]> git.saurik.com Git - apple/javascriptcore.git/blob - jit/ExecutableAllocatorFixedVMPool.cpp
4c30058484d1a0ee93a2331c79c7bb811454efbe
[apple/javascriptcore.git] / jit / ExecutableAllocatorFixedVMPool.cpp
1 /*
2 * Copyright (C) 2009 Apple Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26 #include "config.h"
27
28 #include "ExecutableAllocator.h"
29
30 #if ENABLE(EXECUTABLE_ALLOCATOR_FIXED)
31
32 #include <errno.h>
33
34 #include "TCSpinLock.h"
35 #include <sys/mman.h>
36 #include <unistd.h>
37 #include <wtf/AVLTree.h>
38 #include <wtf/VMTags.h>
39
40 #define MMAP_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_JIT)
41
42 using namespace WTF;
43
44 namespace JSC {
45
46 #if CPU(X86_64)
47 // These limits suitable on 64-bit platforms (particularly x86-64, where we require all jumps to have a 2Gb max range).
48 #define VM_POOL_SIZE (2u * 1024u * 1024u * 1024u) // 2Gb
49 #define COALESCE_LIMIT (16u * 1024u * 1024u) // 16Mb
50 #else
51 // These limits are hopefully sensible on embedded platforms.
52 #define VM_POOL_SIZE (32u * 1024u * 1024u) // 32Mb
53 #define COALESCE_LIMIT (4u * 1024u * 1024u) // 4Mb
54 #endif
55
56 // ASLR currently only works on darwin (due to arc4random) & 64-bit (due to address space size).
57 #define VM_POOL_ASLR (OS(DARWIN) && CPU(X86_64))
58
59 // FreeListEntry describes a free chunk of memory, stored in the freeList.
60 struct FreeListEntry {
61 FreeListEntry(void* pointer, size_t size)
62 : pointer(pointer)
63 , size(size)
64 , nextEntry(0)
65 , less(0)
66 , greater(0)
67 , balanceFactor(0)
68 {
69 }
70
71 // All entries of the same size share a single entry
72 // in the AVLTree, and are linked together in a linked
73 // list, using nextEntry.
74 void* pointer;
75 size_t size;
76 FreeListEntry* nextEntry;
77
78 // These fields are used by AVLTree.
79 FreeListEntry* less;
80 FreeListEntry* greater;
81 int balanceFactor;
82 };
83
84 // Abstractor class for use in AVLTree.
85 // Nodes in the AVLTree are of type FreeListEntry, keyed on
86 // (and thus sorted by) their size.
87 struct AVLTreeAbstractorForFreeList {
88 typedef FreeListEntry* handle;
89 typedef int32_t size;
90 typedef size_t key;
91
92 handle get_less(handle h) { return h->less; }
93 void set_less(handle h, handle lh) { h->less = lh; }
94 handle get_greater(handle h) { return h->greater; }
95 void set_greater(handle h, handle gh) { h->greater = gh; }
96 int get_balance_factor(handle h) { return h->balanceFactor; }
97 void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; }
98
99 static handle null() { return 0; }
100
101 int compare_key_key(key va, key vb) { return va - vb; }
102 int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); }
103 int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); }
104 };
105
106 // Used to reverse sort an array of FreeListEntry pointers.
107 static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr)
108 {
109 FreeListEntry* left = *(FreeListEntry**)leftPtr;
110 FreeListEntry* right = *(FreeListEntry**)rightPtr;
111
112 return (intptr_t)(right->pointer) - (intptr_t)(left->pointer);
113 }
114
115 // Used to reverse sort an array of pointers.
116 static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr)
117 {
118 void* left = *(void**)leftPtr;
119 void* right = *(void**)rightPtr;
120
121 return (intptr_t)right - (intptr_t)left;
122 }
123
124 class FixedVMPoolAllocator
125 {
126 // The free list is stored in a sorted tree.
127 typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree;
128
129 // Use madvise as apropriate to prevent freed pages from being spilled,
130 // and to attempt to ensure that used memory is reported correctly.
131 #if HAVE(MADV_FREE_REUSE)
132 void release(void* position, size_t size)
133 {
134 while (madvise(position, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { }
135 }
136
137 void reuse(void* position, size_t size)
138 {
139 while (madvise(position, size, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { }
140 }
141 #elif HAVE(MADV_FREE)
142 void release(void* position, size_t size)
143 {
144 while (madvise(position, size, MADV_FREE) == -1 && errno == EAGAIN) { }
145 }
146
147 void reuse(void*, size_t) {}
148 #elif HAVE(MADV_DONTNEED)
149 void release(void* position, size_t size)
150 {
151 while (madvise(position, size, MADV_DONTNEED) == -1 && errno == EAGAIN) { }
152 }
153
154 void reuse(void*, size_t) {}
155 #else
156 void release(void*, size_t) {}
157 void reuse(void*, size_t) {}
158 #endif
159
160 // All addition to the free list should go through this method, rather than
161 // calling insert directly, to avoid multiple entries beging added with the
162 // same key. All nodes being added should be singletons, they should not
163 // already be a part of a chain.
164 void addToFreeList(FreeListEntry* entry)
165 {
166 ASSERT(!entry->nextEntry);
167
168 if (entry->size == m_commonSize) {
169 m_commonSizedAllocations.append(entry->pointer);
170 delete entry;
171 } else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) {
172 // m_freeList already contain an entry for this size - insert this node into the chain.
173 entry->nextEntry = entryInFreeList->nextEntry;
174 entryInFreeList->nextEntry = entry;
175 } else
176 m_freeList.insert(entry);
177 }
178
179 // We do not attempt to coalesce addition, which may lead to fragmentation;
180 // instead we periodically perform a sweep to try to coalesce neigboring
181 // entries in m_freeList. Presently this is triggered at the point 16MB
182 // of memory has been released.
183 void coalesceFreeSpace()
184 {
185 Vector<FreeListEntry*> freeListEntries;
186 SizeSortedFreeTree::Iterator iter;
187 iter.start_iter_least(m_freeList);
188
189 // Empty m_freeList into a Vector.
190 for (FreeListEntry* entry; (entry = *iter); ++iter) {
191 // Each entry in m_freeList might correspond to multiple
192 // free chunks of memory (of the same size). Walk the chain
193 // (this is likely of couse only be one entry long!) adding
194 // each entry to the Vector (at reseting the next in chain
195 // pointer to separate each node out).
196 FreeListEntry* next;
197 do {
198 next = entry->nextEntry;
199 entry->nextEntry = 0;
200 freeListEntries.append(entry);
201 } while ((entry = next));
202 }
203 // All entries are now in the Vector; purge the tree.
204 m_freeList.purge();
205
206 // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors.
207 // We reverse-sort so that we can logically work forwards through memory,
208 // whilst popping items off the end of the Vectors using last() and removeLast().
209 qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer);
210 qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations);
211
212 // The entries from m_commonSizedAllocations that cannot be
213 // coalesced into larger chunks will be temporarily stored here.
214 Vector<void*> newCommonSizedAllocations;
215
216 // Keep processing so long as entries remain in either of the vectors.
217 while (freeListEntries.size() || m_commonSizedAllocations.size()) {
218 // We're going to try to find a FreeListEntry node that we can coalesce onto.
219 FreeListEntry* coalescionEntry = 0;
220
221 // Is the lowest addressed chunk of free memory of common-size, or is it in the free list?
222 if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) {
223 // Pop an item from the m_commonSizedAllocations vector - this is the lowest
224 // addressed free chunk. Find out the begin and end addresses of the memory chunk.
225 void* begin = m_commonSizedAllocations.last();
226 void* end = (void*)((intptr_t)begin + m_commonSize);
227 m_commonSizedAllocations.removeLast();
228
229 // Try to find another free chunk abutting onto the end of the one we have already found.
230 if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
231 // There is an existing FreeListEntry for the next chunk of memory!
232 // we can reuse this. Pop it off the end of m_freeList.
233 coalescionEntry = freeListEntries.last();
234 freeListEntries.removeLast();
235 // Update the existing node to include the common-sized chunk that we also found.
236 coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize);
237 coalescionEntry->size += m_commonSize;
238 } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
239 // There is a second common-sized chunk that can be coalesced.
240 // Allocate a new node.
241 m_commonSizedAllocations.removeLast();
242 coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize);
243 } else {
244 // Nope - this poor little guy is all on his own. :-(
245 // Add him into the newCommonSizedAllocations vector for now, we're
246 // going to end up adding him back into the m_commonSizedAllocations
247 // list when we're done.
248 newCommonSizedAllocations.append(begin);
249 continue;
250 }
251 } else {
252 ASSERT(freeListEntries.size());
253 ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last()));
254 // The lowest addressed item is from m_freeList; pop it from the Vector.
255 coalescionEntry = freeListEntries.last();
256 freeListEntries.removeLast();
257 }
258
259 // Right, we have a FreeListEntry, we just need check if there is anything else
260 // to coalesce onto the end.
261 ASSERT(coalescionEntry);
262 while (true) {
263 // Calculate the end address of the chunk we have found so far.
264 void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size);
265
266 // Is there another chunk adjacent to the one we already have?
267 if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
268 // Yes - another FreeListEntry -pop it from the list.
269 FreeListEntry* coalescee = freeListEntries.last();
270 freeListEntries.removeLast();
271 // Add it's size onto our existing node.
272 coalescionEntry->size += coalescee->size;
273 delete coalescee;
274 } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
275 // We can coalesce the next common-sized chunk.
276 m_commonSizedAllocations.removeLast();
277 coalescionEntry->size += m_commonSize;
278 } else
279 break; // Nope, nothing to be added - stop here.
280 }
281
282 // We've coalesced everything we can onto the current chunk.
283 // Add it back into m_freeList.
284 addToFreeList(coalescionEntry);
285 }
286
287 // All chunks of free memory larger than m_commonSize should be
288 // back in m_freeList by now. All that remains to be done is to
289 // copy the contents on the newCommonSizedAllocations back into
290 // the m_commonSizedAllocations Vector.
291 ASSERT(m_commonSizedAllocations.size() == 0);
292 m_commonSizedAllocations.append(newCommonSizedAllocations);
293 }
294
295 public:
296
297 FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize)
298 : m_commonSize(commonSize)
299 , m_countFreedSinceLastCoalesce(0)
300 , m_totalHeapSize(totalHeapSize)
301 {
302 // Cook up an address to allocate at, using the following recipe:
303 // 17 bits of zero, stay in userspace kids.
304 // 26 bits of randomness for ASLR.
305 // 21 bits of zero, at least stay aligned within one level of the pagetables.
306 //
307 // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854),
308 // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus
309 // 2^24, which should put up somewhere in the middle of usespace (in the address range
310 // 0x200000000000 .. 0x5fffffffffff).
311 intptr_t randomLocation = 0;
312 #if VM_POOL_ASLR
313 randomLocation = arc4random() & ((1 << 25) - 1);
314 randomLocation += (1 << 24);
315 randomLocation <<= 21;
316 #endif
317 m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MMAP_FLAGS, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, 0);
318
319 if (m_base == MAP_FAILED) {
320 #if ENABLE(INTERPRETER)
321 m_base = 0;
322 #else
323 CRASH();
324 #endif
325 } else {
326 // For simplicity, we keep all memory in m_freeList in a 'released' state.
327 // This means that we can simply reuse all memory when allocating, without
328 // worrying about it's previous state, and also makes coalescing m_freeList
329 // simpler since we need not worry about the possibility of coalescing released
330 // chunks with non-released ones.
331 release(m_base, m_totalHeapSize);
332 m_freeList.insert(new FreeListEntry(m_base, m_totalHeapSize));
333 }
334 }
335
336 void* alloc(size_t size)
337 {
338 #if ENABLE(INTERPRETER)
339 if (!m_base)
340 return 0;
341 #else
342 ASSERT(m_base);
343 #endif
344 void* result;
345
346 // Freed allocations of the common size are not stored back into the main
347 // m_freeList, but are instead stored in a separate vector. If the request
348 // is for a common sized allocation, check this list.
349 if ((size == m_commonSize) && m_commonSizedAllocations.size()) {
350 result = m_commonSizedAllocations.last();
351 m_commonSizedAllocations.removeLast();
352 } else {
353 // Serach m_freeList for a suitable sized chunk to allocate memory from.
354 FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
355
356 // This would be bad news.
357 if (!entry) {
358 // Errk! Lets take a last-ditch desparation attempt at defragmentation...
359 coalesceFreeSpace();
360 // Did that free up a large enough chunk?
361 entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
362 // No?... *BOOM!*
363 if (!entry)
364 CRASH();
365 }
366 ASSERT(entry->size != m_commonSize);
367
368 // Remove the entry from m_freeList. But! -
369 // Each entry in the tree may represent a chain of multiple chunks of the
370 // same size, and we only want to remove one on them. So, if this entry
371 // does have a chain, just remove the first-but-one item from the chain.
372 if (FreeListEntry* next = entry->nextEntry) {
373 // We're going to leave 'entry' in the tree; remove 'next' from its chain.
374 entry->nextEntry = next->nextEntry;
375 next->nextEntry = 0;
376 entry = next;
377 } else
378 m_freeList.remove(entry->size);
379
380 // Whoo!, we have a result!
381 ASSERT(entry->size >= size);
382 result = entry->pointer;
383
384 // If the allocation exactly fits the chunk we found in the,
385 // m_freeList then the FreeListEntry node is no longer needed.
386 if (entry->size == size)
387 delete entry;
388 else {
389 // There is memory left over, and it is not of the common size.
390 // We can reuse the existing FreeListEntry node to add this back
391 // into m_freeList.
392 entry->pointer = (void*)((intptr_t)entry->pointer + size);
393 entry->size -= size;
394 addToFreeList(entry);
395 }
396 }
397
398 // Call reuse to report to the operating system that this memory is in use.
399 ASSERT(isWithinVMPool(result, size));
400 reuse(result, size);
401 return result;
402 }
403
404 void free(void* pointer, size_t size)
405 {
406 ASSERT(m_base);
407 // Call release to report to the operating system that this
408 // memory is no longer in use, and need not be paged out.
409 ASSERT(isWithinVMPool(pointer, size));
410 release(pointer, size);
411
412 // Common-sized allocations are stored in the m_commonSizedAllocations
413 // vector; all other freed chunks are added to m_freeList.
414 if (size == m_commonSize)
415 m_commonSizedAllocations.append(pointer);
416 else
417 addToFreeList(new FreeListEntry(pointer, size));
418
419 // Do some housekeeping. Every time we reach a point that
420 // 16MB of allocations have been freed, sweep m_freeList
421 // coalescing any neighboring fragments.
422 m_countFreedSinceLastCoalesce += size;
423 if (m_countFreedSinceLastCoalesce >= COALESCE_LIMIT) {
424 m_countFreedSinceLastCoalesce = 0;
425 coalesceFreeSpace();
426 }
427 }
428
429 bool isValid() const { return !!m_base; }
430
431 private:
432
433 #ifndef NDEBUG
434 bool isWithinVMPool(void* pointer, size_t size)
435 {
436 return pointer >= m_base && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_base) + m_totalHeapSize);
437 }
438 #endif
439
440 // Freed space from the most common sized allocations will be held in this list, ...
441 const size_t m_commonSize;
442 Vector<void*> m_commonSizedAllocations;
443
444 // ... and all other freed allocations are held in m_freeList.
445 SizeSortedFreeTree m_freeList;
446
447 // This is used for housekeeping, to trigger defragmentation of the freed lists.
448 size_t m_countFreedSinceLastCoalesce;
449
450 void* m_base;
451 size_t m_totalHeapSize;
452 };
453
454 void ExecutableAllocator::intializePageSize()
455 {
456 ExecutableAllocator::pageSize = getpagesize();
457 }
458
459 static FixedVMPoolAllocator* allocator = 0;
460 static SpinLock spinlock = SPINLOCK_INITIALIZER;
461
462 bool ExecutableAllocator::isValid() const
463 {
464 SpinLockHolder lock_holder(&spinlock);
465 if (!allocator)
466 allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, VM_POOL_SIZE);
467 return allocator->isValid();
468 }
469
470 ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size)
471 {
472 SpinLockHolder lock_holder(&spinlock);
473
474 if (!allocator)
475 allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, VM_POOL_SIZE);
476 ExecutablePool::Allocation alloc = {reinterpret_cast<char*>(allocator->alloc(size)), size};
477 return alloc;
478 }
479
480 void ExecutablePool::systemRelease(const ExecutablePool::Allocation& allocation)
481 {
482 SpinLockHolder lock_holder(&spinlock);
483
484 ASSERT(allocator);
485 allocator->free(allocation.pages, allocation.size);
486 }
487
488 }
489
490 #endif // HAVE(ASSEMBLER)