]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (C) 2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #ifndef FTLAbstractHeap_h | |
27 | #define FTLAbstractHeap_h | |
28 | ||
29 | #if ENABLE(FTL_JIT) | |
30 | ||
31 | #include "FTLAbbreviations.h" | |
32 | #include "JSCJSValue.h" | |
33 | #include <array> | |
34 | #include <wtf/FastMalloc.h> | |
35 | #include <wtf/HashMap.h> | |
36 | #include <wtf/Noncopyable.h> | |
37 | #include <wtf/OwnPtr.h> | |
38 | #include <wtf/Vector.h> | |
39 | #include <wtf/text/CString.h> | |
40 | ||
41 | namespace JSC { namespace FTL { | |
42 | ||
43 | // The FTL JIT tries to aid LLVM's TBAA. The FTL's notion of how this | |
44 | // happens is the AbstractHeap. AbstractHeaps are a simple type system | |
45 | // with sub-typing. | |
46 | ||
47 | class AbstractHeapRepository; | |
48 | class Output; | |
49 | class TypedPointer; | |
50 | ||
51 | class AbstractHeap { | |
52 | WTF_MAKE_NONCOPYABLE(AbstractHeap); WTF_MAKE_FAST_ALLOCATED; | |
53 | public: | |
54 | AbstractHeap() | |
55 | : m_parent(0) | |
56 | , m_heapName(0) | |
57 | , m_tbaaMetadata(0) | |
58 | { | |
59 | } | |
60 | ||
61 | AbstractHeap(AbstractHeap* parent, const char* heapName) | |
62 | : m_parent(parent) | |
63 | , m_heapName(heapName) | |
64 | , m_tbaaMetadata(0) | |
65 | { | |
66 | } | |
67 | ||
68 | bool isInitialized() const { return !!m_heapName; } | |
69 | ||
70 | void initialize(AbstractHeap* parent, const char* heapName) | |
71 | { | |
72 | m_parent = parent; | |
73 | m_heapName = heapName; | |
74 | } | |
75 | ||
76 | AbstractHeap* parent() const | |
77 | { | |
78 | ASSERT(isInitialized()); | |
79 | return m_parent; | |
80 | } | |
81 | ||
82 | const char* heapName() const | |
83 | { | |
84 | ASSERT(isInitialized()); | |
85 | return m_heapName; | |
86 | } | |
87 | ||
88 | LValue tbaaMetadata(const AbstractHeapRepository& repository) const | |
89 | { | |
90 | ASSERT(isInitialized()); | |
91 | if (LIKELY(!!m_tbaaMetadata)) | |
92 | return m_tbaaMetadata; | |
93 | return tbaaMetadataSlow(repository); | |
94 | } | |
95 | ||
96 | void decorateInstruction(LValue instruction, const AbstractHeapRepository&) const; | |
97 | ||
98 | private: | |
99 | friend class AbstractHeapRepository; | |
100 | ||
101 | LValue tbaaMetadataSlow(const AbstractHeapRepository&) const; | |
102 | ||
103 | AbstractHeap* m_parent; | |
104 | const char* m_heapName; | |
105 | mutable LValue m_tbaaMetadata; | |
106 | }; | |
107 | ||
108 | // Think of "AbstractField" as being an "AbstractHeapWithOffset". I would have named | |
109 | // it the latter except that I don't like typing that much. | |
110 | class AbstractField : public AbstractHeap { | |
111 | public: | |
112 | AbstractField() | |
113 | { | |
114 | } | |
115 | ||
116 | AbstractField(AbstractHeap* parent, const char* heapName, ptrdiff_t offset) | |
117 | : AbstractHeap(parent, heapName) | |
118 | , m_offset(offset) | |
119 | { | |
120 | } | |
121 | ||
122 | void initialize(AbstractHeap* parent, const char* heapName, ptrdiff_t offset) | |
123 | { | |
124 | AbstractHeap::initialize(parent, heapName); | |
125 | m_offset = offset; | |
126 | } | |
127 | ||
128 | ptrdiff_t offset() const | |
129 | { | |
130 | ASSERT(isInitialized()); | |
131 | return m_offset; | |
132 | } | |
133 | ||
134 | private: | |
135 | ptrdiff_t m_offset; | |
136 | }; | |
137 | ||
138 | class IndexedAbstractHeap { | |
139 | public: | |
140 | IndexedAbstractHeap(LContext, AbstractHeap* parent, const char* heapName, ptrdiff_t offset, size_t elementSize); | |
141 | ~IndexedAbstractHeap(); | |
142 | ||
143 | const AbstractHeap& atAnyIndex() const { return m_heapForAnyIndex; } | |
144 | ||
145 | const AbstractField& at(ptrdiff_t index) | |
146 | { | |
147 | if (static_cast<size_t>(index) < m_smallIndices.size()) | |
148 | return returnInitialized(m_smallIndices[index], index); | |
149 | return atSlow(index); | |
150 | } | |
151 | ||
152 | const AbstractField& operator[](ptrdiff_t index) { return at(index); } | |
153 | ||
154 | TypedPointer baseIndex(Output& out, LValue base, LValue index, JSValue indexAsConstant = JSValue(), ptrdiff_t offset = 0); | |
155 | ||
156 | private: | |
157 | const AbstractField& returnInitialized(AbstractField& field, ptrdiff_t index) | |
158 | { | |
159 | if (UNLIKELY(!field.isInitialized())) | |
160 | initialize(field, index); | |
161 | return field; | |
162 | } | |
163 | ||
164 | const AbstractField& atSlow(ptrdiff_t index); | |
165 | void initialize(AbstractField& field, ptrdiff_t index); | |
166 | ||
167 | AbstractHeap m_heapForAnyIndex; | |
168 | size_t m_heapNameLength; | |
169 | ptrdiff_t m_offset; | |
170 | size_t m_elementSize; | |
171 | LValue m_scaleTerm; | |
172 | bool m_canShift; | |
173 | std::array<AbstractField, 16> m_smallIndices; | |
174 | ||
175 | struct WithoutZeroOrOneHashTraits : WTF::GenericHashTraits<ptrdiff_t> { | |
176 | static void constructDeletedValue(ptrdiff_t& slot) { slot = 1; } | |
177 | static bool isDeletedValue(ptrdiff_t value) { return value == 1; } | |
178 | }; | |
179 | typedef HashMap<ptrdiff_t, std::unique_ptr<AbstractField>, WTF::IntHash<ptrdiff_t>, WithoutZeroOrOneHashTraits> MapType; | |
180 | ||
181 | OwnPtr<MapType> m_largeIndices; | |
182 | Vector<CString, 16> m_largeIndexNames; | |
183 | }; | |
184 | ||
185 | // A numbered abstract heap is like an indexed abstract heap, except that you | |
186 | // can't rely on there being a relationship between the number you use to | |
187 | // retrieve the sub-heap, and the offset that this heap has. (In particular, | |
188 | // the sub-heaps don't have indices.) | |
189 | ||
190 | class NumberedAbstractHeap { | |
191 | public: | |
192 | NumberedAbstractHeap(LContext, AbstractHeap* parent, const char* heapName); | |
193 | ~NumberedAbstractHeap(); | |
194 | ||
195 | const AbstractHeap& atAnyNumber() const { return m_indexedHeap.atAnyIndex(); } | |
196 | ||
197 | const AbstractHeap& at(unsigned number) { return m_indexedHeap.at(number); } | |
198 | const AbstractHeap& operator[](unsigned number) { return at(number); } | |
199 | ||
200 | private: | |
201 | ||
202 | // We use the fact that the indexed heap already has a superset of the | |
203 | // functionality we need. | |
204 | IndexedAbstractHeap m_indexedHeap; | |
205 | }; | |
206 | ||
207 | class AbsoluteAbstractHeap { | |
208 | public: | |
209 | AbsoluteAbstractHeap(LContext, AbstractHeap* parent, const char* heapName); | |
210 | ~AbsoluteAbstractHeap(); | |
211 | ||
212 | const AbstractHeap& atAnyAddress() const { return m_indexedHeap.atAnyIndex(); } | |
213 | ||
214 | const AbstractHeap& at(void* address) | |
215 | { | |
216 | return m_indexedHeap.at(bitwise_cast<ptrdiff_t>(address)); | |
217 | } | |
218 | ||
219 | const AbstractHeap& operator[](void* address) { return at(address); } | |
220 | ||
221 | private: | |
222 | // The trick here is that the indexed heap is "indexed" by a pointer-width | |
223 | // integer. Pointers are themselves pointer-width integers. So we can reuse | |
224 | // all of the functionality. | |
225 | IndexedAbstractHeap m_indexedHeap; | |
226 | }; | |
227 | ||
228 | } } // namespace JSC::FTL | |
229 | ||
230 | #endif // ENABLE(FTL_JIT) | |
231 | ||
232 | #endif // FTLAbstractHeap_h | |
233 |