#include "config.h"
#if ENABLE(JIT)
-#if USE(JSVALUE64)
#include "JIT.h"
#include "CodeBlock.h"
namespace JSC {
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jless, op1, op2, target, LessThan);
+}
+
+void JIT::emit_op_jlesseq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual);
+}
+
+void JIT::emit_op_jgreater(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan);
+}
+
+void JIT::emit_op_jgreatereq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual);
+}
+
+void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan);
+}
+
+void JIT::emit_op_jngreater(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual);
+}
+
+void JIT::emit_op_jngreatereq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan);
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, cti_op_jless, false, iter);
+}
+
+void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, cti_op_jlesseq, false, iter);
+}
+
+void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, cti_op_jgreater, false, iter);
+}
+
+void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, cti_op_jgreatereq, false, iter);
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, cti_op_jless, true, iter);
+}
+
+void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, cti_op_jlesseq, true, iter);
+}
+
+void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, cti_op_jgreater, true, iter);
+}
+
+void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, cti_op_jgreatereq, true, iter);
+}
+
+#if USE(JSVALUE64)
+
+void JIT::emit_op_negate(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned src = currentInstruction[2].u.operand;
+
+ emitGetVirtualRegister(src, regT0);
+
+ Jump srcNotInt = emitJumpIfNotImmediateInteger(regT0);
+ addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff)));
+ neg32(regT0);
+ emitFastArithReTagImmediate(regT0, regT0);
+
+ Jump end = jump();
+
+ srcNotInt.link(this);
+ emitJumpSlowCaseIfNotImmediateNumber(regT0);
+
+ move(TrustedImmPtr(reinterpret_cast<void*>(0x8000000000000000ull)), regT1);
+ xorPtr(regT1, regT0);
+
+ end.link(this);
+ emitPutVirtualRegister(dst);
+}
+
+void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // 0x7fffffff check
+ linkSlowCase(iter); // double check
+
+ JITStubCall stubCall(this, cti_op_negate);
+ stubCall.addArgument(regT1, regT0);
+ stubCall.call(dst);
+}
+
void JIT::emit_op_lshift(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
stubCall.call(dst);
}
-void JIT::emit_op_jnless(Instruction* currentInstruction)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the fast path:
- // - int immediate to constant int immediate
- // - constant int immediate to int immediate
- // - int immediate to int immediate
-
- if (isOperandConstantImmediateChar(op1)) {
- emitGetVirtualRegister(op2, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateChar(op2)) {
- emitGetVirtualRegister(op1, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- int32_t op2imm = getConstantOperandImmediateInt(op2);
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target);
- } else if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
- int32_t op1imm = getConstantOperandImmediateInt(op1);
- addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target);
- } else {
- emitGetVirtualRegisters(op1, regT0, op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
-
- addJump(branch32(GreaterThanOrEqual, regT0, regT1), target);
- }
-}
-
-void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the slow path:
- // - floating-point number to constant int immediate
- // - constant int immediate to floating-point number
- // - floating-point number to floating-point number.
- if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
- return;
- }
-
- if (isOperandConstantImmediateInt(op2)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
-
- int32_t op2imm = getConstantOperand(op2).asInt32();;
-
- move(Imm32(op2imm), regT1);
- convertInt32ToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
-
- } else if (isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
-
- int32_t op1imm = getConstantOperand(op1).asInt32();;
-
- move(Imm32(op1imm), regT0);
- convertInt32ToDouble(regT0, fpRegT0);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
-
- } else {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
- Jump fail3 = emitJumpIfImmediateInteger(regT1);
- addPtr(tagTypeNumberRegister, regT0);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT0, fpRegT0);
- movePtrToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- fail2.link(this);
- fail3.link(this);
- }
-
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
- }
-}
-
-void JIT::emit_op_jless(Instruction* currentInstruction)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the fast path:
- // - int immediate to constant int immediate
- // - constant int immediate to int immediate
- // - int immediate to int immediate
-
- if (isOperandConstantImmediateChar(op1)) {
- emitGetVirtualRegister(op2, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(GreaterThan, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateChar(op2)) {
- emitGetVirtualRegister(op1, regT0);
- addSlowCase(emitJumpIfNotJSCell(regT0));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(LessThan, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- int32_t op2imm = getConstantOperandImmediateInt(op2);
- addJump(branch32(LessThan, regT0, Imm32(op2imm)), target);
- } else if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
- int32_t op1imm = getConstantOperandImmediateInt(op1);
- addJump(branch32(GreaterThan, regT1, Imm32(op1imm)), target);
- } else {
- emitGetVirtualRegisters(op1, regT0, op2, regT1);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
- emitJumpSlowCaseIfNotImmediateInteger(regT1);
-
- addJump(branch32(LessThan, regT0, regT1), target);
- }
-}
-
-void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- // We generate inline code for the following cases in the slow path:
- // - floating-point number to constant int immediate
- // - constant int immediate to floating-point number
- // - floating-point number to floating-point number.
- if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT0);
- stubCall.addArgument(op2, regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
- return;
- }
-
- if (isOperandConstantImmediateInt(op2)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- addPtr(tagTypeNumberRegister, regT0);
- movePtrToDouble(regT0, fpRegT0);
-
- int32_t op2imm = getConstantOperand(op2).asInt32();
-
- move(Imm32(op2imm), regT1);
- convertInt32ToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(op2, regT2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
-
- } else if (isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT1, fpRegT1);
-
- int32_t op1imm = getConstantOperand(op1).asInt32();
-
- move(Imm32(op1imm), regT0);
- convertInt32ToDouble(regT0, fpRegT0);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
-
- } else {
- linkSlowCase(iter);
-
- if (supportsFloatingPoint()) {
- Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
- Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
- Jump fail3 = emitJumpIfImmediateInteger(regT1);
- addPtr(tagTypeNumberRegister, regT0);
- addPtr(tagTypeNumberRegister, regT1);
- movePtrToDouble(regT0, fpRegT0);
- movePtrToDouble(regT1, fpRegT1);
-
- emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
-
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
-
- fail1.link(this);
- fail2.link(this);
- fail3.link(this);
- }
-
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(regT0);
- stubCall.addArgument(regT1);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
- }
-}
-
-void JIT::emit_op_jlesseq(Instruction* currentInstruction, bool invert)
+void JIT::emit_compareAndJump(OpcodeID, unsigned op1, unsigned op2, unsigned target, RelationalCondition condition)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
// We generate inline code for the following cases in the fast path:
// - int immediate to constant int immediate
// - constant int immediate to int immediate
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
- addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
+ addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateChar(op2)) {
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
+ addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
int32_t op2imm = getConstantOperandImmediateInt(op2);
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(op2imm)), target);
+ addJump(branch32(condition, regT0, Imm32(op2imm)), target);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
int32_t op1imm = getConstantOperandImmediateInt(op1);
- addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT1, Imm32(op1imm)), target);
+ addJump(branch32(commute(condition), regT1, Imm32(op1imm)), target);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, regT1), target);
+ addJump(branch32(condition, regT0, regT1), target);
}
}
-void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool invert)
+void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition condition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnlesseq), OPCODE_LENGTH_op_jnlesseq_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreater), OPCODE_LENGTH_op_jgreater_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreatereq), OPCODE_LENGTH_op_jgreatereq_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreater), OPCODE_LENGTH_op_jngreater_equals_op_jless);
+ COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreatereq), OPCODE_LENGTH_op_jngreatereq_equals_op_jless);
+
// We generate inline code for the following cases in the slow path:
// - floating-point number to constant int immediate
// - constant int immediate to floating-point number
// - floating-point number to floating-point number.
-
if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jlesseq);
+ JITStubCall stubCall(this, stub);
stubCall.addArgument(op1, regT0);
stubCall.addArgument(op2, regT1);
stubCall.call();
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT0);
- int32_t op2imm = getConstantOperand(op2).asInt32();;
+ int32_t op2imm = getConstantOperand(op2).asInt32();
move(Imm32(op2imm), regT1);
convertInt32ToDouble(regT1, fpRegT1);
- emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+ emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
fail1.link(this);
}
- JITStubCall stubCall(this, cti_op_jlesseq);
+ JITStubCall stubCall(this, stub);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call();
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT1, fpRegT1);
- int32_t op1imm = getConstantOperand(op1).asInt32();;
+ int32_t op1imm = getConstantOperand(op1).asInt32();
move(Imm32(op1imm), regT0);
convertInt32ToDouble(regT0, fpRegT0);
- emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+ emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
fail1.link(this);
}
- JITStubCall stubCall(this, cti_op_jlesseq);
+ JITStubCall stubCall(this, stub);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
-
} else {
linkSlowCase(iter);
movePtrToDouble(regT0, fpRegT0);
movePtrToDouble(regT1, fpRegT1);
- emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+ emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target);
- emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless));
fail1.link(this);
fail2.link(this);
}
linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_jlesseq);
+ JITStubCall stubCall(this, stub);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
}
}
-void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
-{
- emit_op_jlesseq(currentInstruction, true);
-}
-
-void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- emitSlow_op_jlesseq(currentInstruction, iter, true);
-}
-
void JIT::emit_op_bitand(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
emitGetVirtualRegister(srcDst, regT0);
move(regT0, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchSub32(Zero, TrustedImm32(1), regT1));
+ addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT1));
emitFastArithIntToImmNoCheck(regT1, regT1);
emitPutVirtualRegister(srcDst, regT1);
emitPutVirtualRegister(result);
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchSub32(Zero, TrustedImm32(1), regT0));
+ addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
emitPutVirtualRegister(srcDst);
}
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
-#if CPU(X86) || CPU(X86_64) || CPU(MIPS)
+#if CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
-#if CPU(X86) || CPU(X86_64)
// Make sure registers are correct for x86 IDIV instructions.
ASSERT(regT0 == X86Registers::eax);
ASSERT(regT1 == X86Registers::edx);
ASSERT(regT2 == X86Registers::ecx);
-#endif
- emitGetVirtualRegisters(op1, regT0, op2, regT2);
- emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitGetVirtualRegisters(op1, regT3, op2, regT2);
+ emitJumpSlowCaseIfNotImmediateInteger(regT3);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
- addSlowCase(branchPtr(Equal, regT2, TrustedImmPtr(JSValue::encode(jsNumber(0)))));
+ move(regT3, regT0);
+ addSlowCase(branchTest32(Zero, regT2));
+ Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1));
+ addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1)));
+ denominatorNotNeg1.link(this);
m_assembler.cdq();
m_assembler.idivl_r(regT2);
+ Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0));
+ addSlowCase(branchTest32(Zero, regT1));
+ numeratorPositive.link(this);
emitFastArithReTagImmediate(regT1, regT0);
emitPutVirtualRegister(result);
}
{
unsigned result = currentInstruction[1].u.operand;
+ linkSlowCase(iter);
+ linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(regT0);
+ stubCall.addArgument(regT3);
stubCall.addArgument(regT2);
stubCall.call(result);
}
-#else // CPU(X86) || CPU(X86_64) || CPU(MIPS)
+#else // CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
-#if ENABLE(JIT_USE_SOFT_MODULO)
- unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(op1, regT2);
- stubCall.addArgument(op2, regT2);
- stubCall.call(result);
-#else
ASSERT_NOT_REACHED();
-#endif
}
#endif // CPU(X86) || CPU(X86_64)
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if ENABLE(VALUE_PROFILER)
+ RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+#endif
if (opcodeID == op_add)
addSlowCase(branchAdd32(Overflow, regT1, regT0));
else if (opcodeID == op_sub)
addSlowCase(branchSub32(Overflow, regT1, regT0));
else {
ASSERT(opcodeID == op_mul);
+#if ENABLE(VALUE_PROFILER)
+ if (m_canBeOptimized) {
+ // We want to be able to measure if this is taking the slow case just
+ // because of negative zero. If this produces positive zero, then we
+ // don't want the slow case to be taken because that will throw off
+ // speculative compilation.
+ move(regT0, regT2);
+ addSlowCase(branchMul32(Overflow, regT1, regT2));
+ JumpList done;
+ done.append(branchTest32(NonZero, regT2));
+ Jump negativeZero = branch32(LessThan, regT0, TrustedImm32(0));
+ done.append(branch32(GreaterThanOrEqual, regT1, TrustedImm32(0)));
+ negativeZero.link(this);
+ // We only get here if we have a genuine negative zero. Record this,
+ // so that the speculative JIT knows that we failed speculation
+ // because of a negative zero.
+ add32(TrustedImm32(1), AbsoluteAddress(&profile->m_counter));
+ addSlowCase(jump());
+ done.link(this);
+ move(regT2, regT0);
+ } else {
+ addSlowCase(branchMul32(Overflow, regT1, regT0));
+ addSlowCase(branchTest32(Zero, regT0));
+ }
+#else
addSlowCase(branchMul32(Overflow, regT1, regT0));
addSlowCase(branchTest32(Zero, regT0));
+#endif
}
emitFastArithIntToImmNoCheck(regT0, regT0);
}
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ addSlowCase();
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0));
- emitFastArithIntToImmNoCheck(regT0, regT0);
+ addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op1)), regT1));
+ emitFastArithIntToImmNoCheck(regT1, regT0);
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0));
- emitFastArithIntToImmNoCheck(regT0, regT0);
+ addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op2)), regT1));
+ emitFastArithIntToImmNoCheck(regT1, regT0);
} else
compileBinaryArithOp(op_add, result, op1, op2, types);
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ linkDummySlowCase(iter);
return;
+ }
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
// For now, only plant a fast int case if the constant operand is greater than zero.
int32_t value;
if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
+#if ENABLE(VALUE_PROFILER)
+ // Add a special fast case profile because the DFG JIT will expect one.
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+#endif
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
- emitFastArithReTagImmediate(regT0, regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
+ emitFastArithReTagImmediate(regT1, regT0);
} else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
+#if ENABLE(VALUE_PROFILER)
+ // Add a special fast case profile because the DFG JIT will expect one.
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+#endif
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
- addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
- emitFastArithReTagImmediate(regT0, regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1));
+ emitFastArithReTagImmediate(regT1, regT0);
} else
compileBinaryArithOp(op_mul, result, op1, op2, types);
skipDoubleLoad.link(this);
}
divDouble(fpRegT1, fpRegT0);
-
+
+#if ENABLE(VALUE_PROFILER)
+ // Is the result actually an integer? The DFG JIT would really like to know. If it's
+ // not an integer, we increment a count. If this together with the slow case counter
+ // are below threshold then the DFG JIT will compile this division with a specualtion
+ // that the remainder is zero.
+
+ // As well, there are cases where a double result here would cause an important field
+ // in the heap to sometimes have doubles in it, resulting in double predictions getting
+ // propagated to a use site where it might cause damage (such as the index to an array
+ // access). So if we are DFG compiling anything in the program, we want this code to
+ // ensure that it produces integers whenever possible.
+
+ // FIXME: This will fail to convert to integer if the result is zero. We should
+ // distinguish between positive zero and negative zero here.
+
+ JumpList notInteger;
+ branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1);
+ // If we've got an integer, we might as well make that the result of the division.
+ emitFastArithReTagImmediate(regT0, regT0);
+ Jump isInteger = jump();
+ notInteger.link(this);
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter));
+ moveDoubleToPtr(fpRegT0, regT0);
+ subPtr(tagTypeNumberRegister, regT0);
+ isInteger.link(this);
+#else
// Double result.
moveDoubleToPtr(fpRegT0, regT0);
subPtr(tagTypeNumberRegister, regT0);
+#endif
emitPutVirtualRegister(dst, regT0);
}
/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */
+#endif // USE(JSVALUE64)
+
} // namespace JSC
-#endif // USE(JSVALUE64)
#endif // ENABLE(JIT)