2 * Copyright (C) 2011, 2013, 2014 Apple Inc. All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #include "DFGOSRExitCompiler.h"
29 #if ENABLE(DFG_JIT) && USE(JSVALUE64)
31 #include "DFGOperations.h"
32 #include "DFGOSRExitCompilerCommon.h"
33 #include "DFGSpeculativeJIT.h"
34 #include "JSCInlines.h"
35 #include "VirtualRegister.h"
37 #include <wtf/DataLog.h>
39 namespace JSC
{ namespace DFG
{
41 void OSRExitCompiler::compileExit(const OSRExit
& exit
, const Operands
<ValueRecovery
>& operands
, SpeculationRecovery
* recovery
)
43 m_jit
.jitAssertTagsInPlace();
45 // 1) Pro-forma stuff.
46 if (Options::printEachOSRExit()) {
47 SpeculationFailureDebugInfo
* debugInfo
= new SpeculationFailureDebugInfo
;
48 debugInfo
->codeBlock
= m_jit
.codeBlock();
49 debugInfo
->kind
= exit
.m_kind
;
50 debugInfo
->bytecodeOffset
= exit
.m_codeOrigin
.bytecodeIndex
;
52 m_jit
.debugCall(debugOperationPrintSpeculationFailure
, debugInfo
);
55 // Need to ensure that the stack pointer accounts for the worst-case stack usage at exit.
57 CCallHelpers::TrustedImm32(
58 -m_jit
.codeBlock()->jitCode()->dfgCommon()->requiredRegisterCountForExit
* sizeof(Register
)),
59 CCallHelpers::framePointerRegister
, CCallHelpers::stackPointerRegister
);
61 // 2) Perform speculation recovery. This only comes into play when an operation
62 // starts mutating state before verifying the speculation it has already made.
65 switch (recovery
->type()) {
67 m_jit
.sub32(recovery
->src(), recovery
->dest());
68 m_jit
.or64(GPRInfo::tagTypeNumberRegister
, recovery
->dest());
71 case BooleanSpeculationCheck
:
72 m_jit
.xor64(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse
)), recovery
->dest());
80 // 3) Refine some array and/or value profile, if appropriate.
82 if (!!exit
.m_jsValueSource
) {
83 if (exit
.m_kind
== BadCache
|| exit
.m_kind
== BadIndexingType
) {
84 // If the instruction that this originated from has an array profile, then
85 // refine it. If it doesn't, then do nothing. The latter could happen for
86 // hoisted checks, or checks emitted for operations that didn't have array
87 // profiling - either ops that aren't array accesses at all, or weren't
88 // known to be array acceses in the bytecode. The latter case is a FIXME
89 // while the former case is an outcome of a CheckStructure not knowing why
90 // it was emitted (could be either due to an inline cache of a property
91 // property access, or due to an array profile).
93 CodeOrigin codeOrigin
= exit
.m_codeOriginForExitProfile
;
94 if (ArrayProfile
* arrayProfile
= m_jit
.baselineCodeBlockFor(codeOrigin
)->getArrayProfile(codeOrigin
.bytecodeIndex
)) {
96 if (exit
.m_jsValueSource
.isAddress())
97 usedRegister
= exit
.m_jsValueSource
.base();
99 usedRegister
= exit
.m_jsValueSource
.gpr();
103 scratch1
= AssemblyHelpers::selectScratchGPR(usedRegister
);
104 scratch2
= AssemblyHelpers::selectScratchGPR(usedRegister
, scratch1
);
107 m_jit
.pushToSave(scratch1
);
108 m_jit
.pushToSave(scratch2
);
110 m_jit
.push(scratch1
);
111 m_jit
.push(scratch2
);
115 if (exit
.m_jsValueSource
.isAddress()) {
117 m_jit
.loadPtr(AssemblyHelpers::Address(exit
.m_jsValueSource
.asAddress()), value
);
119 value
= exit
.m_jsValueSource
.gpr();
121 m_jit
.load32(AssemblyHelpers::Address(value
, JSCell::structureIDOffset()), scratch1
);
122 m_jit
.store32(scratch1
, arrayProfile
->addressOfLastSeenStructureID());
123 m_jit
.load8(AssemblyHelpers::Address(value
, JSCell::indexingTypeOffset()), scratch1
);
124 m_jit
.move(AssemblyHelpers::TrustedImm32(1), scratch2
);
125 m_jit
.lshift32(scratch1
, scratch2
);
126 m_jit
.or32(scratch2
, AssemblyHelpers::AbsoluteAddress(arrayProfile
->addressOfArrayModes()));
129 m_jit
.popToRestore(scratch2
);
130 m_jit
.popToRestore(scratch1
);
138 if (!!exit
.m_valueProfile
) {
139 EncodedJSValue
* bucket
= exit
.m_valueProfile
.getSpecFailBucket(0);
141 if (exit
.m_jsValueSource
.isAddress()) {
142 // We can't be sure that we have a spare register. So use the tagTypeNumberRegister,
143 // since we know how to restore it.
144 m_jit
.load64(AssemblyHelpers::Address(exit
.m_jsValueSource
.asAddress()), GPRInfo::tagTypeNumberRegister
);
145 m_jit
.store64(GPRInfo::tagTypeNumberRegister
, bucket
);
146 m_jit
.move(AssemblyHelpers::TrustedImm64(TagTypeNumber
), GPRInfo::tagTypeNumberRegister
);
148 m_jit
.store64(exit
.m_jsValueSource
.gpr(), bucket
);
152 // What follows is an intentionally simple OSR exit implementation that generates
153 // fairly poor code but is very easy to hack. In particular, it dumps all state that
154 // needs conversion into a scratch buffer so that in step 6, where we actually do the
155 // conversions, we know that all temp registers are free to use and the variable is
156 // definitely in a well-known spot in the scratch buffer regardless of whether it had
157 // originally been in a register or spilled. This allows us to decouple "where was
158 // the variable" from "how was it represented". Consider that the
159 // Int32DisplacedInJSStack recovery: it tells us that the value is in a
160 // particular place and that that place holds an unboxed int32. We have two different
161 // places that a value could be (displaced, register) and a bunch of different
162 // ways of representing a value. The number of recoveries is two * a bunch. The code
163 // below means that we have to have two + a bunch cases rather than two * a bunch.
164 // Once we have loaded the value from wherever it was, the reboxing is the same
165 // regardless of its location. Likewise, before we do the reboxing, the way we get to
166 // the value (i.e. where we load it from) is the same regardless of its type. Because
167 // the code below always dumps everything into a scratch buffer first, the two
168 // questions become orthogonal, which simplifies adding new types and adding new
171 // This raises the question: does using such a suboptimal implementation of OSR exit,
172 // where we always emit code to dump all state into a scratch buffer only to then
173 // dump it right back into the stack, hurt us in any way? The asnwer is that OSR exits
174 // are rare. Our tiering strategy ensures this. This is because if an OSR exit is
175 // taken more than ~100 times, we jettison the DFG code block along with all of its
176 // exits. It is impossible for an OSR exit - i.e. the code we compile below - to
177 // execute frequently enough for the codegen to matter that much. It probably matters
178 // enough that we don't want to turn this into some super-slow function call, but so
179 // long as we're generating straight-line code, that code can be pretty bad. Also
180 // because we tend to exit only along one OSR exit from any DFG code block - that's an
181 // empirical result that we're extremely confident about - the code size of this
182 // doesn't matter much. Hence any attempt to optimize the codegen here is just purely
183 // harmful to the system: it probably won't reduce either net memory usage or net
184 // execution time. It will only prevent us from cleanly decoupling "where was the
185 // variable" from "how was it represented", which will make it more difficult to add
186 // features in the future and it will make it harder to reason about bugs.
188 // 4) Save all state from GPRs into the scratch buffer.
190 ScratchBuffer
* scratchBuffer
= m_jit
.vm()->scratchBufferForSize(sizeof(EncodedJSValue
) * operands
.size());
191 EncodedJSValue
* scratch
= scratchBuffer
? static_cast<EncodedJSValue
*>(scratchBuffer
->dataBuffer()) : 0;
193 for (size_t index
= 0; index
< operands
.size(); ++index
) {
194 const ValueRecovery
& recovery
= operands
[index
];
196 switch (recovery
.technique()) {
198 case UnboxedInt32InGPR
:
199 case UnboxedInt52InGPR
:
200 case UnboxedStrictInt52InGPR
:
201 case UnboxedCellInGPR
:
202 m_jit
.store64(recovery
.gpr(), scratch
+ index
);
210 // And voila, all GPRs are free to reuse.
212 // 5) Save all state from FPRs into the scratch buffer.
214 for (size_t index
= 0; index
< operands
.size(); ++index
) {
215 const ValueRecovery
& recovery
= operands
[index
];
217 switch (recovery
.technique()) {
219 m_jit
.move(AssemblyHelpers::TrustedImmPtr(scratch
+ index
), GPRInfo::regT0
);
220 m_jit
.storeDouble(recovery
.fpr(), MacroAssembler::Address(GPRInfo::regT0
));
228 // Now, all FPRs are also free.
230 // 6) Save all state from the stack into the scratch buffer. For simplicity we
231 // do this even for state that's already in the right place on the stack.
232 // It makes things simpler later.
234 for (size_t index
= 0; index
< operands
.size(); ++index
) {
235 const ValueRecovery
& recovery
= operands
[index
];
237 switch (recovery
.technique()) {
238 case DisplacedInJSStack
:
239 case CellDisplacedInJSStack
:
240 case BooleanDisplacedInJSStack
:
241 case Int32DisplacedInJSStack
:
242 case DoubleDisplacedInJSStack
:
243 case Int52DisplacedInJSStack
:
244 case StrictInt52DisplacedInJSStack
:
245 m_jit
.load64(AssemblyHelpers::addressFor(recovery
.virtualRegister()), GPRInfo::regT0
);
246 m_jit
.store64(GPRInfo::regT0
, scratch
+ index
);
254 // 7) Do all data format conversions and store the results into the stack.
256 bool haveArguments
= false;
258 for (size_t index
= 0; index
< operands
.size(); ++index
) {
259 const ValueRecovery
& recovery
= operands
[index
];
260 int operand
= operands
.operandForIndex(index
);
262 switch (recovery
.technique()) {
264 case UnboxedCellInGPR
:
265 case DisplacedInJSStack
:
266 case CellDisplacedInJSStack
:
267 case BooleanDisplacedInJSStack
:
268 m_jit
.load64(scratch
+ index
, GPRInfo::regT0
);
269 m_jit
.store64(GPRInfo::regT0
, AssemblyHelpers::addressFor(operand
));
272 case UnboxedInt32InGPR
:
273 case Int32DisplacedInJSStack
:
274 m_jit
.load64(scratch
+ index
, GPRInfo::regT0
);
275 m_jit
.zeroExtend32ToPtr(GPRInfo::regT0
, GPRInfo::regT0
);
276 m_jit
.or64(GPRInfo::tagTypeNumberRegister
, GPRInfo::regT0
);
277 m_jit
.store64(GPRInfo::regT0
, AssemblyHelpers::addressFor(operand
));
280 case UnboxedInt52InGPR
:
281 case Int52DisplacedInJSStack
:
282 m_jit
.load64(scratch
+ index
, GPRInfo::regT0
);
284 AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount
), GPRInfo::regT0
);
285 m_jit
.boxInt52(GPRInfo::regT0
, GPRInfo::regT0
, GPRInfo::regT1
, FPRInfo::fpRegT0
);
286 m_jit
.store64(GPRInfo::regT0
, AssemblyHelpers::addressFor(operand
));
289 case UnboxedStrictInt52InGPR
:
290 case StrictInt52DisplacedInJSStack
:
291 m_jit
.load64(scratch
+ index
, GPRInfo::regT0
);
292 m_jit
.boxInt52(GPRInfo::regT0
, GPRInfo::regT0
, GPRInfo::regT1
, FPRInfo::fpRegT0
);
293 m_jit
.store64(GPRInfo::regT0
, AssemblyHelpers::addressFor(operand
));
297 case DoubleDisplacedInJSStack
:
298 m_jit
.move(AssemblyHelpers::TrustedImmPtr(scratch
+ index
), GPRInfo::regT0
);
299 m_jit
.loadDouble(MacroAssembler::Address(GPRInfo::regT0
), FPRInfo::fpRegT0
);
300 m_jit
.purifyNaN(FPRInfo::fpRegT0
);
301 m_jit
.boxDouble(FPRInfo::fpRegT0
, GPRInfo::regT0
);
302 m_jit
.store64(GPRInfo::regT0
, AssemblyHelpers::addressFor(operand
));
307 AssemblyHelpers::TrustedImm64(JSValue::encode(recovery
.constant())),
308 AssemblyHelpers::addressFor(operand
));
311 case ArgumentsThatWereNotCreated
:
312 haveArguments
= true;
313 // We can't restore this yet but we can make sure that the stack appears
316 AssemblyHelpers::TrustedImm64(JSValue::encode(JSValue())),
317 AssemblyHelpers::addressFor(operand
));
325 // 8) Adjust the old JIT's execute counter. Since we are exiting OSR, we know
326 // that all new calls into this code will go to the new JIT, so the execute
327 // counter only affects call frames that performed OSR exit and call frames
328 // that were still executing the old JIT at the time of another call frame's
329 // OSR exit. We want to ensure that the following is true:
331 // (a) Code the performs an OSR exit gets a chance to reenter optimized
332 // code eventually, since optimized code is faster. But we don't
333 // want to do such reentery too aggressively (see (c) below).
335 // (b) If there is code on the call stack that is still running the old
336 // JIT's code and has never OSR'd, then it should get a chance to
337 // perform OSR entry despite the fact that we've exited.
339 // (c) Code the performs an OSR exit should not immediately retry OSR
340 // entry, since both forms of OSR are expensive. OSR entry is
341 // particularly expensive.
343 // (d) Frequent OSR failures, even those that do not result in the code
344 // running in a hot loop, result in recompilation getting triggered.
346 // To ensure (c), we'd like to set the execute counter to
347 // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
348 // (a) and (b), since then every OSR exit would delay the opportunity for
349 // every call frame to perform OSR entry. Essentially, if OSR exit happens
350 // frequently and the function has few loops, then the counter will never
351 // become non-negative and OSR entry will never be triggered. OSR entry
352 // will only happen if a loop gets hot in the old JIT, which does a pretty
353 // good job of ensuring (a) and (b). But that doesn't take care of (d),
354 // since each speculation failure would reset the execute counter.
355 // So we check here if the number of speculation failures is significantly
356 // larger than the number of successes (we want 90% success rate), and if
357 // there have been a large enough number of failures. If so, we set the
358 // counter to 0; otherwise we set the counter to
359 // counterValueForOptimizeAfterWarmUp().
361 handleExitCounts(m_jit
, exit
);
363 // 9) Reify inlined call frames.
365 reifyInlinedCallFrames(m_jit
, exit
);
367 // 10) Create arguments if necessary and place them into the appropriate aliased
371 ArgumentsRecoveryGenerator argumentsRecovery
;
373 for (size_t index
= 0; index
< operands
.size(); ++index
) {
374 const ValueRecovery
& recovery
= operands
[index
];
375 if (recovery
.technique() != ArgumentsThatWereNotCreated
)
377 argumentsRecovery
.generateFor(
378 operands
.operandForIndex(index
), exit
.m_codeOrigin
, m_jit
);
383 adjustAndJumpToTarget(m_jit
, exit
);
386 } } // namespace JSC::DFG
388 #endif // ENABLE(DFG_JIT) && USE(JSVALUE64)