]> git.saurik.com Git - apple/javascriptcore.git/blobdiff - dfg/DFGSpeculativeJIT.h
JavaScriptCore-1218.34.tar.gz
[apple/javascriptcore.git] / dfg / DFGSpeculativeJIT.h
index 82fd403305af6dfdc987fae51ca5d675dcc53a49..90c1cc0426e4d6f7bf6fd28015e582f17c012c17 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (C) 2011 Apple Inc. All rights reserved.
+ * Copyright (C) 2011, 2012, 2013 Apple Inc. All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
 #ifndef DFGSpeculativeJIT_h
 #define DFGSpeculativeJIT_h
 
+#include <wtf/Platform.h>
+
 #if ENABLE(DFG_JIT)
 
-#include <dfg/DFGJITCodeGenerator.h>
+#include "DFGAbstractState.h"
+#include "DFGGenerationInfo.h"
+#include "DFGJITCompiler.h"
+#include "DFGOSRExit.h"
+#include "DFGOSRExitJumpPlaceholder.h"
+#include "DFGOperations.h"
+#include "DFGSilentRegisterSavePlan.h"
+#include "DFGValueSource.h"
+#include "MarkedAllocator.h"
+#include "ValueRecovery.h"
+
+namespace JSC { namespace DFG {
+
+class GPRTemporary;
+class JSValueOperand;
+class SlowPathGenerator;
+class SpeculativeJIT;
+class SpeculateIntegerOperand;
+class SpeculateStrictInt32Operand;
+class SpeculateDoubleOperand;
+class SpeculateCellOperand;
+class SpeculateBooleanOperand;
+
+enum GeneratedOperandType { GeneratedOperandTypeUnknown, GeneratedOperandInteger, GeneratedOperandDouble, GeneratedOperandJSValue};
+
+// === SpeculativeJIT ===
+//
+// The SpeculativeJIT is used to generate a fast, but potentially
+// incomplete code path for the dataflow. When code generating
+// we may make assumptions about operand types, dynamically check,
+// and bail-out to an alternate code path if these checks fail.
+// Importantly, the speculative code path cannot be reentered once
+// a speculative check has failed. This allows the SpeculativeJIT
+// to propagate type information (including information that has
+// only speculatively been asserted) through the dataflow.
+class SpeculativeJIT {
+    friend struct OSRExit;
+private:
+    typedef JITCompiler::TrustedImm32 TrustedImm32;
+    typedef JITCompiler::Imm32 Imm32;
+    typedef JITCompiler::TrustedImmPtr TrustedImmPtr;
+    typedef JITCompiler::ImmPtr ImmPtr;
+    typedef JITCompiler::TrustedImm64 TrustedImm64;
+    typedef JITCompiler::Imm64 Imm64;
+
+    // These constants are used to set priorities for spill order for
+    // the register allocator.
+#if USE(JSVALUE64)
+    enum SpillOrder {
+        SpillOrderConstant = 1, // no spill, and cheap fill
+        SpillOrderSpilled  = 2, // no spill
+        SpillOrderJS       = 4, // needs spill
+        SpillOrderCell     = 4, // needs spill
+        SpillOrderStorage  = 4, // needs spill
+        SpillOrderInteger  = 5, // needs spill and box
+        SpillOrderBoolean  = 5, // needs spill and box
+        SpillOrderDouble   = 6, // needs spill and convert
+    };
+#elif USE(JSVALUE32_64)
+    enum SpillOrder {
+        SpillOrderConstant = 1, // no spill, and cheap fill
+        SpillOrderSpilled  = 2, // no spill
+        SpillOrderJS       = 4, // needs spill
+        SpillOrderStorage  = 4, // needs spill
+        SpillOrderDouble   = 4, // needs spill
+        SpillOrderInteger  = 5, // needs spill and box
+        SpillOrderCell     = 5, // needs spill and box
+        SpillOrderBoolean  = 5, // needs spill and box
+    };
+#endif
+
+    enum UseChildrenMode { CallUseChildren, UseChildrenCalledExplicitly };
+    
+public:
+    SpeculativeJIT(JITCompiler&);
+    ~SpeculativeJIT();
+
+    bool compile();
+    void createOSREntries();
+    void linkOSREntries(LinkBuffer&);
+
+    BlockIndex nextBlock()
+    {
+        for (BlockIndex result = m_block + 1; ; result++) {
+            if (result >= m_jit.graph().m_blocks.size())
+                return NoBlock;
+            if (m_jit.graph().m_blocks[result])
+                return result;
+        }
+    }
+    
+    GPRReg fillInteger(Edge, DataFormat& returnFormat);
+#if USE(JSVALUE64)
+    GPRReg fillJSValue(Edge);
+#elif USE(JSVALUE32_64)
+    bool fillJSValue(Edge, GPRReg&, GPRReg&, FPRReg&);
+#endif
+    GPRReg fillStorage(Edge);
+
+    // lock and unlock GPR & FPR registers.
+    void lock(GPRReg reg)
+    {
+        m_gprs.lock(reg);
+    }
+    void lock(FPRReg reg)
+    {
+        m_fprs.lock(reg);
+    }
+    void unlock(GPRReg reg)
+    {
+        m_gprs.unlock(reg);
+    }
+    void unlock(FPRReg reg)
+    {
+        m_fprs.unlock(reg);
+    }
+
+    // Used to check whether a child node is on its last use,
+    // and its machine registers may be reused.
+    bool canReuse(Node* node)
+    {
+        VirtualRegister virtualRegister = node->virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        return info.canReuse();
+    }
+    bool canReuse(Edge nodeUse)
+    {
+        return canReuse(nodeUse.node());
+    }
+    GPRReg reuse(GPRReg reg)
+    {
+        m_gprs.lock(reg);
+        return reg;
+    }
+    FPRReg reuse(FPRReg reg)
+    {
+        m_fprs.lock(reg);
+        return reg;
+    }
+
+    // Allocate a gpr/fpr.
+    GPRReg allocate()
+    {
+#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
+        m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
+#endif
+        VirtualRegister spillMe;
+        GPRReg gpr = m_gprs.allocate(spillMe);
+        if (spillMe != InvalidVirtualRegister) {
+#if USE(JSVALUE32_64)
+            GenerationInfo& info = m_generationInfo[spillMe];
+            RELEASE_ASSERT(info.registerFormat() != DataFormatJSDouble);
+            if ((info.registerFormat() & DataFormatJS))
+                m_gprs.release(info.tagGPR() == gpr ? info.payloadGPR() : info.tagGPR());
+#endif
+            spill(spillMe);
+        }
+        return gpr;
+    }
+    GPRReg allocate(GPRReg specific)
+    {
+#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
+        m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
+#endif
+        VirtualRegister spillMe = m_gprs.allocateSpecific(specific);
+        if (spillMe != InvalidVirtualRegister) {
+#if USE(JSVALUE32_64)
+            GenerationInfo& info = m_generationInfo[spillMe];
+            RELEASE_ASSERT(info.registerFormat() != DataFormatJSDouble);
+            if ((info.registerFormat() & DataFormatJS))
+                m_gprs.release(info.tagGPR() == specific ? info.payloadGPR() : info.tagGPR());
+#endif
+            spill(spillMe);
+        }
+        return specific;
+    }
+    GPRReg tryAllocate()
+    {
+        return m_gprs.tryAllocate();
+    }
+    FPRReg fprAllocate()
+    {
+#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
+        m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
+#endif
+        VirtualRegister spillMe;
+        FPRReg fpr = m_fprs.allocate(spillMe);
+        if (spillMe != InvalidVirtualRegister)
+            spill(spillMe);
+        return fpr;
+    }
+
+    // Check whether a VirtualRegsiter is currently in a machine register.
+    // We use this when filling operands to fill those that are already in
+    // machine registers first (by locking VirtualRegsiters that are already
+    // in machine register before filling those that are not we attempt to
+    // avoid spilling values we will need immediately).
+    bool isFilled(Node* node)
+    {
+        VirtualRegister virtualRegister = node->virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        return info.registerFormat() != DataFormatNone;
+    }
+    bool isFilledDouble(Node* node)
+    {
+        VirtualRegister virtualRegister = node->virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        return info.registerFormat() == DataFormatDouble;
+    }
+
+    // Called on an operand once it has been consumed by a parent node.
+    void use(Node* node)
+    {
+        if (!node->hasResult())
+            return;
+        VirtualRegister virtualRegister = node->virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+
+        // use() returns true when the value becomes dead, and any
+        // associated resources may be freed.
+        if (!info.use(*m_stream))
+            return;
+
+        // Release the associated machine registers.
+        DataFormat registerFormat = info.registerFormat();
+#if USE(JSVALUE64)
+        if (registerFormat == DataFormatDouble)
+            m_fprs.release(info.fpr());
+        else if (registerFormat != DataFormatNone)
+            m_gprs.release(info.gpr());
+#elif USE(JSVALUE32_64)
+        if (registerFormat == DataFormatDouble || registerFormat == DataFormatJSDouble)
+            m_fprs.release(info.fpr());
+        else if (registerFormat & DataFormatJS) {
+            m_gprs.release(info.tagGPR());
+            m_gprs.release(info.payloadGPR());
+        } else if (registerFormat != DataFormatNone)
+            m_gprs.release(info.gpr());
+#endif
+    }
+    void use(Edge nodeUse)
+    {
+        use(nodeUse.node());
+    }
+    
+    RegisterSet usedRegisters()
+    {
+        RegisterSet result;
+        for (unsigned i = GPRInfo::numberOfRegisters; i--;) {
+            GPRReg gpr = GPRInfo::toRegister(i);
+            if (m_gprs.isInUse(gpr))
+                result.set(gpr);
+        }
+        for (unsigned i = FPRInfo::numberOfRegisters; i--;) {
+            FPRReg fpr = FPRInfo::toRegister(i);
+            if (m_fprs.isInUse(fpr))
+                result.set(fpr);
+        }
+        return result;
+    }
+
+    static void writeBarrier(MacroAssembler&, GPRReg ownerGPR, GPRReg scratchGPR1, GPRReg scratchGPR2, WriteBarrierUseKind);
+
+    void writeBarrier(GPRReg ownerGPR, GPRReg valueGPR, Edge valueUse, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg, GPRReg scratchGPR2 = InvalidGPRReg);
+    void writeBarrier(GPRReg ownerGPR, JSCell* value, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg, GPRReg scratchGPR2 = InvalidGPRReg);
+    void writeBarrier(JSCell* owner, GPRReg valueGPR, Edge valueUse, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg);
+
+    static GPRReg selectScratchGPR(GPRReg preserve1 = InvalidGPRReg, GPRReg preserve2 = InvalidGPRReg, GPRReg preserve3 = InvalidGPRReg, GPRReg preserve4 = InvalidGPRReg)
+    {
+        return AssemblyHelpers::selectScratchGPR(preserve1, preserve2, preserve3, preserve4);
+    }
+
+    // Called by the speculative operand types, below, to fill operand to
+    // machine registers, implicitly generating speculation checks as needed.
+    GPRReg fillSpeculateInt(Edge, DataFormat& returnFormat);
+    GPRReg fillSpeculateIntStrict(Edge);
+    FPRReg fillSpeculateDouble(Edge);
+    GPRReg fillSpeculateCell(Edge);
+    GPRReg fillSpeculateBoolean(Edge);
+    GeneratedOperandType checkGeneratedTypeForToInt32(Node*);
+
+    void addSlowPathGenerator(PassOwnPtr<SlowPathGenerator>);
+    void runSlowPathGenerators();
+    
+    void compile(Node*);
+    void noticeOSRBirth(Node*);
+    void compile(BasicBlock&);
+
+    void checkArgumentTypes();
+
+    void clearGenerationInfo();
+
+    // These methods are used when generating 'unexpected'
+    // calls out from JIT code to C++ helper routines -
+    // they spill all live values to the appropriate
+    // slots in the JSStack without changing any state
+    // in the GenerationInfo.
+    SilentRegisterSavePlan silentSavePlanForGPR(VirtualRegister spillMe, GPRReg source);
+    SilentRegisterSavePlan silentSavePlanForFPR(VirtualRegister spillMe, FPRReg source);
+    void silentSpill(const SilentRegisterSavePlan&);
+    void silentFill(const SilentRegisterSavePlan&, GPRReg canTrample);
+    
+    template<typename CollectionType>
+    void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
+    {
+        ASSERT(plans.isEmpty());
+        for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
+            GPRReg gpr = iter.regID();
+            if (iter.name() != InvalidVirtualRegister && gpr != exclude && gpr != exclude2) {
+                SilentRegisterSavePlan plan = silentSavePlanForGPR(iter.name(), gpr);
+                if (doSpill)
+                    silentSpill(plan);
+                plans.append(plan);
+            }
+        }
+        for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister && iter.regID() != fprExclude) {
+                SilentRegisterSavePlan plan = silentSavePlanForFPR(iter.name(), iter.regID());
+                if (doSpill)
+                    silentSpill(plan);
+                plans.append(plan);
+            }
+        }
+    }
+    template<typename CollectionType>
+    void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, NoResultTag)
+    {
+        silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, InvalidFPRReg);
+    }
+    template<typename CollectionType>
+    void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, FPRReg exclude)
+    {
+        silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, exclude);
+    }
+#if USE(JSVALUE32_64)
+    template<typename CollectionType>
+    void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, JSValueRegs exclude)
+    {
+        silentSpillAllRegistersImpl(doSpill, plans, exclude.tagGPR(), exclude.payloadGPR());
+    }
+#endif
+    
+    void silentSpillAllRegisters(GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
+    {
+        silentSpillAllRegistersImpl(true, m_plans, exclude, exclude2, fprExclude);
+    }
+    void silentSpillAllRegisters(FPRReg exclude)
+    {
+        silentSpillAllRegisters(InvalidGPRReg, InvalidGPRReg, exclude);
+    }
+    
+    static GPRReg pickCanTrample(GPRReg exclude)
+    {
+        GPRReg result = GPRInfo::regT0;
+        if (result == exclude)
+            result = GPRInfo::regT1;
+        return result;
+    }
+    static GPRReg pickCanTrample(FPRReg)
+    {
+        return GPRInfo::regT0;
+    }
+    static GPRReg pickCanTrample(NoResultTag)
+    {
+        return GPRInfo::regT0;
+    }
+
+#if USE(JSVALUE32_64)
+    static GPRReg pickCanTrample(JSValueRegs exclude)
+    {
+        GPRReg result = GPRInfo::regT0;
+        if (result == exclude.tagGPR()) {
+            result = GPRInfo::regT1;
+            if (result == exclude.payloadGPR())
+                result = GPRInfo::regT2;
+        } else if (result == exclude.payloadGPR()) {
+            result = GPRInfo::regT1;
+            if (result == exclude.tagGPR())
+                result = GPRInfo::regT2;
+        }
+        return result;
+    }
+#endif
+    
+    template<typename RegisterType>
+    void silentFillAllRegisters(RegisterType exclude)
+    {
+        GPRReg canTrample = pickCanTrample(exclude);
+        
+        while (!m_plans.isEmpty()) {
+            SilentRegisterSavePlan& plan = m_plans.last();
+            silentFill(plan, canTrample);
+            m_plans.removeLast();
+        }
+    }
+
+    // These methods convert between doubles, and doubles boxed and JSValues.
+#if USE(JSVALUE64)
+    GPRReg boxDouble(FPRReg fpr, GPRReg gpr)
+    {
+        return m_jit.boxDouble(fpr, gpr);
+    }
+    FPRReg unboxDouble(GPRReg gpr, FPRReg fpr)
+    {
+        return m_jit.unboxDouble(gpr, fpr);
+    }
+    GPRReg boxDouble(FPRReg fpr)
+    {
+        return boxDouble(fpr, allocate());
+    }
+#elif USE(JSVALUE32_64)
+    void boxDouble(FPRReg fpr, GPRReg tagGPR, GPRReg payloadGPR)
+    {
+        m_jit.boxDouble(fpr, tagGPR, payloadGPR);
+    }
+    void unboxDouble(GPRReg tagGPR, GPRReg payloadGPR, FPRReg fpr, FPRReg scratchFPR)
+    {
+        m_jit.unboxDouble(tagGPR, payloadGPR, fpr, scratchFPR);
+    }
+#endif
+
+    // Spill a VirtualRegister to the JSStack.
+    void spill(VirtualRegister spillMe)
+    {
+        GenerationInfo& info = m_generationInfo[spillMe];
+
+#if USE(JSVALUE32_64)
+        if (info.registerFormat() == DataFormatNone) // it has been spilled. JS values which have two GPRs can reach here
+            return;
+#endif
+        // Check the GenerationInfo to see if this value need writing
+        // to the JSStack - if not, mark it as spilled & return.
+        if (!info.needsSpill()) {
+            info.setSpilled(*m_stream, spillMe);
+            return;
+        }
+
+        DataFormat spillFormat = info.registerFormat();
+        switch (spillFormat) {
+        case DataFormatStorage: {
+            // This is special, since it's not a JS value - as in it's not visible to JS
+            // code.
+            m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe));
+            info.spill(*m_stream, spillMe, DataFormatStorage);
+            return;
+        }
+
+        case DataFormatInteger: {
+            m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
+            info.spill(*m_stream, spillMe, DataFormatInteger);
+            return;
+        }
+
+#if USE(JSVALUE64)
+        case DataFormatDouble: {
+            m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
+            info.spill(*m_stream, spillMe, DataFormatDouble);
+            return;
+        }
+            
+        default:
+            // The following code handles JSValues, int32s, and cells.
+            RELEASE_ASSERT(spillFormat == DataFormatCell || spillFormat & DataFormatJS);
+            
+            GPRReg reg = info.gpr();
+            // We need to box int32 and cell values ...
+            // but on JSVALUE64 boxing a cell is a no-op!
+            if (spillFormat == DataFormatInteger)
+                m_jit.or64(GPRInfo::tagTypeNumberRegister, reg);
+            
+            // Spill the value, and record it as spilled in its boxed form.
+            m_jit.store64(reg, JITCompiler::addressFor(spillMe));
+            info.spill(*m_stream, spillMe, (DataFormat)(spillFormat | DataFormatJS));
+            return;
+#elif USE(JSVALUE32_64)
+        case DataFormatCell:
+        case DataFormatBoolean: {
+            m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
+            info.spill(*m_stream, spillMe, spillFormat);
+            return;
+        }
+
+        case DataFormatDouble:
+        case DataFormatJSDouble: {
+            // On JSVALUE32_64 boxing a double is a no-op.
+            m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
+            info.spill(*m_stream, spillMe, DataFormatJSDouble);
+            return;
+        }
+
+        default:
+            // The following code handles JSValues.
+            RELEASE_ASSERT(spillFormat & DataFormatJS);
+            m_jit.store32(info.tagGPR(), JITCompiler::tagFor(spillMe));
+            m_jit.store32(info.payloadGPR(), JITCompiler::payloadFor(spillMe));
+            info.spill(*m_stream, spillMe, spillFormat);
+            return;
+#endif
+        }
+    }
+    
+    bool isKnownInteger(Node* node) { return !(m_state.forNode(node).m_type & ~SpecInt32); }
+    bool isKnownCell(Node* node) { return !(m_state.forNode(node).m_type & ~SpecCell); }
+    
+    bool isKnownNotInteger(Node* node) { return !(m_state.forNode(node).m_type & SpecInt32); }
+    bool isKnownNotNumber(Node* node) { return !(m_state.forNode(node).m_type & SpecNumber); }
+    bool isKnownNotCell(Node* node) { return !(m_state.forNode(node).m_type & SpecCell); }
+    
+    // Checks/accessors for constant values.
+    bool isConstant(Node* node) { return m_jit.graph().isConstant(node); }
+    bool isJSConstant(Node* node) { return m_jit.graph().isJSConstant(node); }
+    bool isInt32Constant(Node* node) { return m_jit.graph().isInt32Constant(node); }
+    bool isDoubleConstant(Node* node) { return m_jit.graph().isDoubleConstant(node); }
+    bool isNumberConstant(Node* node) { return m_jit.graph().isNumberConstant(node); }
+    bool isBooleanConstant(Node* node) { return m_jit.graph().isBooleanConstant(node); }
+    bool isFunctionConstant(Node* node) { return m_jit.graph().isFunctionConstant(node); }
+    int32_t valueOfInt32Constant(Node* node) { return m_jit.graph().valueOfInt32Constant(node); }
+    double valueOfNumberConstant(Node* node) { return m_jit.graph().valueOfNumberConstant(node); }
+#if USE(JSVALUE32_64)
+    void* addressOfDoubleConstant(Node* node) { return m_jit.addressOfDoubleConstant(node); }
+#endif
+    JSValue valueOfJSConstant(Node* node) { return m_jit.graph().valueOfJSConstant(node); }
+    bool valueOfBooleanConstant(Node* node) { return m_jit.graph().valueOfBooleanConstant(node); }
+    JSFunction* valueOfFunctionConstant(Node* node) { return m_jit.graph().valueOfFunctionConstant(node); }
+    bool isNullConstant(Node* node)
+    {
+        if (!isConstant(node))
+            return false;
+        return valueOfJSConstant(node).isNull();
+    }
+
+    Identifier* identifier(unsigned index)
+    {
+        return &m_jit.codeBlock()->identifier(index);
+    }
+
+    // Spill all VirtualRegisters back to the JSStack.
+    void flushRegisters()
+    {
+        for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister) {
+                spill(iter.name());
+                iter.release();
+            }
+        }
+        for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister) {
+                spill(iter.name());
+                iter.release();
+            }
+        }
+    }
+
+#ifndef NDEBUG
+    // Used to ASSERT flushRegisters() has been called prior to
+    // calling out from JIT code to a C helper function.
+    bool isFlushed()
+    {
+        for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister)
+                return false;
+        }
+        for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
+            if (iter.name() != InvalidVirtualRegister)
+                return false;
+        }
+        return true;
+    }
+#endif
+
+#if USE(JSVALUE64)
+    MacroAssembler::Imm64 valueOfJSConstantAsImm64(Node* node)
+    {
+        return MacroAssembler::Imm64(JSValue::encode(valueOfJSConstant(node)));
+    }
+#endif
+
+    // Helper functions to enable code sharing in implementations of bit/shift ops.
+    void bitOp(NodeType op, int32_t imm, GPRReg op1, GPRReg result)
+    {
+        switch (op) {
+        case BitAnd:
+            m_jit.and32(Imm32(imm), op1, result);
+            break;
+        case BitOr:
+            m_jit.or32(Imm32(imm), op1, result);
+            break;
+        case BitXor:
+            m_jit.xor32(Imm32(imm), op1, result);
+            break;
+        default:
+            RELEASE_ASSERT_NOT_REACHED();
+        }
+    }
+    void bitOp(NodeType op, GPRReg op1, GPRReg op2, GPRReg result)
+    {
+        switch (op) {
+        case BitAnd:
+            m_jit.and32(op1, op2, result);
+            break;
+        case BitOr:
+            m_jit.or32(op1, op2, result);
+            break;
+        case BitXor:
+            m_jit.xor32(op1, op2, result);
+            break;
+        default:
+            RELEASE_ASSERT_NOT_REACHED();
+        }
+    }
+    void shiftOp(NodeType op, GPRReg op1, int32_t shiftAmount, GPRReg result)
+    {
+        switch (op) {
+        case BitRShift:
+            m_jit.rshift32(op1, Imm32(shiftAmount), result);
+            break;
+        case BitLShift:
+            m_jit.lshift32(op1, Imm32(shiftAmount), result);
+            break;
+        case BitURShift:
+            m_jit.urshift32(op1, Imm32(shiftAmount), result);
+            break;
+        default:
+            RELEASE_ASSERT_NOT_REACHED();
+        }
+    }
+    void shiftOp(NodeType op, GPRReg op1, GPRReg shiftAmount, GPRReg result)
+    {
+        switch (op) {
+        case BitRShift:
+            m_jit.rshift32(op1, shiftAmount, result);
+            break;
+        case BitLShift:
+            m_jit.lshift32(op1, shiftAmount, result);
+            break;
+        case BitURShift:
+            m_jit.urshift32(op1, shiftAmount, result);
+            break;
+        default:
+            RELEASE_ASSERT_NOT_REACHED();
+        }
+    }
+    
+    // Returns the index of the branch node if peephole is okay, UINT_MAX otherwise.
+    unsigned detectPeepHoleBranch()
+    {
+        BasicBlock* block = m_jit.graph().m_blocks[m_block].get();
+
+        // Check that no intervening nodes will be generated.
+        for (unsigned index = m_indexInBlock + 1; index < block->size() - 1; ++index) {
+            Node* node = block->at(index);
+            if (node->shouldGenerate())
+                return UINT_MAX;
+        }
+
+        // Check if the lastNode is a branch on this node.
+        Node* lastNode = block->last();
+        return lastNode->op() == Branch && lastNode->child1() == m_currentNode ? block->size() - 1 : UINT_MAX;
+    }
+    
+    void compileMovHint(Node*);
+    void compileMovHintAndCheck(Node*);
+    void compileInlineStart(Node*);
+
+    void nonSpeculativeUInt32ToNumber(Node*);
+
+#if USE(JSVALUE64)
+    void cachedGetById(CodeOrigin, GPRReg baseGPR, GPRReg resultGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
+    void cachedPutById(CodeOrigin, GPRReg base, GPRReg value, Edge valueUse, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump());
+#elif USE(JSVALUE32_64)
+    void cachedGetById(CodeOrigin, GPRReg baseTagGPROrNone, GPRReg basePayloadGPR, GPRReg resultTagGPR, GPRReg resultPayloadGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
+    void cachedPutById(CodeOrigin, GPRReg basePayloadGPR, GPRReg valueTagGPR, GPRReg valuePayloadGPR, Edge valueUse, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump());
+#endif
+
+    void nonSpeculativeNonPeepholeCompareNull(Edge operand, bool invert = false);
+    void nonSpeculativePeepholeBranchNull(Edge operand, Node* branchNode, bool invert = false);
+    bool nonSpeculativeCompareNull(Node*, Edge operand, bool invert = false);
+    
+    void nonSpeculativePeepholeBranch(Node*, Node* branchNode, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
+    void nonSpeculativeNonPeepholeCompare(Node*, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
+    bool nonSpeculativeCompare(Node*, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
+    
+    void nonSpeculativePeepholeStrictEq(Node*, Node* branchNode, bool invert = false);
+    void nonSpeculativeNonPeepholeStrictEq(Node*, bool invert = false);
+    bool nonSpeculativeStrictEq(Node*, bool invert = false);
+    
+    void compileInstanceOfForObject(Node*, GPRReg valueReg, GPRReg prototypeReg, GPRReg scratchAndResultReg);
+    void compileInstanceOf(Node*);
+    
+    // Access to our fixed callee CallFrame.
+    MacroAssembler::Address callFrameSlot(int slot)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)));
+    }
+
+    // Access to our fixed callee CallFrame.
+    MacroAssembler::Address argumentSlot(int argument)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)));
+    }
+
+    MacroAssembler::Address callFrameTagSlot(int slot)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag));
+    }
+
+    MacroAssembler::Address callFramePayloadSlot(int slot)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload));
+    }
+
+    MacroAssembler::Address argumentTagSlot(int argument)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag));
+    }
+
+    MacroAssembler::Address argumentPayloadSlot(int argument)
+    {
+        return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload));
+    }
+
+    void emitCall(Node*);
+    
+    // Called once a node has completed code generation but prior to setting
+    // its result, to free up its children. (This must happen prior to setting
+    // the nodes result, since the node may have the same VirtualRegister as
+    // a child, and as such will use the same GeneratioInfo).
+    void useChildren(Node*);
+
+    // These method called to initialize the the GenerationInfo
+    // to describe the result of an operation.
+    void integerResult(GPRReg reg, Node* node, DataFormat format = DataFormatInteger, UseChildrenMode mode = CallUseChildren)
+    {
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node->virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+
+        if (format == DataFormatInteger) {
+            m_jit.jitAssertIsInt32(reg);
+            m_gprs.retain(reg, virtualRegister, SpillOrderInteger);
+            info.initInteger(node, node->refCount(), reg);
+        } else {
+#if USE(JSVALUE64)
+            RELEASE_ASSERT(format == DataFormatJSInteger);
+            m_jit.jitAssertIsJSInt32(reg);
+            m_gprs.retain(reg, virtualRegister, SpillOrderJS);
+            info.initJSValue(node, node->refCount(), reg, format);
+#elif USE(JSVALUE32_64)
+            RELEASE_ASSERT_NOT_REACHED();
+#endif
+        }
+    }
+    void integerResult(GPRReg reg, Node* node, UseChildrenMode mode)
+    {
+        integerResult(reg, node, DataFormatInteger, mode);
+    }
+    void noResult(Node* node, UseChildrenMode mode = CallUseChildren)
+    {
+        if (mode == UseChildrenCalledExplicitly)
+            return;
+        useChildren(node);
+    }
+    void cellResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
+    {
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node->virtualRegister();
+        m_gprs.retain(reg, virtualRegister, SpillOrderCell);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initCell(node, node->refCount(), reg);
+    }
+    void booleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
+    {
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node->virtualRegister();
+        m_gprs.retain(reg, virtualRegister, SpillOrderBoolean);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initBoolean(node, node->refCount(), reg);
+    }
+#if USE(JSVALUE64)
+    void jsValueResult(GPRReg reg, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
+    {
+        if (format == DataFormatJSInteger)
+            m_jit.jitAssertIsJSInt32(reg);
+        
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node->virtualRegister();
+        m_gprs.retain(reg, virtualRegister, SpillOrderJS);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initJSValue(node, node->refCount(), reg, format);
+    }
+    void jsValueResult(GPRReg reg, Node* node, UseChildrenMode mode)
+    {
+        jsValueResult(reg, node, DataFormatJS, mode);
+    }
+#elif USE(JSVALUE32_64)
+    void jsValueResult(GPRReg tag, GPRReg payload, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
+    {
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node->virtualRegister();
+        m_gprs.retain(tag, virtualRegister, SpillOrderJS);
+        m_gprs.retain(payload, virtualRegister, SpillOrderJS);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initJSValue(node, node->refCount(), tag, payload, format);
+    }
+    void jsValueResult(GPRReg tag, GPRReg payload, Node* node, UseChildrenMode mode)
+    {
+        jsValueResult(tag, payload, node, DataFormatJS, mode);
+    }
+#endif
+    void storageResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
+    {
+        if (mode == CallUseChildren)
+            useChildren(node);
+        
+        VirtualRegister virtualRegister = node->virtualRegister();
+        m_gprs.retain(reg, virtualRegister, SpillOrderStorage);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initStorage(node, node->refCount(), reg);
+    }
+    void doubleResult(FPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
+    {
+        if (mode == CallUseChildren)
+            useChildren(node);
+
+        VirtualRegister virtualRegister = node->virtualRegister();
+        m_fprs.retain(reg, virtualRegister, SpillOrderDouble);
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        info.initDouble(node, node->refCount(), reg);
+    }
+    void initConstantInfo(Node* node)
+    {
+        ASSERT(isInt32Constant(node) || isNumberConstant(node) || isJSConstant(node));
+        m_generationInfo[node->virtualRegister()].initConstant(node, node->refCount());
+    }
+    
+    // These methods add calls to C++ helper functions.
+    // These methods are broadly value representation specific (i.e.
+    // deal with the fact that a JSValue may be passed in one or two
+    // machine registers, and delegate the calling convention specific
+    // decision as to how to fill the regsiters to setupArguments* methods.
+
+    JITCompiler::Call callOperation(P_DFGOperation_E operation, GPRReg result)
+    {
+        m_jit.setupArgumentsExecState();
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EC operation, GPRReg result, GPRReg cell)
+    {
+        m_jit.setupArgumentsWithExecState(cell);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EO operation, GPRReg result, GPRReg object)
+    {
+        m_jit.setupArgumentsWithExecState(object);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EOS operation, GPRReg result, GPRReg object, size_t size)
+    {
+        m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size)
+    {
+        m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size)
+    {
+        m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(static_cast<size_t>(size)));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EPS operation, GPRReg result, GPRReg old, size_t size)
+    {
+        m_jit.setupArgumentsWithExecState(old, TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_ES operation, GPRReg result, size_t size)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_ESt operation, GPRReg result, Structure* structure)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, Structure* structure, size_t arg2)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(arg2));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EStPS operation, GPRReg result, Structure* structure, void* pointer, size_t size)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(pointer), TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(P_DFGOperation_EStSS operation, GPRReg result, Structure* structure, size_t index, size_t size)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(index), TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+    JITCompiler::Call callOperation(C_DFGOperation_E operation, GPRReg result)
+    {
+        m_jit.setupArgumentsExecState();
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, JSCell* cell)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, JSCell* cell)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EIcf operation, GPRReg result, InlineCallFrame* inlineCallFrame)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(inlineCallFrame));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_ESt operation, GPRReg result, Structure* structure)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EJssSt operation, GPRReg result, GPRReg arg1, Structure* structure)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(structure));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EJssJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+    JITCompiler::Call callOperation(S_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_EC operation, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_ECIcf operation, GPRReg arg1, InlineCallFrame* inlineCallFrame)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(inlineCallFrame));
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_ECCIcf operation, GPRReg arg1, GPRReg arg2, InlineCallFrame* inlineCallFrame)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(inlineCallFrame));
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_ECZ operation, GPRReg arg1, int arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2));
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_ECC operation, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_W operation, WatchpointSet* watchpointSet)
+    {
+        m_jit.setupArguments(TrustedImmPtr(watchpointSet));
+        return appendCall(operation);
+    }
+
+    template<typename FunctionType, typename ArgumentType1>
+    JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1)
+    {
+        return callOperation(operation, arg1);
+    }
+    template<typename FunctionType, typename ArgumentType1, typename ArgumentType2>
+    JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2)
+    {
+        return callOperation(operation, arg1, arg2);
+    }
+    template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3>
+    JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3)
+    {
+        return callOperation(operation, arg1, arg2, arg3);
+    }
+    template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3, typename ArgumentType4>
+    JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3, ArgumentType4 arg4)
+    {
+        return callOperation(operation, arg1, arg2, arg3, arg4);
+    }
+    template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3, typename ArgumentType4, typename ArgumentType5>
+    JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3, ArgumentType4 arg4, ArgumentType5 arg5)
+    {
+        return callOperation(operation, arg1, arg2, arg3, arg4, arg5);
+    }
+
+    JITCompiler::Call callOperation(D_DFGOperation_ZZ operation, FPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArguments(arg1, arg2);
+        return appendCallSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(D_DFGOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2)
+    {
+        m_jit.setupArguments(arg1, arg2);
+        return appendCallSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(Str_DFGOperation_EJss operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(C_DFGOperation_EZ operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+#if USE(JSVALUE64)
+    JITCompiler::Call callOperation(J_DFGOperation_E operation, GPRReg result)
+    {
+        m_jit.setupArgumentsExecState();
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg result, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(Z_DFGOperation_D operation, GPRReg result, FPRReg arg1)
+    {
+        m_jit.setupArguments(arg1);
+        JITCompiler::Call call = m_jit.appendCall(operation);
+        m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
+        return call;
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EGriJsgI operation, GPRReg result, GPRReg arg1, GPRReg arg2, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EI operation, GPRReg result, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EIRo operation, GPRReg result, Identifier* identifier, ResolveOperations* operations)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EIRoPtbo operation, GPRReg result, Identifier* identifier, ResolveOperations* operations, PutToBaseOperation* putToBaseOperations)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations), TrustedImmPtr(putToBaseOperations));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EA operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EAZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EPS operation, GPRReg result, void* pointer, size_t size)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ESS operation, GPRReg result, int startConstant, int numConstants)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg result, GPRReg arg1, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EC operation, GPRReg result, JSCell* cell)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EDA operation, GPRReg result, FPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg result, int32_t arg1)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(arg1));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EZZ operation, GPRReg result, int32_t arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EZIcfZ operation, GPRReg result, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+
+    JITCompiler::Call callOperation(C_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_J operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArguments(arg1);
+        return appendCallSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+    JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, MacroAssembler::TrustedImm32 imm)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value))));
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, MacroAssembler::TrustedImm32 imm, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value))), arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_EJPP operation, GPRReg arg1, GPRReg arg2, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EJCI operation, GPRReg arg1, GPRReg arg2, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EJJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_ECJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(D_DFGOperation_EJ operation, FPRReg result, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+#else // USE(JSVALUE32_64)
+
+// EncodedJSValue in JSVALUE32_64 is a 64-bit integer. When being compiled in ARM EABI, it must be aligned even-numbered register (r0, r2 or [sp]).
+// To avoid assemblies from using wrong registers, let's occupy r1 or r3 with a dummy argument when necessary.
+#if (COMPILER_SUPPORTS(EABI) && CPU(ARM)) || CPU(MIPS)
+#define EABI_32BIT_DUMMY_ARG      TrustedImm32(0),
+#else
+#define EABI_32BIT_DUMMY_ARG
+#endif
+
+    JITCompiler::Call callOperation(Z_DFGOperation_D operation, GPRReg result, FPRReg arg1)
+    {
+        prepareForExternalCall();
+        m_jit.setupArguments(arg1);
+        JITCompiler::Call call = m_jit.appendCall(operation);
+        m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
+        return call;
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_E operation, GPRReg resultTag, GPRReg resultPayload)
+    {
+        m_jit.setupArgumentsExecState();
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EGriJsgI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EI operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EAZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EPS operation, GPRReg resultTag, GPRReg resultPayload, void* pointer, size_t size)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ESS operation, GPRReg resultTag, GPRReg resultPayload, int startConstant, int numConstants)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+
+    JITCompiler::Call callOperation(J_DFGOperation_EC operation, GPRReg resultTag, GPRReg resultPayload, JSCell* cell)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1Tag, GPRReg arg1Payload, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, TrustedImm32(arg1Tag), TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EDA operation, GPRReg resultTag, GPRReg resultPayload, FPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, TrustedImm32 arg1Tag, GPRReg arg1Payload, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
+    {
+        m_jit.setupArgumentsWithExecState(arg1);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(arg1));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EZIcfZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EZZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+
+
+    JITCompiler::Call callOperation(C_DFGOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_J operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
+    {
+        m_jit.setupArguments(arg1Payload, arg1Tag);
+        return appendCallSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(S_DFGOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+    JITCompiler::Call callOperation(S_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, MacroAssembler::TrustedImm32 imm)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, imm, TrustedImm32(JSValue::Int32Tag));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, MacroAssembler::TrustedImm32 imm, GPRReg arg2Tag, GPRReg arg2Payload)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag), arg2Payload, arg2Tag);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+
+    JITCompiler::Call callOperation(J_DFGOperation_EIRo operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier, ResolveOperations* operations)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+
+    JITCompiler::Call callOperation(J_DFGOperation_EIRoPtbo operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier, ResolveOperations* operations, PutToBaseOperation* putToBaseOperations)
+    {
+        m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations), TrustedImmPtr(putToBaseOperations));
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+
+    JITCompiler::Call callOperation(J_DFGOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+    JITCompiler::Call callOperation(J_DFGOperation_ECC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2);
+        return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_EJPP operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, void* pointer)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, TrustedImmPtr(pointer));
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EJCI operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, Identifier* identifier)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, TrustedImmPtr(identifier));
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_ECJJ operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, arg3Payload, arg3Tag);
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(V_DFGOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
+        return appendCallWithExceptionCheck(operation);
+    }
+    JITCompiler::Call callOperation(V_DFGOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, TrustedImm32 arg3Tag, GPRReg arg3Payload)
+    {
+        m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
+        return appendCallWithExceptionCheck(operation);
+    }
+
+    JITCompiler::Call callOperation(D_DFGOperation_EJ operation, FPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
+    {
+        m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
+        return appendCallWithExceptionCheckSetResult(operation, result);
+    }
+
+#undef EABI_32BIT_DUMMY_ARG
+    
+    template<typename FunctionType>
+    JITCompiler::Call callOperation(
+        FunctionType operation, JSValueRegs result)
+    {
+        return callOperation(operation, result.tagGPR(), result.payloadGPR());
+    }
+    template<typename FunctionType, typename ArgumentType1>
+    JITCompiler::Call callOperation(
+        FunctionType operation, JSValueRegs result, ArgumentType1 arg1)
+    {
+        return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1);
+    }
+    template<typename FunctionType, typename ArgumentType1, typename ArgumentType2>
+    JITCompiler::Call callOperation(
+        FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2)
+    {
+        return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2);
+    }
+    template<
+        typename FunctionType, typename ArgumentType1, typename ArgumentType2,
+        typename ArgumentType3>
+    JITCompiler::Call callOperation(
+        FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
+        ArgumentType3 arg3)
+    {
+        return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3);
+    }
+    template<
+        typename FunctionType, typename ArgumentType1, typename ArgumentType2,
+        typename ArgumentType3, typename ArgumentType4>
+    JITCompiler::Call callOperation(
+        FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
+        ArgumentType3 arg3, ArgumentType4 arg4)
+    {
+        return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4);
+    }
+    template<
+        typename FunctionType, typename ArgumentType1, typename ArgumentType2,
+        typename ArgumentType3, typename ArgumentType4, typename ArgumentType5>
+    JITCompiler::Call callOperation(
+        FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
+        ArgumentType3 arg3, ArgumentType4 arg4, ArgumentType5 arg5)
+    {
+        return callOperation(
+            operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4, arg5);
+    }
+#endif // USE(JSVALUE32_64)
+    
+#if !defined(NDEBUG) && !CPU(ARM) && !CPU(MIPS)
+    void prepareForExternalCall()
+    {
+        // We're about to call out to a "native" helper function. The helper
+        // function is expected to set topCallFrame itself with the ExecState
+        // that is passed to it.
+        //
+        // We explicitly trash topCallFrame here so that we'll know if some of
+        // the helper functions are not setting topCallFrame when they should
+        // be doing so. Note: the previous value in topcallFrame was not valid
+        // anyway since it was not being updated by JIT'ed code by design.
+
+        for (unsigned i = 0; i < sizeof(void*) / 4; i++)
+            m_jit.store32(TrustedImm32(0xbadbeef), reinterpret_cast<char*>(&m_jit.vm()->topCallFrame) + i * 4);
+    }
+#else
+    void prepareForExternalCall() { }
+#endif
+
+    // These methods add call instructions, with optional exception checks & setting results.
+    JITCompiler::Call appendCallWithExceptionCheck(const FunctionPtr& function)
+    {
+        prepareForExternalCall();
+        CodeOrigin codeOrigin = m_currentNode->codeOrigin;
+        CallBeginToken token;
+        m_jit.beginCall(codeOrigin, token);
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.addExceptionCheck(call, codeOrigin, token);
+        return call;
+    }
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, GPRReg result)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.move(GPRInfo::returnValueGPR, result);
+        return call;
+    }
+    JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result)
+    {
+        prepareForExternalCall();
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.move(GPRInfo::returnValueGPR, result);
+        return call;
+    }
+    JITCompiler::Call appendCall(const FunctionPtr& function)
+    {
+        prepareForExternalCall();
+        return m_jit.appendCall(function);
+    }
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, GPRReg result1, GPRReg result2)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.setupResults(result1, result2);
+        return call;
+    }
+#if CPU(X86)
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister);
+        m_jit.loadDouble(JITCompiler::stackPointerRegister, result);
+        return call;
+    }
+    JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister);
+        m_jit.loadDouble(JITCompiler::stackPointerRegister, result);
+        return call;
+    }
+#elif CPU(ARM)
+#if CPU(ARM_HARDFP)
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.moveDouble(result, FPRInfo::argumentFPR0);
+        return call;
+    }
+    JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.moveDouble(result, FPRInfo::argumentFPR0);
+        return call;
+    }
+#else
+        JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
+        return call;
+    }
+    JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
+        return call;
+    }
+#endif // CPU(ARM_HARDFP)
+#else
+    JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = appendCallWithExceptionCheck(function);
+        m_jit.moveDouble(FPRInfo::returnValueFPR, result);
+        return call;
+    }
+    JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
+    {
+        JITCompiler::Call call = m_jit.appendCall(function);
+        m_jit.moveDouble(FPRInfo::returnValueFPR, result);
+        return call;
+    }
+#endif
+    
+    void branchDouble(JITCompiler::DoubleCondition cond, FPRReg left, FPRReg right, BlockIndex destination)
+    {
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchDouble(cond, left, right), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchDouble(JITCompiler::invert(cond), left, right);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    void branchDoubleNonZero(FPRReg value, FPRReg scratch, BlockIndex destination)
+    {
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchDoubleNonZero(value, scratch), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchDoubleZeroOrNaN(value, scratch);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T, typename U>
+    void branch32(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
+    {
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branch32(cond, left, right), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branch32(JITCompiler::invert(cond), left, right);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T, typename U>
+    void branchTest32(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTest32(cond, value, mask), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTest32(JITCompiler::invert(cond), value, mask);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T>
+    void branchTest32(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTest32(cond, value), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTest32(JITCompiler::invert(cond), value);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+#if USE(JSVALUE64)
+    template<typename T, typename U>
+    void branch64(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
+    {
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branch64(cond, left, right), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branch64(JITCompiler::invert(cond), left, right);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+#endif
+    
+    template<typename T, typename U>
+    void branchPtr(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
+    {
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchPtr(cond, left, right), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchPtr(JITCompiler::invert(cond), left, right);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T, typename U>
+    void branchTestPtr(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTestPtr(cond, value, mask), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTestPtr(JITCompiler::invert(cond), value, mask);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T>
+    void branchTestPtr(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTestPtr(cond, value), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTestPtr(JITCompiler::invert(cond), value);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T, typename U>
+    void branchTest8(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTest8(cond, value, mask), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTest8(JITCompiler::invert(cond), value, mask);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    template<typename T>
+    void branchTest8(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
+    {
+        ASSERT(JITCompiler::isInvertible(cond));
+        
+        if (!haveEdgeCodeToEmit(destination))
+            return addBranch(m_jit.branchTest8(cond, value), destination);
+        
+        JITCompiler::Jump notTaken = m_jit.branchTest8(JITCompiler::invert(cond), value);
+        emitEdgeCode(destination);
+        addBranch(m_jit.jump(), destination);
+        notTaken.link(&m_jit);
+    }
+    
+    enum FallThroughMode {
+        AtFallThroughPoint,
+        ForceJump
+    };
+    void jump(BlockIndex destination, FallThroughMode fallThroughMode = AtFallThroughPoint)
+    {
+        if (haveEdgeCodeToEmit(destination))
+            emitEdgeCode(destination);
+        if (destination == nextBlock()
+            && fallThroughMode == AtFallThroughPoint)
+            return;
+        addBranch(m_jit.jump(), destination);
+    }
+    
+    inline bool haveEdgeCodeToEmit(BlockIndex)
+    {
+        return DFG_ENABLE_EDGE_CODE_VERIFICATION;
+    }
+    void emitEdgeCode(BlockIndex destination)
+    {
+        if (!DFG_ENABLE_EDGE_CODE_VERIFICATION)
+            return;
+        m_jit.move(TrustedImm32(destination), GPRInfo::regT0);
+    }
+
+    void addBranch(const MacroAssembler::Jump& jump, BlockIndex destination)
+    {
+        m_branches.append(BranchRecord(jump, destination));
+    }
+
+    void linkBranches()
+    {
+        for (size_t i = 0; i < m_branches.size(); ++i) {
+            BranchRecord& branch = m_branches[i];
+            branch.jump.linkTo(m_blockHeads[branch.destination], &m_jit);
+        }
+    }
+
+    BasicBlock* block()
+    {
+        return m_jit.graph().m_blocks[m_block].get();
+    }
+
+#ifndef NDEBUG
+    void dump(const char* label = 0);
+#endif
+
+#if DFG_ENABLE(CONSISTENCY_CHECK)
+    void checkConsistency();
+#else
+    void checkConsistency() { }
+#endif
+
+    bool isInteger(Node* node)
+    {
+        if (node->hasInt32Result())
+            return true;
+
+        if (isInt32Constant(node))
+            return true;
+
+        VirtualRegister virtualRegister = node->virtualRegister();
+        GenerationInfo& info = m_generationInfo[virtualRegister];
+        
+        return info.isJSInteger();
+    }
+    
+    bool compare(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_DFGOperation_EJJ);
+    bool compilePeepHoleBranch(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_DFGOperation_EJJ);
+    void compilePeepHoleIntegerBranch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
+    void compilePeepHoleBooleanBranch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
+    void compilePeepHoleDoubleBranch(Node*, Node* branchNode, JITCompiler::DoubleCondition);
+    void compilePeepHoleObjectEquality(Node*, Node* branchNode);
+    void compilePeepHoleObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild, Node* branchNode);
+    void compileObjectEquality(Node*);
+    void compileObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild);
+    void compileValueAdd(Node*);
+    void compileObjectOrOtherLogicalNot(Edge value);
+    void compileLogicalNot(Node*);
+    void compileStringEquality(Node*);
+    void emitObjectOrOtherBranch(Edge value, BlockIndex taken, BlockIndex notTaken);
+    void emitBranch(Node*);
+    
+    void compileToStringOnCell(Node*);
+    void compileNewStringObject(Node*);
+    
+    void compileIntegerCompare(Node*, MacroAssembler::RelationalCondition);
+    void compileBooleanCompare(Node*, MacroAssembler::RelationalCondition);
+    void compileDoubleCompare(Node*, MacroAssembler::DoubleCondition);
+    
+    bool compileStrictEqForConstant(Node*, Edge value, JSValue constant);
+    
+    bool compileStrictEq(Node*);
+    
+    void compileAllocatePropertyStorage(Node*);
+    void compileReallocatePropertyStorage(Node*);
+    
+#if USE(JSVALUE32_64)
+    template<typename BaseOperandType, typename PropertyOperandType, typename ValueOperandType, typename TagType>
+    void compileContiguousPutByVal(Node*, BaseOperandType&, PropertyOperandType&, ValueOperandType&, GPRReg valuePayloadReg, TagType valueTag);
+#endif
+    void compileDoublePutByVal(Node*, SpeculateCellOperand& base, SpeculateStrictInt32Operand& property);
+    bool putByValWillNeedExtraRegister(ArrayMode arrayMode)
+    {
+        return arrayMode.mayStoreToHole();
+    }
+    GPRReg temporaryRegisterForPutByVal(GPRTemporary&, ArrayMode);
+    GPRReg temporaryRegisterForPutByVal(GPRTemporary& temporary, Node* node)
+    {
+        return temporaryRegisterForPutByVal(temporary, node->arrayMode());
+    }
+    
+    void compileGetCharCodeAt(Node*);
+    void compileGetByValOnString(Node*);
+    void compileFromCharCode(Node*); 
+
+    void compileGetByValOnArguments(Node*);
+    void compileGetArgumentsLength(Node*);
+    
+    void compileGetArrayLength(Node*);
+    
+    void compileValueToInt32(Node*);
+    void compileUInt32ToNumber(Node*);
+    void compileDoubleAsInt32(Node*);
+    void compileInt32ToDouble(Node*);
+    void compileAdd(Node*);
+    void compileMakeRope(Node*);
+    void compileArithSub(Node*);
+    void compileArithNegate(Node*);
+    void compileArithMul(Node*);
+    void compileArithIMul(Node*);
+#if CPU(X86) || CPU(X86_64)
+    void compileIntegerArithDivForX86(Node*);
+#elif CPU(ARM64)
+    void compileIntegerArithDivForARM64(Node*);
+#elif CPU(APPLE_ARMV7S)
+    void compileIntegerArithDivForARMv7s(Node*);
+#endif
+    void compileArithMod(Node*);
+    void compileSoftModulo(Node*);
+    void compileGetIndexedPropertyStorage(Node*);
+    void compileGetByValOnIntTypedArray(const TypedArrayDescriptor&, Node*, size_t elementSize, TypedArraySignedness);
+    void compilePutByValForIntTypedArray(const TypedArrayDescriptor&, GPRReg base, GPRReg property, Node*, size_t elementSize, TypedArraySignedness, TypedArrayRounding = TruncateRounding);
+    void compileGetByValOnFloatTypedArray(const TypedArrayDescriptor&, Node*, size_t elementSize);
+    void compilePutByValForFloatTypedArray(const TypedArrayDescriptor&, GPRReg base, GPRReg property, Node*, size_t elementSize);
+    void compileNewFunctionNoCheck(Node*);
+    void compileNewFunctionExpression(Node*);
+    bool compileRegExpExec(Node*);
+    
+    // size can be an immediate or a register, and must be in bytes. If size is a register,
+    // it must be a different register than resultGPR. Emits code that place a pointer to
+    // the end of the allocation. The returned jump is the jump to the slow path.
+    template<typename SizeType>
+    MacroAssembler::Jump emitAllocateBasicStorage(SizeType size, GPRReg resultGPR)
+    {
+        CopiedAllocator* copiedAllocator = &m_jit.vm()->heap.storageAllocator();
+        
+        m_jit.loadPtr(&copiedAllocator->m_currentRemaining, resultGPR);
+        MacroAssembler::Jump slowPath = m_jit.branchSubPtr(JITCompiler::Signed, size, resultGPR);
+        m_jit.storePtr(resultGPR, &copiedAllocator->m_currentRemaining);
+        m_jit.negPtr(resultGPR);
+        m_jit.addPtr(JITCompiler::AbsoluteAddress(&copiedAllocator->m_currentPayloadEnd), resultGPR);
+        
+        return slowPath;
+    }
+    
+    // Allocator for a cell of a specific size.
+    template <typename StructureType> // StructureType can be GPR or ImmPtr.
+    void emitAllocateJSCell(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure,
+        GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
+    {
+        m_jit.loadPtr(MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead()), resultGPR);
+        slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR));
+        
+        // The object is half-allocated: we have what we know is a fresh object, but
+        // it's still on the GC's free list.
+        m_jit.loadPtr(MacroAssembler::Address(resultGPR), scratchGPR);
+        m_jit.storePtr(scratchGPR, MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead()));
+
+        // Initialize the object's Structure.
+        m_jit.storePtr(structure, MacroAssembler::Address(resultGPR, JSCell::structureOffset()));
+    }
+
+    // Allocator for an object of a specific size.
+    template <typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
+    void emitAllocateJSObject(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure,
+        StorageType storage, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
+    {
+        emitAllocateJSCell(resultGPR, allocatorGPR, structure, scratchGPR, slowPath);
+        
+        // Initialize the object's property storage pointer.
+        m_jit.storePtr(storage, MacroAssembler::Address(resultGPR, JSObject::butterflyOffset()));
+    }
+
+    // Convenience allocator for a buit-in object.
+    template <typename ClassType, typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
+    void emitAllocateJSObject(GPRReg resultGPR, StructureType structure, StorageType storage,
+        GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath)
+    {
+        MarkedAllocator* allocator = 0;
+        size_t size = ClassType::allocationSize(0);
+        if (ClassType::needsDestruction && ClassType::hasImmortalStructure)
+            allocator = &m_jit.vm()->heap.allocatorForObjectWithImmortalStructureDestructor(size);
+        else if (ClassType::needsDestruction)
+            allocator = &m_jit.vm()->heap.allocatorForObjectWithNormalDestructor(size);
+        else
+            allocator = &m_jit.vm()->heap.allocatorForObjectWithoutDestructor(size);
+        m_jit.move(TrustedImmPtr(allocator), scratchGPR1);
+        emitAllocateJSObject(resultGPR, scratchGPR1, structure, storage, scratchGPR2, slowPath);
+    }
+
+    void emitAllocateJSArray(GPRReg resultGPR, Structure*, GPRReg storageGPR, unsigned numElements);
+
+#if USE(JSVALUE64) 
+    JITCompiler::Jump convertToDouble(GPRReg value, FPRReg result, GPRReg tmp);
+#elif USE(JSVALUE32_64)
+    JITCompiler::Jump convertToDouble(JSValueOperand&, FPRReg result);
+#endif
+    
+    // Add a backward speculation check.
+    void backwardSpeculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail);
+    void backwardSpeculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail);
+
+    // Add a speculation check without additional recovery.
+    void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail);
+    void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail);
+    // Add a speculation check without additional recovery, and with a promise to supply a jump later.
+    OSRExitJumpPlaceholder backwardSpeculationCheck(ExitKind, JSValueSource, Node*);
+    OSRExitJumpPlaceholder backwardSpeculationCheck(ExitKind, JSValueSource, Edge);
+    // Add a set of speculation checks without additional recovery.
+    void speculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail);
+    void speculationCheck(ExitKind, JSValueSource, Edge, const MacroAssembler::JumpList& jumpsToFail);
+    // Add a speculation check with additional recovery.
+    void backwardSpeculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
+    void backwardSpeculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
+    // Use this like you would use speculationCheck(), except that you don't pass it a jump
+    // (because you don't have to execute a branch; that's kind of the whole point), and you
+    // must register the returned Watchpoint with something relevant. In general, this should
+    // be used with extreme care. Use speculationCheck() unless you've got an amazing reason
+    // not to.
+    JumpReplacementWatchpoint* speculationWatchpoint(ExitKind, JSValueSource, Node*);
+    // The default for speculation watchpoints is that they're uncounted, because the
+    // act of firing a watchpoint invalidates it. So, future recompilations will not
+    // attempt to set this watchpoint again.
+    JumpReplacementWatchpoint* speculationWatchpoint(ExitKind = UncountableWatchpoint);
+    
+    // It is generally a good idea to not use this directly.
+    void convertLastOSRExitToForward(const ValueRecovery& = ValueRecovery());
+    
+    // Note: not specifying the valueRecovery argument (leaving it as ValueRecovery()) implies
+    // that you've ensured that there exists a MovHint prior to your use of forwardSpeculationCheck().
+    void forwardSpeculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const ValueRecovery& = ValueRecovery());
+    void forwardSpeculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail, const ValueRecovery& = ValueRecovery());
+    void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
+    void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
+    // Called when we statically determine that a speculation will fail.
+    void terminateSpeculativeExecution(ExitKind, JSValueRegs, Node*);
+    void terminateSpeculativeExecution(ExitKind, JSValueRegs, Edge);
+    
+    // Helpers for performing type checks on an edge stored in the given registers.
+    bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough) { return m_state.forNode(edge).m_type & ~typesPassedThrough; }
+    void backwardTypeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail);
+    void typeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail);
+    void forwardTypeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail, const ValueRecovery&);
+
+    void speculateInt32(Edge);
+    void speculateNumber(Edge);
+    void speculateRealNumber(Edge);
+    void speculateBoolean(Edge);
+    void speculateCell(Edge);
+    void speculateObject(Edge);
+    void speculateObjectOrOther(Edge);
+    void speculateString(Edge);
+    template<typename StructureLocationType>
+    void speculateStringObjectForStructure(Edge, StructureLocationType);
+    void speculateStringObject(Edge, GPRReg);
+    void speculateStringObject(Edge);
+    void speculateStringOrStringObject(Edge);
+    void speculateNotCell(Edge);
+    void speculateOther(Edge);
+    void speculate(Node*, Edge);
+    
+    const TypedArrayDescriptor* typedArrayDescriptor(ArrayMode);
+    
+    JITCompiler::Jump jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode, IndexingType);
+    JITCompiler::JumpList jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode);
+    void checkArray(Node*);
+    void arrayify(Node*, GPRReg baseReg, GPRReg propertyReg);
+    void arrayify(Node*);
+    
+    template<bool strict>
+    GPRReg fillSpeculateIntInternal(Edge, DataFormat& returnFormat);
+    
+    // It is possible, during speculative generation, to reach a situation in which we
+    // can statically determine a speculation will fail (for example, when two nodes
+    // will make conflicting speculations about the same operand). In such cases this
+    // flag is cleared, indicating no further code generation should take place.
+    bool m_compileOkay;
+    
+    // Tracking for which nodes are currently holding the values of arguments and bytecode
+    // operand-indexed variables.
+    
+    ValueSource valueSourceForOperand(int operand)
+    {
+        return valueSourceReferenceForOperand(operand);
+    }
+    
+    void setNodeForOperand(Node* node, int operand)
+    {
+        valueSourceReferenceForOperand(operand) = ValueSource(MinifiedID(node));
+    }
+    
+    // Call this with care, since it both returns a reference into an array
+    // and potentially resizes the array. So it would not be right to call this
+    // twice and then perform operands on both references, since the one from
+    // the first call may no longer be valid.
+    ValueSource& valueSourceReferenceForOperand(int operand)
+    {
+        if (operandIsArgument(operand)) {
+            int argument = operandToArgument(operand);
+            return m_arguments[argument];
+        }
+        
+        if ((unsigned)operand >= m_variables.size())
+            m_variables.resize(operand + 1);
+        
+        return m_variables[operand];
+    }
+    
+    void recordSetLocal(int operand, ValueSource valueSource)
+    {
+        valueSourceReferenceForOperand(operand) = valueSource;
+        m_stream->appendAndLog(VariableEvent::setLocal(operand, valueSource.dataFormat()));
+    }
+    
+    // The JIT, while also provides MacroAssembler functionality.
+    JITCompiler& m_jit;
+
+    // The current node being generated.
+    BlockIndex m_block;
+    Node* m_currentNode;
+    SpeculationDirection m_speculationDirection;
+#if !ASSERT_DISABLED
+    bool m_canExit;
+#endif
+    unsigned m_indexInBlock;
+    // Virtual and physical register maps.
+    Vector<GenerationInfo, 32> m_generationInfo;
+    RegisterBank<GPRInfo> m_gprs;
+    RegisterBank<FPRInfo> m_fprs;
 
-namespace JSC { namespace DFG {
+    Vector<MacroAssembler::Label> m_blockHeads;
+    Vector<MacroAssembler::Label> m_osrEntryHeads;
+    
+    struct BranchRecord {
+        BranchRecord(MacroAssembler::Jump jump, BlockIndex destination)
+            : jump(jump)
+            , destination(destination)
+        {
+        }
 
-class SpeculativeJIT;
+        MacroAssembler::Jump jump;
+        BlockIndex destination;
+    };
+    Vector<BranchRecord, 8> m_branches;
 
-// This enum describes the types of additional recovery that
-// may need be performed should a speculation check fail.
-enum SpeculationRecoveryType {
-    SpeculativeAdd
+    Vector<ValueSource, 0> m_arguments;
+    Vector<ValueSource, 0> m_variables;
+    int m_lastSetOperand;
+    CodeOrigin m_codeOriginForOSR;
+    
+    AbstractState m_state;
+    
+    VariableEventStream* m_stream;
+    MinifiedGraph* m_minifiedGraph;
+    
+    bool m_isCheckingArgumentTypes;
+    
+    Vector<OwnPtr<SlowPathGenerator>, 8> m_slowPathGenerators;
+    Vector<SilentRegisterSavePlan> m_plans;
+    
+    ValueRecovery computeValueRecoveryFor(const ValueSource&);
+
+    ValueRecovery computeValueRecoveryFor(int operand)
+    {
+        return computeValueRecoveryFor(valueSourceForOperand(operand));
+    }
 };
 
-// === SpeculationRecovery ===
+
+// === Operand types ===
 //
-// This class provides additional information that may be associated with a
-// speculation check - for example 
-class SpeculationRecovery {
+// IntegerOperand and JSValueOperand.
+//
+// These classes are used to lock the operands to a node into machine
+// registers. These classes implement of pattern of locking a value
+// into register at the point of construction only if it is already in
+// registers, and otherwise loading it lazily at the point it is first
+// used. We do so in order to attempt to avoid spilling one operand
+// in order to make space available for another.
+
+class IntegerOperand {
 public:
-    SpeculationRecovery(SpeculationRecoveryType type, GPRReg dest, GPRReg src)
-        : m_type(type)
-        , m_dest(dest)
-        , m_src(src)
+    explicit IntegerOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
+        : m_jit(jit)
+        , m_edge(edge)
+        , m_gprOrInvalid(InvalidGPRReg)
+#ifndef NDEBUG
+        , m_format(DataFormatNone)
+#endif
     {
+        ASSERT(m_jit);
+        ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == KnownInt32Use);
+        if (jit->isFilled(edge.node()))
+            gpr();
     }
 
-    SpeculationRecoveryType type() { return m_type; }
-    GPRReg dest() { return m_dest; }
-    GPRReg src() { return m_src; }
+    ~IntegerOperand()
+    {
+        ASSERT(m_gprOrInvalid != InvalidGPRReg);
+        m_jit->unlock(m_gprOrInvalid);
+    }
 
-private:
-    // Indicates the type of additional recovery to be performed.
-    SpeculationRecoveryType m_type;
-    // different recovery types may required different additional information here.
-    GPRReg m_dest;
-    GPRReg m_src;
-};
+    Edge edge() const
+    {
+        return m_edge;
+    }
+    
+    Node* node() const
+    {
+        return edge().node();
+    }
 
-// === SpeculationCheck ===
-//
-// This structure records a bail-out from the speculative path,
-// which will need to be linked in to the non-speculative one.
-struct SpeculationCheck {
-    SpeculationCheck(MacroAssembler::Jump, SpeculativeJIT*, unsigned recoveryIndex = 0);
-
-    // The location of the jump out from the speculative path, 
-    // and the node we were generating code for.
-    MacroAssembler::Jump m_check;
-    NodeIndex m_nodeIndex;
-    // Used to record any additional recovery to be performed; this
-    // value is an index into the SpeculativeJIT's m_speculationRecoveryList
-    // array, offset by 1. (m_recoveryIndex == 0) means no recovery.
-    unsigned m_recoveryIndex;
-
-    struct RegisterInfo {
-        NodeIndex nodeIndex;
-        DataFormat format;
-    };
-    RegisterInfo m_gprInfo[GPRInfo::numberOfRegisters];
-    NodeIndex m_fprInfo[FPRInfo::numberOfRegisters];
-};
-typedef SegmentedVector<SpeculationCheck, 16> SpeculationCheckVector;
+    DataFormat format()
+    {
+        gpr(); // m_format is set when m_gpr is locked.
+        ASSERT(m_format == DataFormatInteger || m_format == DataFormatJSInteger);
+        return m_format;
+    }
 
+    GPRReg gpr()
+    {
+        if (m_gprOrInvalid == InvalidGPRReg)
+            m_gprOrInvalid = m_jit->fillInteger(m_edge, m_format);
+        return m_gprOrInvalid;
+    }
+    
+    void use()
+    {
+        m_jit->use(node());
+    }
 
-// === SpeculativeJIT ===
-//
-// The SpeculativeJIT is used to generate a fast, but potentially
-// incomplete code path for the dataflow. When code generating
-// we may make assumptions about operand types, dynamically check,
-// and bail-out to an alternate code path if these checks fail.
-// Importantly, the speculative code path cannot be reentered once
-// a speculative check has failed. This allows the SpeculativeJIT
-// to propagate type information (including information that has
-// only speculatively been asserted) through the dataflow.
-class SpeculativeJIT : public JITCodeGenerator {
-    friend struct SpeculationCheck;
+private:
+    SpeculativeJIT* m_jit;
+    Edge m_edge;
+    GPRReg m_gprOrInvalid;
+    DataFormat m_format;
+};
+
+class JSValueOperand {
 public:
-    SpeculativeJIT(JITCompiler& jit)
-        : JITCodeGenerator(jit, true)
-        , m_compileOkay(true)
+    explicit JSValueOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
+        : m_jit(jit)
+        , m_edge(edge)
+#if USE(JSVALUE64)
+        , m_gprOrInvalid(InvalidGPRReg)
+#elif USE(JSVALUE32_64)
+        , m_isDouble(false)
+#endif
     {
+        ASSERT(m_jit);
+        ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == UntypedUse);
+#if USE(JSVALUE64)
+        if (jit->isFilled(node()))
+            gpr();
+#elif USE(JSVALUE32_64)
+        m_register.pair.tagGPR = InvalidGPRReg;
+        m_register.pair.payloadGPR = InvalidGPRReg;
+        if (jit->isFilled(node()))
+            fill();
+#endif
     }
 
-    bool compile();
+    ~JSValueOperand()
+    {
+#if USE(JSVALUE64)
+        ASSERT(m_gprOrInvalid != InvalidGPRReg);
+        m_jit->unlock(m_gprOrInvalid);
+#elif USE(JSVALUE32_64)
+        if (m_isDouble) {
+            ASSERT(m_register.fpr != InvalidFPRReg);
+            m_jit->unlock(m_register.fpr);
+        } else {
+            ASSERT(m_register.pair.tagGPR != InvalidGPRReg && m_register.pair.payloadGPR != InvalidGPRReg);
+            m_jit->unlock(m_register.pair.tagGPR);
+            m_jit->unlock(m_register.pair.payloadGPR);
+        }
+#endif
+    }
+    
+    Edge edge() const
+    {
+        return m_edge;
+    }
 
-    // Retrieve the list of bail-outs from the speculative path,
-    // and additional recovery information.
-    SpeculationCheckVector& speculationChecks()
+    Node* node() const
+    {
+        return edge().node();
+    }
+
+#if USE(JSVALUE64)
+    GPRReg gpr()
     {
-        return m_speculationChecks;
+        if (m_gprOrInvalid == InvalidGPRReg)
+            m_gprOrInvalid = m_jit->fillJSValue(m_edge);
+        return m_gprOrInvalid;
     }
-    SpeculationRecovery* speculationRecovery(size_t index)
+    JSValueRegs jsValueRegs()
     {
-        // SpeculationCheck::m_recoveryIndex is offset by 1,
-        // 0 means no recovery.
-        return index ? &m_speculationRecoveryList[index - 1] : 0;
+        return JSValueRegs(gpr());
     }
+#elif USE(JSVALUE32_64)
+    bool isDouble() { return m_isDouble; }
 
-    // Called by the speculative operand types, below, to fill operand to
-    // machine registers, implicitly generating speculation checks as needed.
-    GPRReg fillSpeculateInt(NodeIndex, DataFormat& returnFormat);
-    GPRReg fillSpeculateIntStrict(NodeIndex);
-    GPRReg fillSpeculateCell(NodeIndex);
+    void fill()
+    {
+        if (m_register.pair.tagGPR == InvalidGPRReg && m_register.pair.payloadGPR == InvalidGPRReg)
+            m_isDouble = !m_jit->fillJSValue(m_edge, m_register.pair.tagGPR, m_register.pair.payloadGPR, m_register.fpr);
+    }
 
-private:
-    void compile(Node&);
-    void compile(BasicBlock&);
+    GPRReg tagGPR()
+    {
+        fill();
+        ASSERT(!m_isDouble);
+        return m_register.pair.tagGPR;
+    }
 
-    void checkArgumentTypes();
-    void initializeVariableTypes();
+    GPRReg payloadGPR()
+    {
+        fill();
+        ASSERT(!m_isDouble);
+        return m_register.pair.payloadGPR;
+    }
 
-    bool isDoubleConstantWithInt32Value(NodeIndex nodeIndex, int32_t& out)
+    JSValueRegs jsValueRegs()
     {
-        if (!m_jit.isDoubleConstant(nodeIndex))
-            return false;
-        double value = m_jit.valueOfDoubleConstant(nodeIndex);
+        return JSValueRegs(tagGPR(), payloadGPR());
+    }
 
-        int32_t asInt32 = static_cast<int32_t>(value);
-        if (value != asInt32)
-            return false;
-        if (!asInt32 && signbit(value))
-            return false;
+    FPRReg fpr()
+    {
+        fill();
+        ASSERT(m_isDouble);
+        return m_register.fpr;
+    }
+#endif
 
-        out = asInt32;
-        return true;
+    void use()
+    {
+        m_jit->use(node());
     }
 
-    bool isJSConstantWithInt32Value(NodeIndex nodeIndex, int32_t& out)
+private:
+    SpeculativeJIT* m_jit;
+    Edge m_edge;
+#if USE(JSVALUE64)
+    GPRReg m_gprOrInvalid;
+#elif USE(JSVALUE32_64)
+    union {
+        struct {
+            GPRReg tagGPR;
+            GPRReg payloadGPR;
+        } pair;
+        FPRReg fpr;
+    } m_register;
+    bool m_isDouble;
+#endif
+};
+
+class StorageOperand {
+public:
+    explicit StorageOperand(SpeculativeJIT* jit, Edge edge)
+        : m_jit(jit)
+        , m_edge(edge)
+        , m_gprOrInvalid(InvalidGPRReg)
     {
-        if (!m_jit.isJSConstant(nodeIndex))
-            return false;
-        JSValue value = m_jit.valueOfJSConstant(nodeIndex);
+        ASSERT(m_jit);
+        ASSERT(edge.useKind() == UntypedUse || edge.useKind() == KnownCellUse);
+        if (jit->isFilled(node()))
+            gpr();
+    }
+    
+    ~StorageOperand()
+    {
+        ASSERT(m_gprOrInvalid != InvalidGPRReg);
+        m_jit->unlock(m_gprOrInvalid);
+    }
+    
+    Edge edge() const
+    {
+        return m_edge;
+    }
+    
+    Node* node() const
+    {
+        return edge().node();
+    }
+    
+    GPRReg gpr()
+    {
+        if (m_gprOrInvalid == InvalidGPRReg)
+            m_gprOrInvalid = m_jit->fillStorage(edge());
+        return m_gprOrInvalid;
+    }
+    
+    void use()
+    {
+        m_jit->use(node());
+    }
+    
+private:
+    SpeculativeJIT* m_jit;
+    Edge m_edge;
+    GPRReg m_gprOrInvalid;
+};
 
-        if (!value.isInt32())
-            return false;
-        
-        out = value.asInt32();
-        return true;
+
+// === Temporaries ===
+//
+// These classes are used to allocate temporary registers.
+// A mechanism is provided to attempt to reuse the registers
+// currently allocated to child nodes whose value is consumed
+// by, and not live after, this operation.
+
+class GPRTemporary {
+public:
+    GPRTemporary();
+    GPRTemporary(SpeculativeJIT*);
+    GPRTemporary(SpeculativeJIT*, GPRReg specific);
+    GPRTemporary(SpeculativeJIT*, SpeculateIntegerOperand&);
+    GPRTemporary(SpeculativeJIT*, SpeculateIntegerOperand&, SpeculateIntegerOperand&);
+    GPRTemporary(SpeculativeJIT*, SpeculateStrictInt32Operand&);
+    GPRTemporary(SpeculativeJIT*, IntegerOperand&);
+    GPRTemporary(SpeculativeJIT*, IntegerOperand&, IntegerOperand&);
+    GPRTemporary(SpeculativeJIT*, SpeculateCellOperand&);
+    GPRTemporary(SpeculativeJIT*, SpeculateBooleanOperand&);
+#if USE(JSVALUE64)
+    GPRTemporary(SpeculativeJIT*, JSValueOperand&);
+#elif USE(JSVALUE32_64)
+    GPRTemporary(SpeculativeJIT*, JSValueOperand&, bool tag = true);
+#endif
+    GPRTemporary(SpeculativeJIT*, StorageOperand&);
+
+    void adopt(GPRTemporary&);
+
+    ~GPRTemporary()
+    {
+        if (m_jit && m_gpr != InvalidGPRReg)
+            m_jit->unlock(gpr());
     }
 
-    bool detectPeepHoleBranch()
+    GPRReg gpr()
     {
-        // Check if the block contains precisely one more node.
-        if (m_compileIndex + 2 != m_jit.graph().m_blocks[m_block]->end)
-            return false;
+        return m_gpr;
+    }
 
-        // Check if the lastNode is a branch on this node.
-        Node& lastNode = m_jit.graph()[m_compileIndex + 1];
-        return lastNode.op == Branch && lastNode.child1 == m_compileIndex;
+private:
+    SpeculativeJIT* m_jit;
+    GPRReg m_gpr;
+};
+
+class FPRTemporary {
+public:
+    FPRTemporary(SpeculativeJIT*);
+    FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&);
+    FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&, SpeculateDoubleOperand&);
+#if USE(JSVALUE32_64)
+    FPRTemporary(SpeculativeJIT*, JSValueOperand&);
+#endif
+
+    ~FPRTemporary()
+    {
+        m_jit->unlock(fpr());
     }
 
-    void compilePeepHoleBranch(Node&, JITCompiler::RelationalCondition);
+    FPRReg fpr() const
+    {
+        ASSERT(m_fpr != InvalidFPRReg);
+        return m_fpr;
+    }
 
-    // Add a speculation check without additional recovery.
-    void speculationCheck(MacroAssembler::Jump jumpToFail)
+protected:
+    FPRTemporary(SpeculativeJIT* jit, FPRReg lockedFPR)
+        : m_jit(jit)
+        , m_fpr(lockedFPR)
     {
-        m_speculationChecks.append(SpeculationCheck(jumpToFail, this));
     }
-    // Add a speculation check with additional recovery.
-    void speculationCheck(MacroAssembler::Jump jumpToFail, const SpeculationRecovery& recovery)
+
+private:
+    SpeculativeJIT* m_jit;
+    FPRReg m_fpr;
+};
+
+
+// === Results ===
+//
+// These classes lock the result of a call to a C++ helper function.
+
+class GPRResult : public GPRTemporary {
+public:
+    GPRResult(SpeculativeJIT* jit)
+        : GPRTemporary(jit, GPRInfo::returnValueGPR)
     {
-        m_speculationRecoveryList.append(recovery);
-        m_speculationChecks.append(SpeculationCheck(jumpToFail, this, m_speculationRecoveryList.size()));
     }
+};
 
-    // Called when we statically determine that a speculation will fail.
-    void terminateSpeculativeExecution()
+#if USE(JSVALUE32_64)
+class GPRResult2 : public GPRTemporary {
+public:
+    GPRResult2(SpeculativeJIT* jit)
+        : GPRTemporary(jit, GPRInfo::returnValueGPR2)
     {
-        // FIXME: in cases where we can statically determine we're going to bail out from the speculative
-        // JIT we should probably rewind code generation and only produce the non-speculative path.
-        m_compileOkay = false;
-        speculationCheck(m_jit.jump());
     }
+};
+#endif
 
-    template<bool strict>
-    GPRReg fillSpeculateIntInternal(NodeIndex, DataFormat& returnFormat);
+class FPRResult : public FPRTemporary {
+public:
+    FPRResult(SpeculativeJIT* jit)
+        : FPRTemporary(jit, lockedResult(jit))
+    {
+    }
 
-    // It is possible, during speculative generation, to reach a situation in which we
-    // can statically determine a speculation will fail (for example, when two nodes
-    // will make conflicting speculations about the same operand). In such cases this
-    // flag is cleared, indicating no further code generation should take place.
-    bool m_compileOkay;
-    // This vector tracks bail-outs from the speculative path to the non-speculative one.
-    SpeculationCheckVector m_speculationChecks;
-    // Some bail-outs need to record additional information recording specific recovery
-    // to be performed (for example, on detected overflow from an add, we may need to
-    // reverse the addition if an operand is being overwritten).
-    Vector<SpeculationRecovery, 16> m_speculationRecoveryList;
+private:
+    static FPRReg lockedResult(SpeculativeJIT* jit)
+    {
+        jit->lock(FPRInfo::returnValueFPR);
+        return FPRInfo::returnValueFPR;
+    }
 };
 
 
@@ -223,23 +2595,24 @@ private:
 // SpeculateIntegerOperand, SpeculateStrictInt32Operand and SpeculateCellOperand.
 //
 // These are used to lock the operands to a node into machine registers within the
-// SpeculativeJIT. The classes operate like those provided by the JITCodeGenerator,
-// however these will perform a speculative check for a more restrictive type than
-// we can statically determine the operand to have. If the operand does not have
-// the requested type, a bail-out to the non-speculative path will be taken.
+// SpeculativeJIT. The classes operate like those above, however these will
+// perform a speculative check for a more restrictive type than we can statically
+// determine the operand to have. If the operand does not have the requested type,
+// a bail-out to the non-speculative path will be taken.
 
 class SpeculateIntegerOperand {
 public:
-    explicit SpeculateIntegerOperand(SpeculativeJIT* jit, NodeIndex index)
+    explicit SpeculateIntegerOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
         : m_jit(jit)
-        , m_index(index)
+        , m_edge(edge)
         , m_gprOrInvalid(InvalidGPRReg)
 #ifndef NDEBUG
         , m_format(DataFormatNone)
 #endif
     {
         ASSERT(m_jit);
-        if (jit->isFilled(index))
+        ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use));
+        if (jit->isFilled(node()))
             gpr();
     }
 
@@ -248,10 +2621,15 @@ public:
         ASSERT(m_gprOrInvalid != InvalidGPRReg);
         m_jit->unlock(m_gprOrInvalid);
     }
+    
+    Edge edge() const
+    {
+        return m_edge;
+    }
 
-    NodeIndex index() const
+    Node* node() const
     {
-        return m_index;
+        return edge().node();
     }
 
     DataFormat format()
@@ -264,26 +2642,32 @@ public:
     GPRReg gpr()
     {
         if (m_gprOrInvalid == InvalidGPRReg)
-            m_gprOrInvalid = m_jit->fillSpeculateInt(index(), m_format);
+            m_gprOrInvalid = m_jit->fillSpeculateInt(edge(), m_format);
         return m_gprOrInvalid;
     }
+    
+    void use()
+    {
+        m_jit->use(node());
+    }
 
 private:
     SpeculativeJIT* m_jit;
-    NodeIndex m_index;
+    Edge m_edge;
     GPRReg m_gprOrInvalid;
     DataFormat m_format;
 };
 
 class SpeculateStrictInt32Operand {
 public:
-    explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, NodeIndex index)
+    explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
         : m_jit(jit)
-        , m_index(index)
+        , m_edge(edge)
         , m_gprOrInvalid(InvalidGPRReg)
     {
         ASSERT(m_jit);
-        if (jit->isFilled(index))
+        ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use));
+        if (jit->isFilled(node()))
             gpr();
     }
 
@@ -292,92 +2676,204 @@ public:
         ASSERT(m_gprOrInvalid != InvalidGPRReg);
         m_jit->unlock(m_gprOrInvalid);
     }
+    
+    Edge edge() const
+    {
+        return m_edge;
+    }
 
-    NodeIndex index() const
+    Node* node() const
     {
-        return m_index;
+        return edge().node();
     }
 
     GPRReg gpr()
     {
         if (m_gprOrInvalid == InvalidGPRReg)
-            m_gprOrInvalid = m_jit->fillSpeculateIntStrict(index());
+            m_gprOrInvalid = m_jit->fillSpeculateIntStrict(edge());
         return m_gprOrInvalid;
     }
+    
+    void use()
+    {
+        m_jit->use(node());
+    }
 
 private:
     SpeculativeJIT* m_jit;
-    NodeIndex m_index;
+    Edge m_edge;
     GPRReg m_gprOrInvalid;
 };
 
+class SpeculateDoubleOperand {
+public:
+    explicit SpeculateDoubleOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
+        : m_jit(jit)
+        , m_edge(edge)
+        , m_fprOrInvalid(InvalidFPRReg)
+    {
+        ASSERT(m_jit);
+        ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == NumberUse || edge.useKind() == KnownNumberUse || edge.useKind() == RealNumberUse));
+        if (jit->isFilled(node()))
+            fpr();
+    }
+
+    ~SpeculateDoubleOperand()
+    {
+        ASSERT(m_fprOrInvalid != InvalidFPRReg);
+        m_jit->unlock(m_fprOrInvalid);
+    }
+    
+    Edge edge() const
+    {
+        return m_edge;
+    }
+
+    Node* node() const
+    {
+        return edge().node();
+    }
+
+    FPRReg fpr()
+    {
+        if (m_fprOrInvalid == InvalidFPRReg)
+            m_fprOrInvalid = m_jit->fillSpeculateDouble(edge());
+        return m_fprOrInvalid;
+    }
+    
+    void use()
+    {
+        m_jit->use(node());
+    }
+
+private:
+    SpeculativeJIT* m_jit;
+    Edge m_edge;
+    FPRReg m_fprOrInvalid;
+};
+
 class SpeculateCellOperand {
 public:
-    explicit SpeculateCellOperand(SpeculativeJIT* jit, NodeIndex index)
+    explicit SpeculateCellOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
         : m_jit(jit)
-        , m_index(index)
+        , m_edge(edge)
         , m_gprOrInvalid(InvalidGPRReg)
     {
         ASSERT(m_jit);
-        if (jit->isFilled(index))
+        if (!edge)
+            return;
+        ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == CellUse || edge.useKind() == KnownCellUse || edge.useKind() == ObjectUse || edge.useKind() == StringUse || edge.useKind() == KnownStringUse || edge.useKind() == StringObjectUse || edge.useKind() == StringOrStringObjectUse));
+        if (jit->isFilled(node()))
             gpr();
     }
 
     ~SpeculateCellOperand()
     {
+        if (!m_edge)
+            return;
         ASSERT(m_gprOrInvalid != InvalidGPRReg);
         m_jit->unlock(m_gprOrInvalid);
     }
+    
+    Edge edge() const
+    {
+        return m_edge;
+    }
 
-    NodeIndex index() const
+    Node* node() const
     {
-        return m_index;
+        return edge().node();
     }
 
     GPRReg gpr()
     {
+        ASSERT(m_edge);
         if (m_gprOrInvalid == InvalidGPRReg)
-            m_gprOrInvalid = m_jit->fillSpeculateCell(index());
+            m_gprOrInvalid = m_jit->fillSpeculateCell(edge());
         return m_gprOrInvalid;
     }
+    
+    void use()
+    {
+        ASSERT(m_edge);
+        m_jit->use(node());
+    }
 
 private:
     SpeculativeJIT* m_jit;
-    NodeIndex m_index;
+    Edge m_edge;
     GPRReg m_gprOrInvalid;
 };
 
-
-// === SpeculationCheckIndexIterator ===
-//
-// This class is used by the non-speculative JIT to check which
-// nodes require entry points from the speculative path.
-class SpeculationCheckIndexIterator {
+class SpeculateBooleanOperand {
 public:
-    SpeculationCheckIndexIterator(SpeculationCheckVector& speculationChecks)
-        : m_speculationChecks(speculationChecks)
-        , m_iter(m_speculationChecks.begin())
-        , m_end(m_speculationChecks.end())
+    explicit SpeculateBooleanOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
+        : m_jit(jit)
+        , m_edge(edge)
+        , m_gprOrInvalid(InvalidGPRReg)
     {
+        ASSERT(m_jit);
+        ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == BooleanUse);
+        if (jit->isFilled(node()))
+            gpr();
     }
-
-    bool hasCheckAtIndex(NodeIndex nodeIndex)
+    
+    ~SpeculateBooleanOperand()
     {
-        while (m_iter != m_end) {
-            NodeIndex current = m_iter->m_nodeIndex;
-            if (current >= nodeIndex)
-                return current == nodeIndex;
-            ++m_iter;
-        }
-        return false;
+        ASSERT(m_gprOrInvalid != InvalidGPRReg);
+        m_jit->unlock(m_gprOrInvalid);
+    }
+    
+    Edge edge() const
+    {
+        return m_edge;
+    }
+    
+    Node* node() const
+    {
+        return edge().node();
+    }
+    
+    GPRReg gpr()
+    {
+        if (m_gprOrInvalid == InvalidGPRReg)
+            m_gprOrInvalid = m_jit->fillSpeculateBoolean(edge());
+        return m_gprOrInvalid;
+    }
+    
+    void use()
+    {
+        m_jit->use(node());
     }
 
 private:
-    SpeculationCheckVector& m_speculationChecks;
-    SpeculationCheckVector::Iterator m_iter;
-    SpeculationCheckVector::Iterator m_end;
+    SpeculativeJIT* m_jit;
+    Edge m_edge;
+    GPRReg m_gprOrInvalid;
 };
 
+template<typename StructureLocationType>
+void SpeculativeJIT::speculateStringObjectForStructure(Edge edge, StructureLocationType structureLocation)
+{
+    Structure* stringObjectStructure =
+        m_jit.globalObjectFor(m_currentNode->codeOrigin)->stringObjectStructure();
+    Structure* stringPrototypeStructure = stringObjectStructure->storedPrototype().asCell()->structure();
+    ASSERT(stringPrototypeStructure->transitionWatchpointSetIsStillValid());
+    
+    if (!m_state.forNode(edge).m_currentKnownStructure.isSubsetOf(StructureSet(m_jit.globalObjectFor(m_currentNode->codeOrigin)->stringObjectStructure()))) {
+        speculationCheck(
+            NotStringObject, JSValueRegs(), 0,
+            m_jit.branchPtr(
+                JITCompiler::NotEqual, structureLocation, TrustedImmPtr(stringObjectStructure)));
+    }
+    stringPrototypeStructure->addTransitionWatchpoint(speculationWatchpoint(NotStringObject));
+}
+
+#define DFG_TYPE_CHECK(source, edge, typesPassedThrough, jumpToFail) do { \
+        if (!needsTypeCheck((edge), (typesPassedThrough)))              \
+            break;                                                      \
+        typeCheck((source), (edge), (typesPassedThrough), (jumpToFail)); \
+    } while (0)
 
 } } // namespace JSC::DFG