereq)), condition);
+ LAST_OPCODE(op_jgreatereq);
}
- case op_ret: {
- addToGraph(Return, get(currentInstruction[1].u.operand));
- LAST_OPCODE(op_ret);
+ case op_jnless: {
+ unsigned relativeOffset = currentInstruction[3].u.operand;
+ Node* op1 = get(currentInstruction[1].u.operand);
+ Node* op2 = get(currentInstruction[2].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue aValue = valueOfJSConstant(op1);
+ JSValue bValue = valueOfJSConstant(op2);
+ if (aValue.isNumber() && bValue.isNumber()) {
+ double a = aValue.asNumber();
+ double b = bValue.asNumber();
+ if (a < b) {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jnless);
+ } else {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jnless);
+ }
+ }
+ }
+ Node* condition = addToGraph(CompareLess, op1, op2);
+ addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnless)), OpInfo(m_currentIndex + relativeOffset), condition);
+ LAST_OPCODE(op_jnless);
}
- default:
- // Parse failed!
- return false;
+ case op_jnlesseq: {
+ unsigned relativeOffset = currentInstruction[3].u.operand;
+ Node* op1 = get(currentInstruction[1].u.operand);
+ Node* op2 = get(currentInstruction[2].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue aValue = valueOfJSConstant(op1);
+ JSValue bValue = valueOfJSConstant(op2);
+ if (aValue.isNumber() && bValue.isNumber()) {
+ double a = aValue.asNumber();
+ double b = bValue.asNumber();
+ if (a <= b) {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jnlesseq);
+ } else {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jnlesseq);
+ }
+ }
+ }
+ Node* condition = addToGraph(CompareLessEq, op1, op2);
+ addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnlesseq)), OpInfo(m_currentIndex + relativeOffset), condition);
+ LAST_OPCODE(op_jnlesseq);
}
- }
-}
-template<ByteCodeParser::PhiStackType stackType>
-void ByteCodeParser::processPhiStack()
-{
- Vector<PhiStackEntry, 16>& phiStack = (stackType == ArgumentPhiStack) ? m_argumentPhiStack : m_localPhiStack;
+ case op_jngreater: {
+ unsigned relativeOffset = currentInstruction[3].u.operand;
+ Node* op1 = get(currentInstruction[1].u.operand);
+ Node* op2 = get(currentInstruction[2].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue aValue = valueOfJSConstant(op1);
+ JSValue bValue = valueOfJSConstant(op2);
+ if (aValue.isNumber() && bValue.isNumber()) {
+ double a = aValue.asNumber();
+ double b = bValue.asNumber();
+ if (a > b) {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jngreater);
+ } else {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jngreater);
+ }
+ }
+ }
+ Node* condition = addToGraph(CompareGreater, op1, op2);
+ addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jngreater)), OpInfo(m_currentIndex + relativeOffset), condition);
+ LAST_OPCODE(op_jngreater);
+ }
- while (!phiStack.isEmpty()) {
- PhiStackEntry entry = phiStack.last();
- phiStack.removeLast();
-
- Node& phiNode = m_graph[entry.m_phi];
- PredecessorList& predecessors = entry.m_block->m_predecessors;
- unsigned varNo = entry.m_varNo;
+ case op_jngreatereq: {
+ unsigned relativeOffset = currentInstruction[3].u.operand;
+ Node* op1 = get(currentInstruction[1].u.operand);
+ Node* op2 = get(currentInstruction[2].u.operand);
+ if (canFold(op1) && canFold(op2)) {
+ JSValue aValue = valueOfJSConstant(op1);
+ JSValue bValue = valueOfJSConstant(op2);
+ if (aValue.isNumber() && bValue.isNumber()) {
+ double a = aValue.asNumber();
+ double b = bValue.asNumber();
+ if (a >= b) {
+ // Emit a placeholder for this bytecode operation but otherwise
+ // just fall through.
+ addToGraph(Phantom);
+ NEXT_OPCODE(op_jngreatereq);
+ } else {
+ addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ LAST_OPCODE(op_jngreatereq);
+ }
+ }
+ }
+ Node* condition = addToGraph(CompareGreaterEq, op1, op2);
+ addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jngreatereq)), OpInfo(m_currentIndex + relativeOffset), condition);
+ LAST_OPCODE(op_jngreatereq);
+ }
+
+ case op_ret:
+ flushArgumentsAndCapturedVariables();
+ if (inlineCallFrame()) {
+ if (m_inlineStackTop->m_returnValue != InvalidVirtualRegister)
+ setDirect(m_inlineStackTop->m_returnValue, get(currentInstruction[1].u.operand));
+ m_inlineStackTop->m_didReturn = true;
+ if (m_inlineStackTop->m_unlinkedBlocks.isEmpty()) {
+ // If we're returning from the first block, then we're done parsing.
+ ASSERT(m_inlineStackTop->m_callsiteBlockHead == m_graph.m_blocks.size() - 1);
+ shouldContinueParsing = false;
+ LAST_OPCODE(op_ret);
+ } else {
+ // If inlining created blocks, and we're doing a return, then we need some
+ // special linking.
+ ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_blockIndex == m_graph.m_blocks.size() - 1);
+ m_inlineStackTop->m_unlinkedBlocks.last().m_needsNormalLinking = false;
+ }
+ if (m_currentIndex + OPCODE_LENGTH(op_ret) != m_inlineStackTop->m_codeBlock->instructions().size() || m_inlineStackTop->m_didEarlyReturn) {
+ ASSERT(m_currentIndex + OPCODE_LENGTH(op_ret) <= m_inlineStackTop->m_codeBlock->instructions().size());
+ addToGraph(Jump, OpInfo(NoBlock));
+ m_inlineStackTop->m_unlinkedBlocks.last().m_needsEarlyReturnLinking = true;
+ m_inlineStackTop->m_didEarlyReturn = true;
+ }
+ LAST_OPCODE(op_ret);
+ }
+ addToGraph(Return, get(currentInstruction[1].u.operand));
+ LAST_OPCODE(op_ret);
+
+ case op_end:
+ flushArgumentsAndCapturedVariables();
+ ASSERT(!inlineCallFrame());
+ addToGraph(Return, get(currentInstruction[1].u.operand));
+ LAST_OPCODE(op_end);
+
+ case op_throw:
+ flushAllArgumentsAndCapturedVariablesInInlineStack();
+ addToGraph(Throw, get(currentInstruction[1].u.operand));
+ LAST_OPCODE(op_throw);
+
+ case op_throw_static_error:
+ flushAllArgumentsAndCapturedVariablesInInlineStack();
+ addToGraph(ThrowReferenceError);
+ LAST_OPCODE(op_throw_static_error);
+
+ case op_call:
+ handleCall(interpreter, currentInstruction, Call, CodeForCall);
+ NEXT_OPCODE(op_call);
+
+ case op_construct:
+ handleCall(interpreter, currentInstruction, Construct, CodeForConstruct);
+ NEXT_OPCODE(op_construct);
+
+ case op_call_varargs: {
+ ASSERT(inlineCallFrame());
+ ASSERT(currentInstruction[3].u.operand == m_inlineStackTop->m_codeBlock->argumentsRegister());
+ ASSERT(!m_inlineStackTop->m_codeBlock->symbolTable()->slowArguments());
+ // It would be cool to funnel this into handleCall() so that it can handle
+ // inlining. But currently that won't be profitable anyway, since none of the
+ // uses of call_varargs will be inlineable. So we set this up manually and
+ // without inline/intrinsic detection.
+
+ Instruction* putInstruction = currentInstruction + OPCODE_LENGTH(op_call_varargs);
+
+ SpeculatedType prediction = SpecNone;
+ if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result) {
+ m_currentProfilingIndex = m_currentIndex + OPCODE_LENGTH(op_call_varargs);
+ prediction = getPrediction();
+ }
+
+ addToGraph(CheckArgumentsNotCreated);
+
+ unsigned argCount = inlineCallFrame()->arguments.size();
+ if (JSStack::CallFrameHeaderSize + argCount > m_parameterSlots)
+ m_parameterSlots = JSStack::CallFrameHeaderSize + argCount;
+
+ addVarArgChild(get(currentInstruction[1].u.operand)); // callee
+ addVarArgChild(get(currentInstruction[2].u.operand)); // this
+ for (unsigned argument = 1; argument < argCount; ++argument)
+ addVarArgChild(get(argumentToOperand(argument)));
+
+ Node* call = addToGraph(Node::VarArg, Call, OpInfo(0), OpInfo(prediction));
+ if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result)
+ set(putInstruction[1].u.operand, call);
+
+ NEXT_OPCODE(op_call_varargs);
+ }
+
+ case op_call_put_result:
+ NEXT_OPCODE(op_call_put_result);
+
+ case op_jneq_ptr:
+ // Statically speculate for now. It makes sense to let speculate-only jneq_ptr
+ // support simmer for a while before making it more general, since it's
+ // already gnarly enough as it is.
+ ASSERT(pointerIsFunction(currentInstruction[2].u.specialPointer));
+ addToGraph(
+ CheckFunction,
+ OpInfo(actualPointerFor(m_inlineStackTop->m_codeBlock, currentInstruction[2].u.specialPointer)),
+ get(currentInstruction[1].u.operand));
+ addToGraph(Jump, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_ptr)));
+ LAST_OPCODE(op_jneq_ptr);
+
+ case op_get_scoped_var: {
+ SpeculatedType prediction = getPrediction();
+ int dst = currentInstruction[1].u.operand;
+ int slot = currentInstruction[2].u.operand;
+ int depth = currentInstruction[3].u.operand;
+ bool hasTopScope = m_codeBlock->codeType() == FunctionCode && m_inlineStackTop->m_codeBlock->needsFullScopeChain();
+ ASSERT(!hasTopScope || depth >= 1);
+ Node* scope = getScope(hasTopScope, depth - hasTopScope);
+ Node* getScopeRegisters = addToGraph(GetScopeRegisters, scope);
+ Node* getScopedVar = addToGraph(GetScopedVar, OpInfo(slot), OpInfo(prediction), getScopeRegisters);
+ set(dst, getScopedVar);
+ NEXT_OPCODE(op_get_scoped_var);
+ }
+
+ case op_put_scoped_var: {
+ int slot = currentInstruction[1].u.operand;
+ int depth = currentInstruction[2].u.operand;
+ int source = currentInstruction[3].u.operand;
+ bool hasTopScope = m_codeBlock->codeType() == FunctionCode && m_inlineStackTop->m_codeBlock->needsFullScopeChain();
+ ASSERT(!hasTopScope || depth >= 1);
+ Node* scope = getScope(hasTopScope, depth - hasTopScope);
+ Node* scopeRegisters = addToGraph(GetScopeRegisters, scope);
+ addToGraph(PutScopedVar, OpInfo(slot), scope, scopeRegisters, get(source));
+ NEXT_OPCODE(op_put_scoped_var);
+ }
+
+ case op_resolve:
+ case op_resolve_global_property:
+ case op_resolve_global_var:
+ case op_resolve_scoped_var:
+ case op_resolve_scoped_var_on_top_scope:
+ case op_resolve_scoped_var_with_top_scope_check: {
+ SpeculatedType prediction = getPrediction();
+
+ unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
+ ResolveOperations* operations = currentInstruction[3].u.resolveOperations;
+ Node* value = 0;
+ if (parseResolveOperations(prediction, identifier, operations, 0, 0, &value)) {
+ set(currentInstruction[1].u.operand, value);
+ NEXT_OPCODE(op_resolve);
+ }
- for (size_t i = 0; i < predecessors.size(); ++i) {
- BasicBlock* predecessorBlock = m_graph.m_blocks[predecessors[i]].get();
+ Node* resolve = addToGraph(Resolve, OpInfo(m_graph.m_resolveOperationsData.size()), OpInfo(prediction));
+ m_graph.m_resolveOperationsData.append(ResolveOperationData());
+ ResolveOperationData& data = m_graph.m_resolveOperationsData.last();
+ data.identifierNumber = identifier;
+ data.resolveOperations = operations;
- VariableRecord& var = (stackType == ArgumentPhiStack) ? predecessorBlock->m_arguments[varNo] : predecessorBlock->m_locals[varNo];
+ set(currentInstruction[1].u.operand, resolve);
- NodeIndex valueInPredecessor = var.value;
- if (valueInPredecessor == NoNode) {
- valueInPredecessor = addToGraph(Phi);
- var.value = valueInPredecessor;
- phiStack.append(PhiStackEntry(predecessorBlock, valueInPredecessor, varNo));
- } else if (m_graph[valueInPredecessor].op == GetLocal)
- valueInPredecessor = m_graph[valueInPredecessor].child1;
- ASSERT(m_graph[valueInPredecessor].op == SetLocal || m_graph[valueInPredecessor].op == Phi);
+ NEXT_OPCODE(op_resolve);
+ }
- if (phiNode.refCount())
- m_graph.ref(valueInPredecessor);
+ case op_put_to_base_variable:
+ case op_put_to_base: {
+ unsigned base = currentInstruction[1].u.operand;
+ unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
+ unsigned value = currentInstruction[3].u.operand;
+ PutToBaseOperation* putToBase = currentInstruction[4].u.putToBaseOperation;
- if (phiNode.child1 == NoNode) {
- phiNode.child1 = valueInPredecessor;
- continue;
+ if (putToBase->m_isDynamic) {
+ addToGraph(PutById, OpInfo(identifier), get(base), get(value));
+ NEXT_OPCODE(op_put_to_base);
}
- if (phiNode.child2 == NoNode) {
- phiNode.child2 = valueInPredecessor;
- continue;
+
+ switch (putToBase->m_kind) {
+ case PutToBaseOperation::Uninitialised:
+ addToGraph(ForceOSRExit);
+ addToGraph(Phantom, get(base));
+ addToGraph(Phantom, get(value));
+ break;
+
+ case PutToBaseOperation::GlobalVariablePutChecked: {
+ CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock;
+ JSGlobalObject* globalObject = codeBlock->globalObject();
+ SymbolTableEntry entry = globalObject->symbolTable()->get(m_codeBlock->identifier(identifier).impl());
+ if (entry.couldBeWatched()) {
+ addToGraph(PutGlobalVarCheck,
+ OpInfo(codeBlock->globalObject()->assertRegisterIsInThisObject(putToBase->m_registerAddress)),
+ OpInfo(identifier),
+ get(value));
+ break;
+ }
}
- if (phiNode.child3 == NoNode) {
- phiNode.child3 = valueInPredecessor;
- continue;
+ case PutToBaseOperation::GlobalVariablePut:
+ addToGraph(PutGlobalVar,
+ OpInfo(m_inlineStackTop->m_codeBlock->globalObject()->assertRegisterIsInThisObject(putToBase->m_registerAddress)),
+ get(value));
+ break;
+ case PutToBaseOperation::VariablePut: {
+ Node* scope = get(base);
+ Node* scopeRegisters = addToGraph(GetScopeRegisters, scope);
+ addToGraph(PutScopedVar, OpInfo(putToBase->m_offset), scope, scopeRegisters, get(value));
+ break;
+ }
+ case PutToBaseOperation::GlobalPropertyPut: {
+ if (!putToBase->m_structure) {
+ addToGraph(ForceOSRExit);
+ addToGraph(Phantom, get(base));
+ addToGraph(Phantom, get(value));
+ NEXT_OPCODE(op_put_to_base);
+ }
+ Node* baseNode = get(base);
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(putToBase->m_structure.get())), baseNode);
+ Node* propertyStorage;
+ if (isInlineOffset(putToBase->m_offset))
+ propertyStorage = baseNode;
+ else
+ propertyStorage = addToGraph(GetButterfly, baseNode);
+ addToGraph(PutByOffset, OpInfo(m_graph.m_storageAccessData.size()), propertyStorage, baseNode, get(value));
+
+ StorageAccessData storageAccessData;
+ storageAccessData.offset = indexRelativeToBase(putToBase->m_offset);
+ storageAccessData.identifierNumber = identifier;
+ m_graph.m_storageAccessData.append(storageAccessData);
+ break;
+ }
+ case PutToBaseOperation::Readonly:
+ case PutToBaseOperation::Generic:
+ addToGraph(PutById, OpInfo(identifier), get(base), get(value));
+ }
+ NEXT_OPCODE(op_put_to_base);
+ }
+
+ case op_resolve_base_to_global:
+ case op_resolve_base_to_global_dynamic:
+ case op_resolve_base_to_scope:
+ case op_resolve_base_to_scope_with_top_scope_check:
+ case op_resolve_base: {
+ SpeculatedType prediction = getPrediction();
+
+ unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
+ ResolveOperations* operations = currentInstruction[4].u.resolveOperations;
+ PutToBaseOperation* putToBaseOperation = currentInstruction[5].u.putToBaseOperation;
+
+ Node* base = 0;
+ if (parseResolveOperations(prediction, identifier, operations, 0, &base, 0)) {
+ set(currentInstruction[1].u.operand, base);
+ NEXT_OPCODE(op_resolve_base);
+ }
+
+ Node* resolve = addToGraph(currentInstruction[3].u.operand ? ResolveBaseStrictPut : ResolveBase, OpInfo(m_graph.m_resolveOperationsData.size()), OpInfo(prediction));
+ m_graph.m_resolveOperationsData.append(ResolveOperationData());
+ ResolveOperationData& data = m_graph.m_resolveOperationsData.last();
+ data.identifierNumber = identifier;
+ data.resolveOperations = operations;
+ data.putToBaseOperation = putToBaseOperation;
+
+ set(currentInstruction[1].u.operand, resolve);
+
+ NEXT_OPCODE(op_resolve_base);
+ }
+ case op_resolve_with_base: {
+ SpeculatedType prediction = getPrediction();
+ unsigned baseDst = currentInstruction[1].u.operand;
+ unsigned valueDst = currentInstruction[2].u.operand;
+ unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
+ ResolveOperations* operations = currentInstruction[4].u.resolveOperations;
+ PutToBaseOperation* putToBaseOperation = currentInstruction[5].u.putToBaseOperation;
+
+ Node* base = 0;
+ Node* value = 0;
+ if (parseResolveOperations(prediction, identifier, operations, putToBaseOperation, &base, &value))
+ setPair(baseDst, base, valueDst, value);
+ else {
+ addToGraph(ForceOSRExit);
+ setPair(baseDst, addToGraph(GarbageValue), valueDst, addToGraph(GarbageValue));
}
- NodeIndex newPhi = addToGraph(Phi);
- Node& newPhiNode = m_graph[newPhi];
- if (phiNode.refCount())
- m_graph.ref(newPhi);
+ NEXT_OPCODE(op_resolve_with_base);
+ }
+ case op_resolve_with_this: {
+ SpeculatedType prediction = getPrediction();
+ unsigned baseDst = currentInstruction[1].u.operand;
+ unsigned valueDst = currentInstruction[2].u.operand;
+ unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
+ ResolveOperations* operations = currentInstruction[4].u.resolveOperations;
+
+ Node* base = 0;
+ Node* value = 0;
+ if (parseResolveOperations(prediction, identifier, operations, 0, &base, &value))
+ setPair(baseDst, base, valueDst, value);
+ else {
+ addToGraph(ForceOSRExit);
+ setPair(baseDst, addToGraph(GarbageValue), valueDst, addToGraph(GarbageValue));
+ }
+
+ NEXT_OPCODE(op_resolve_with_this);
+ }
+ case op_loop_hint: {
+ // Baseline->DFG OSR jumps between loop hints. The DFG assumes that Baseline->DFG
+ // OSR can only happen at basic block boundaries. Assert that these two statements
+ // are compatible.
+ RELEASE_ASSERT(m_currentIndex == blockBegin);
+
+ // We never do OSR into an inlined code block. That could not happen, since OSR
+ // looks up the code block that is the replacement for the baseline JIT code
+ // block. Hence, machine code block = true code block = not inline code block.
+ if (!m_inlineStackTop->m_caller)
+ m_currentBlock->isOSRTarget = true;
+
+ if (m_vm->watchdog.isEnabled())
+ addToGraph(CheckWatchdogTimer);
+ else {
+ // Emit a phantom node to ensure that there is a placeholder
+ // node for this bytecode op.
+ addToGraph(Phantom);
+ }
+
+ NEXT_OPCODE(op_loop_hint);
+ }
+
+ case op_init_lazy_reg: {
+ set(currentInstruction[1].u.operand, getJSConstantForValue(JSValue()));
+ NEXT_OPCODE(op_init_lazy_reg);
+ }
+
+ case op_create_activation: {
+ set(currentInstruction[1].u.operand, addToGraph(CreateActivation, get(currentInstruction[1].u.operand)));
+ NEXT_OPCODE(op_create_activation);
+ }
+
+ case op_create_arguments: {
+ m_graph.m_hasArguments = true;
+ Node* createArguments = addToGraph(CreateArguments, get(currentInstruction[1].u.operand));
+ set(currentInstruction[1].u.operand, createArguments);
+ set(unmodifiedArgumentsRegister(currentInstruction[1].u.operand), createArguments);
+ NEXT_OPCODE(op_create_arguments);
+ }
+
+ case op_tear_off_activation: {
+ addToGraph(TearOffActivation, get(currentInstruction[1].u.operand));
+ NEXT_OPCODE(op_tear_off_activation);
+ }
+
+ case op_tear_off_arguments: {
+ m_graph.m_hasArguments = true;
+ addToGraph(TearOffArguments, get(unmodifiedArgumentsRegister(currentInstruction[1].u.operand)), get(currentInstruction[2].u.operand));
+ NEXT_OPCODE(op_tear_off_arguments);
+ }
+
+ case op_get_arguments_length: {
+ m_graph.m_hasArguments = true;
+ set(currentInstruction[1].u.operand, addToGraph(GetMyArgumentsLengthSafe));
+ NEXT_OPCODE(op_get_arguments_length);
+ }
+
+ case op_get_argument_by_val: {
+ m_graph.m_hasArguments = true;
+ set(currentInstruction[1].u.operand,
+ addToGraph(
+ GetMyArgumentByValSafe, OpInfo(0), OpInfo(getPrediction()),
+ get(currentInstruction[3].u.operand)));
+ NEXT_OPCODE(op_get_argument_by_val);
+ }
+
+ case op_new_func: {
+ if (!currentInstruction[3].u.operand) {
+ set(currentInstruction[1].u.operand,
+ addToGraph(NewFunctionNoCheck, OpInfo(currentInstruction[2].u.operand)));
+ } else {
+ set(currentInstruction[1].u.operand,
+ addToGraph(
+ NewFunction,
+ OpInfo(currentInstruction[2].u.operand),
+ get(currentInstruction[1].u.operand)));
+ }
+ NEXT_OPCODE(op_new_func);
+ }
+
+ case op_new_func_exp: {
+ set(currentInstruction[1].u.operand,
+ addToGraph(NewFunctionExpression, OpInfo(currentInstruction[2].u.operand)));
+ NEXT_OPCODE(op_new_func_exp);
+ }
+
+ case op_typeof: {
+ set(currentInstruction[1].u.operand,
+ addToGraph(TypeOf, get(currentInstruction[2].u.operand)));
+ NEXT_OPCODE(op_typeof);
+ }
- newPhiNode.child1 = phiNode.child1;
- newPhiNode.child2 = phiNode.child2;
- newPhiNode.child3 = phiNode.child3;
+ case op_to_number: {
+ set(currentInstruction[1].u.operand,
+ addToGraph(Identity, Edge(get(currentInstruction[2].u.operand), NumberUse)));
+ NEXT_OPCODE(op_to_number);
+ }
- phiNode.child1 = newPhi;
- phiNode.child1 = valueInPredecessor;
- phiNode.child3 = NoNode;
+ default:
+ // Parse failed! This should not happen because the capabilities checker
+ // should have caught it.
+ RELEASE_ASSERT_NOT_REACHED();
+ return false;
}
}
}
-void ByteCodeParser::setupPredecessors()
+void ByteCodeParser::linkBlock(BasicBlock* block, Vector<BlockIndex>& possibleTargets)
{
- for (BlockIndex index = 0; index < m_graph.m_blocks.size(); ++index) {
- BasicBlock* block = m_graph.m_blocks[index].get();
- ASSERT(block->end != NoNode);
- Node& node = m_graph[block->end - 1];
- ASSERT(node.isTerminal());
+ ASSERT(!block->isLinked);
+ ASSERT(!block->isEmpty());
+ Node* node = block->last();
+ ASSERT(node->isTerminal());
+
+ switch (node->op()) {
+ case Jump:
+ node->setTakenBlockIndex(m_graph.blockIndexForBytecodeOffset(possibleTargets, node->takenBytecodeOffsetDuringParsing()));
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Linked basic block %p to %p, #%u.\n", block, m_graph.m_blocks[node->takenBlockIndex()].get(), node->takenBlockIndex());
+#endif
+ break;
+
+ case Branch:
+ node->setTakenBlockIndex(m_graph.blockIndexForBytecodeOffset(possibleTargets, node->takenBytecodeOffsetDuringParsing()));
+ node->setNotTakenBlockIndex(m_graph.blockIndexForBytecodeOffset(possibleTargets, node->notTakenBytecodeOffsetDuringParsing()));
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Linked basic block %p to %p, #%u and %p, #%u.\n", block, m_graph.m_blocks[node->takenBlockIndex()].get(), node->takenBlockIndex(), m_graph.m_blocks[node->notTakenBlockIndex()].get(), node->notTakenBlockIndex());
+#endif
+ break;
+
+ default:
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Marking basic block %p as linked.\n", block);
+#endif
+ break;
+ }
+
+#if !ASSERT_DISABLED
+ block->isLinked = true;
+#endif
+}
- if (node.isJump())
- m_graph.blockForBytecodeOffset(node.takenBytecodeOffset()).m_predecessors.append(index);
- else if (node.isBranch()) {
- m_graph.blockForBytecodeOffset(node.takenBytecodeOffset()).m_predecessors.append(index);
- m_graph.blockForBytecodeOffset(node.notTakenBytecodeOffset()).m_predecessors.append(index);
+void ByteCodeParser::linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BlockIndex>& possibleTargets)
+{
+ for (size_t i = 0; i < unlinkedBlocks.size(); ++i) {
+ if (unlinkedBlocks[i].m_needsNormalLinking) {
+ linkBlock(m_graph.m_blocks[unlinkedBlocks[i].m_blockIndex].get(), possibleTargets);
+ unlinkedBlocks[i].m_needsNormalLinking = false;
}
}
}
-void ByteCodeParser::allocateVirtualRegisters()
+void ByteCodeParser::buildOperandMapsIfNecessary()
{
- ScoreBoard scoreBoard(m_graph, m_preservedVars);
- unsigned sizeExcludingPhiNodes = m_graph.m_blocks.last()->end;
- for (size_t i = 0; i < sizeExcludingPhiNodes; ++i) {
- Node& node = m_graph[i];
- if (!node.shouldGenerate())
- continue;
+ if (m_haveBuiltOperandMaps)
+ return;
+
+ for (size_t i = 0; i < m_codeBlock->numberOfIdentifiers(); ++i)
+ m_identifierMap.add(m_codeBlock->identifier(i).impl(), i);
+ for (size_t i = 0; i < m_codeBlock->numberOfConstantRegisters(); ++i) {
+ JSValue value = m_codeBlock->getConstant(i + FirstConstantRegisterIndex);
+ if (!value)
+ m_emptyJSValueIndex = i + FirstConstantRegisterIndex;
+ else
+ m_jsValueMap.add(JSValue::encode(value), i + FirstConstantRegisterIndex);
+ }
+
+ m_haveBuiltOperandMaps = true;
+}
- // GetLocal nodes are effectively phi nodes in the graph, referencing
- // results from prior blocks.
- if (node.op != GetLocal) {
- // First, call use on all of the current node's children, then
- // allocate a VirtualRegister for this node. We do so in this
- // order so that if a child is on its last use, and a
- // VirtualRegister is freed, then it may be reused for node.
- scoreBoard.use(node.child1);
- scoreBoard.use(node.child2);
- scoreBoard.use(node.child3);
+ByteCodeParser::InlineStackEntry::InlineStackEntry(
+ ByteCodeParser* byteCodeParser,
+ CodeBlock* codeBlock,
+ CodeBlock* profiledBlock,
+ BlockIndex callsiteBlockHead,
+ JSFunction* callee, // Null if this is a closure call.
+ VirtualRegister returnValueVR,
+ VirtualRegister inlineCallFrameStart,
+ int argumentCountIncludingThis,
+ CodeSpecializationKind kind)
+ : m_byteCodeParser(byteCodeParser)
+ , m_codeBlock(codeBlock)
+ , m_profiledBlock(profiledBlock)
+ , m_exitProfile(profiledBlock->exitProfile())
+ , m_callsiteBlockHead(callsiteBlockHead)
+ , m_returnValue(returnValueVR)
+ , m_lazyOperands(profiledBlock->lazyOperandValueProfiles())
+ , m_didReturn(false)
+ , m_didEarlyReturn(false)
+ , m_caller(byteCodeParser->m_inlineStackTop)
+{
+ m_argumentPositions.resize(argumentCountIncludingThis);
+ for (int i = 0; i < argumentCountIncludingThis; ++i) {
+ byteCodeParser->m_graph.m_argumentPositions.append(ArgumentPosition());
+ ArgumentPosition* argumentPosition = &byteCodeParser->m_graph.m_argumentPositions.last();
+ m_argumentPositions[i] = argumentPosition;
+ }
+
+ // Track the code-block-global exit sites.
+ if (m_exitProfile.hasExitSite(ArgumentsEscaped)) {
+ byteCodeParser->m_graph.m_executablesWhoseArgumentsEscaped.add(
+ codeBlock->ownerExecutable());
+ }
+
+ if (m_caller) {
+ // Inline case.
+ ASSERT(codeBlock != byteCodeParser->m_codeBlock);
+ ASSERT(inlineCallFrameStart != InvalidVirtualRegister);
+ ASSERT(callsiteBlockHead != NoBlock);
+
+ InlineCallFrame inlineCallFrame;
+ inlineCallFrame.executable.set(*byteCodeParser->m_vm, byteCodeParser->m_codeBlock->ownerExecutable(), codeBlock->ownerExecutable());
+ inlineCallFrame.stackOffset = inlineCallFrameStart + JSStack::CallFrameHeaderSize;
+ if (callee)
+ inlineCallFrame.callee.set(*byteCodeParser->m_vm, byteCodeParser->m_codeBlock->ownerExecutable(), callee);
+ inlineCallFrame.caller = byteCodeParser->currentCodeOrigin();
+ inlineCallFrame.arguments.resize(argumentCountIncludingThis); // Set the number of arguments including this, but don't configure the value recoveries, yet.
+ inlineCallFrame.isCall = isCall(kind);
+
+ if (inlineCallFrame.caller.inlineCallFrame)
+ inlineCallFrame.capturedVars = inlineCallFrame.caller.inlineCallFrame->capturedVars;
+ else {
+ for (int i = byteCodeParser->m_codeBlock->m_numVars; i--;) {
+ if (byteCodeParser->m_codeBlock->isCaptured(i))
+ inlineCallFrame.capturedVars.set(i);
+ }
}
- if (!node.hasResult())
- continue;
+ for (int i = argumentCountIncludingThis; i--;) {
+ if (codeBlock->isCaptured(argumentToOperand(i)))
+ inlineCallFrame.capturedVars.set(argumentToOperand(i) + inlineCallFrame.stackOffset);
+ }
+ for (size_t i = codeBlock->m_numVars; i--;) {
+ if (codeBlock->isCaptured(i))
+ inlineCallFrame.capturedVars.set(i + inlineCallFrame.stackOffset);
+ }
- node.setVirtualRegister(scoreBoard.allocate());
- // 'mustGenerate' nodes have their useCount artificially elevated,
- // call use now to account for this.
- if (node.mustGenerate())
- scoreBoard.use(i);
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Current captured variables: ");
+ inlineCallFrame.capturedVars.dump(WTF::dataFile());
+ dataLogF("\n");
+#endif
+
+ byteCodeParser->m_codeBlock->inlineCallFrames().append(inlineCallFrame);
+ m_inlineCallFrame = &byteCodeParser->m_codeBlock->inlineCallFrames().last();
+
+ byteCodeParser->buildOperandMapsIfNecessary();
+
+ m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
+ m_constantRemap.resize(codeBlock->numberOfConstantRegisters());
+ m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers());
+
+ for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i) {
+ StringImpl* rep = codeBlock->identifier(i).impl();
+ IdentifierMap::AddResult result = byteCodeParser->m_identifierMap.add(rep, byteCodeParser->m_codeBlock->numberOfIdentifiers());
+ if (result.isNewEntry)
+ byteCodeParser->m_codeBlock->addIdentifier(Identifier(byteCodeParser->m_vm, rep));
+ m_identifierRemap[i] = result.iterator->value;
+ }
+ for (size_t i = 0; i < codeBlock->numberOfConstantRegisters(); ++i) {
+ JSValue value = codeBlock->getConstant(i + FirstConstantRegisterIndex);
+ if (!value) {
+ if (byteCodeParser->m_emptyJSValueIndex == UINT_MAX) {
+ byteCodeParser->m_emptyJSValueIndex = byteCodeParser->m_codeBlock->numberOfConstantRegisters() + FirstConstantRegisterIndex;
+ byteCodeParser->m_codeBlock->addConstant(JSValue());
+ byteCodeParser->m_constants.append(ConstantRecord());
+ }
+ m_constantRemap[i] = byteCodeParser->m_emptyJSValueIndex;
+ continue;
+ }
+ JSValueMap::AddResult result = byteCodeParser->m_jsValueMap.add(JSValue::encode(value), byteCodeParser->m_codeBlock->numberOfConstantRegisters() + FirstConstantRegisterIndex);
+ if (result.isNewEntry) {
+ byteCodeParser->m_codeBlock->addConstant(value);
+ byteCodeParser->m_constants.append(ConstantRecord());
+ }
+ m_constantRemap[i] = result.iterator->value;
+ }
+ for (unsigned i = 0; i < codeBlock->numberOfConstantBuffers(); ++i) {
+ // If we inline the same code block multiple times, we don't want to needlessly
+ // duplicate its constant buffers.
+ HashMap<ConstantBufferKey, unsigned>::iterator iter =
+ byteCodeParser->m_constantBufferCache.find(ConstantBufferKey(codeBlock, i));
+ if (iter != byteCodeParser->m_constantBufferCache.end()) {
+ m_constantBufferRemap[i] = iter->value;
+ continue;
+ }
+ Vector<JSValue>& buffer = codeBlock->constantBufferAsVector(i);
+ unsigned newIndex = byteCodeParser->m_codeBlock->addConstantBuffer(buffer);
+ m_constantBufferRemap[i] = newIndex;
+ byteCodeParser->m_constantBufferCache.add(ConstantBufferKey(codeBlock, i), newIndex);
+ }
+ m_callsiteBlockHeadNeedsLinking = true;
+ } else {
+ // Machine code block case.
+ ASSERT(codeBlock == byteCodeParser->m_codeBlock);
+ ASSERT(!callee);
+ ASSERT(returnValueVR == InvalidVirtualRegister);
+ ASSERT(inlineCallFrameStart == InvalidVirtualRegister);
+ ASSERT(callsiteBlockHead == NoBlock);
+
+ m_inlineCallFrame = 0;
+
+ m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
+ m_constantRemap.resize(codeBlock->numberOfConstantRegisters());
+ m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers());
+ for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i)
+ m_identifierRemap[i] = i;
+ for (size_t i = 0; i < codeBlock->numberOfConstantRegisters(); ++i)
+ m_constantRemap[i] = i + FirstConstantRegisterIndex;
+ for (size_t i = 0; i < codeBlock->numberOfConstantBuffers(); ++i)
+ m_constantBufferRemap[i] = i;
+ m_callsiteBlockHeadNeedsLinking = false;
}
-
- // 'm_numCalleeRegisters' is the number of locals and temporaries allocated
- // for the function (and checked for on entry). Since we perform a new and
- // different allocation of temporaries, more registers may now be required.
- unsigned calleeRegisters = scoreBoard.allocatedCount() + m_preservedVars;
- if ((unsigned)m_codeBlock->m_numCalleeRegisters < calleeRegisters)
- m_codeBlock->m_numCalleeRegisters = calleeRegisters;
+
+ for (size_t i = 0; i < m_constantRemap.size(); ++i)
+ ASSERT(m_constantRemap[i] >= static_cast<unsigned>(FirstConstantRegisterIndex));
+
+ byteCodeParser->m_inlineStackTop = this;
}
-bool ByteCodeParser::parse()
+void ByteCodeParser::parseCodeBlock()
{
- // Set during construction.
- ASSERT(!m_currentIndex);
-
- for (unsigned jumpTargetIndex = 0; jumpTargetIndex <= m_codeBlock->numberOfJumpTargets(); ++jumpTargetIndex) {
+ CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock;
+
+ if (m_graph.m_compilation) {
+ m_graph.m_compilation->addProfiledBytecodes(
+ *m_vm->m_perBytecodeProfiler, m_inlineStackTop->m_profiledBlock);
+ }
+
+ bool shouldDumpBytecode = Options::dumpBytecodeAtDFGTime();
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ shouldDumpBytecode |= true;
+#endif
+ if (shouldDumpBytecode) {
+ dataLog("Parsing ", *codeBlock);
+ if (inlineCallFrame()) {
+ dataLog(
+ " for inlining at ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT),
+ " ", inlineCallFrame()->caller);
+ }
+ dataLog(
+ ": captureCount = ", codeBlock->symbolTable() ? codeBlock->symbolTable()->captureCount() : 0,
+ ", needsFullScopeChain = ", codeBlock->needsFullScopeChain(),
+ ", needsActivation = ", codeBlock->ownerExecutable()->needsActivation(),
+ ", isStrictMode = ", codeBlock->ownerExecutable()->isStrictMode(), "\n");
+ codeBlock->baselineVersion()->dumpBytecode();
+ }
+
+ Vector<unsigned, 32> jumpTargets;
+ computePreciseJumpTargets(codeBlock, jumpTargets);
+ if (Options::dumpBytecodeAtDFGTime()) {
+ dataLog("Jump targets: ");
+ CommaPrinter comma;
+ for (unsigned i = 0; i < jumpTargets.size(); ++i)
+ dataLog(comma, jumpTargets[i]);
+ dataLog("\n");
+ }
+
+ for (unsigned jumpTargetIndex = 0; jumpTargetIndex <= jumpTargets.size(); ++jumpTargetIndex) {
// The maximum bytecode offset to go into the current basicblock is either the next jump target, or the end of the instructions.
- unsigned limit = jumpTargetIndex < m_codeBlock->numberOfJumpTargets() ? m_codeBlock->jumpTarget(jumpTargetIndex) : m_codeBlock->instructions().size();
+ unsigned limit = jumpTargetIndex < jumpTargets.size() ? jumpTargets[jumpTargetIndex] : codeBlock->instructions().size();
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLog(
+ "Parsing bytecode with limit ", pointerDump(inlineCallFrame()),
+ " bc#", limit, " at inline depth ",
+ CodeOrigin::inlineDepthForCallFrame(inlineCallFrame()), ".\n");
+#endif
ASSERT(m_currentIndex < limit);
// Loop until we reach the current limit (i.e. next jump target).
do {
- OwnPtr<BasicBlock> block = adoptPtr(new BasicBlock(m_currentIndex, m_graph.size(), m_numArguments, m_numLocals));
- m_currentBlock = block.get();
- m_graph.m_blocks.append(block.release());
+ if (!m_currentBlock) {
+ // Check if we can use the last block.
+ if (!m_graph.m_blocks.isEmpty() && m_graph.m_blocks.last()->isEmpty()) {
+ // This must be a block belonging to us.
+ ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_blockIndex == m_graph.m_blocks.size() - 1);
+ // Either the block is linkable or it isn't. If it's linkable then it's the last
+ // block in the blockLinkingTargets list. If it's not then the last block will
+ // have a lower bytecode index that the one we're about to give to this block.
+ if (m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_graph.m_blocks[m_inlineStackTop->m_blockLinkingTargets.last()]->bytecodeBegin != m_currentIndex) {
+ // Make the block linkable.
+ ASSERT(m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_graph.m_blocks[m_inlineStackTop->m_blockLinkingTargets.last()]->bytecodeBegin < m_currentIndex);
+ m_inlineStackTop->m_blockLinkingTargets.append(m_graph.m_blocks.size() - 1);
+ }
+ // Change its bytecode begin and continue.
+ m_currentBlock = m_graph.m_blocks.last().get();
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Reascribing bytecode index of block %p from bc#%u to bc#%u (peephole case).\n", m_currentBlock, m_currentBlock->bytecodeBegin, m_currentIndex);
+#endif
+ m_currentBlock->bytecodeBegin = m_currentIndex;
+ } else {
+ OwnPtr<BasicBlock> block = adoptPtr(new BasicBlock(m_currentIndex, m_numArguments, m_numLocals));
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ dataLogF("Creating basic block %p, #%zu for %p bc#%u at inline depth %u.\n", block.get(), m_graph.m_blocks.size(), m_inlineStackTop->executable(), m_currentIndex, CodeOrigin::inlineDepthForCallFrame(inlineCallFrame()));
+#endif
+ m_currentBlock = block.get();
+ // This assertion checks two things:
+ // 1) If the bytecodeBegin is greater than currentIndex, then something has gone
+ // horribly wrong. So, we're probably generating incorrect code.
+ // 2) If the bytecodeBegin is equal to the currentIndex, then we failed to do
+ // a peephole coalescing of this block in the if statement above. So, we're
+ // generating suboptimal code and leaving more work for the CFG simplifier.
+ ASSERT(m_inlineStackTop->m_unlinkedBlocks.isEmpty() || m_graph.m_blocks[m_inlineStackTop->m_unlinkedBlocks.last().m_blockIndex]->bytecodeBegin < m_currentIndex);
+ m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.m_blocks.size()));
+ m_inlineStackTop->m_blockLinkingTargets.append(m_graph.m_blocks.size());
+ // The first block is definitely an OSR target.
+ if (!m_graph.m_blocks.size())
+ block->isOSRTarget = true;
+ m_graph.m_blocks.append(block.release());
+ prepareToParseBlock();
+ }
+ }
+
+ bool shouldContinueParsing = parseBlock(limit);
- if (!parseBlock(limit))
- return false;
// We should not have gone beyond the limit.
ASSERT(m_currentIndex <= limit);
-
- m_currentBlock->end = m_graph.size();
+
+ // We should have planted a terminal, or we just gave up because
+ // we realized that the jump target information is imprecise, or we
+ // are at the end of an inline function, or we realized that we
+ // should stop parsing because there was a return in the first
+ // basic block.
+ ASSERT(m_currentBlock->isEmpty() || m_currentBlock->last()->isTerminal() || (m_currentIndex == codeBlock->instructions().size() && inlineCallFrame()) || !shouldContinueParsing);
+
+ if (!shouldContinueParsing)
+ return;
+
+ m_currentBlock = 0;
} while (m_currentIndex < limit);
}
// Should have reached the end of the instructions.
- ASSERT(m_currentIndex == m_codeBlock->instructions().size());
-
- setupPredecessors();
- processPhiStack<LocalPhiStack>();
- processPhiStack<ArgumentPhiStack>();
-
- allocateVirtualRegisters();
+ ASSERT(m_currentIndex == codeBlock->instructions().size());
+}
-#if DFG_DEBUG_VERBOSE
- m_graph.dump(m_codeBlock);
+bool ByteCodeParser::parse()
+{
+ // Set during construction.
+ ASSERT(!m_currentIndex);
+
+#if DFG_ENABLE(ALL_VARIABLES_CAPTURED)
+ // We should be pretending that the code has an activation.
+ ASSERT(m_graph.needsActivation());
#endif
+
+ InlineStackEntry inlineStackEntry(
+ this, m_codeBlock, m_profiledBlock, NoBlock, 0, InvalidVirtualRegister, InvalidVirtualRegister,
+ m_codeBlock->numParameters(), CodeForCall);
+
+ parseCodeBlock();
+
+ linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets);
+ m_graph.determineReachability();
+
+ ASSERT(m_preservedVars.size());
+ size_t numberOfLocals = 0;
+ for (size_t i = m_preservedVars.size(); i--;) {
+ if (m_preservedVars.quickGet(i)) {
+ numberOfLocals = i + 1;
+ break;
+ }
+ }
+
+ for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex) {
+ BasicBlock* block = m_graph.m_blocks[blockIndex].get();
+ ASSERT(block);
+ if (!block->isReachable) {
+ m_graph.m_blocks[blockIndex].clear();
+ continue;
+ }
+
+ block->variablesAtHead.ensureLocals(numberOfLocals);
+ block->variablesAtTail.ensureLocals(numberOfLocals);
+ }
+
+ m_graph.m_preservedVars = m_preservedVars;
+ m_graph.m_localVars = m_numLocals;
+ m_graph.m_parameterSlots = m_parameterSlots;
return true;
}
-bool parse(Graph& graph, JSGlobalData* globalData, CodeBlock* codeBlock)
+bool parse(ExecState*, Graph& graph)
{
+ SamplingRegion samplingRegion("DFG Parsing");
#if DFG_DEBUG_LOCAL_DISBALE
+ UNUSED_PARAM(exec);
UNUSED_PARAM(graph);
- UNUSED_PARAM(globalData);
- UNUSED_PARAM(codeBlock);
return false;
#else
- return ByteCodeParser(globalData, codeBlock, graph).parse();
+ return ByteCodeParser(graph).parse();
#endif
}