]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (C) 2009 Apple Inc. All rights reserved. | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #include "config.h" | |
27 | #include "RegexCompiler.h" | |
28 | ||
29 | #include "RegexInterpreter.h" | |
30 | #include "RegexPattern.h" | |
31 | #include <wtf/Vector.h> | |
32 | ||
33 | #if ENABLE(YARR) | |
34 | ||
35 | using namespace WTF; | |
36 | ||
37 | namespace JSC { namespace Yarr { | |
38 | ||
39 | class CharacterClassConstructor { | |
40 | public: | |
41 | CharacterClassConstructor(bool isCaseInsensitive = false) | |
42 | : m_isCaseInsensitive(isCaseInsensitive) | |
43 | { | |
44 | } | |
45 | ||
46 | void reset() | |
47 | { | |
48 | m_matches.clear(); | |
49 | m_ranges.clear(); | |
50 | m_matchesUnicode.clear(); | |
51 | m_rangesUnicode.clear(); | |
52 | } | |
53 | ||
54 | void append(const CharacterClass* other) | |
55 | { | |
56 | for (size_t i = 0; i < other->m_matches.size(); ++i) | |
57 | addSorted(m_matches, other->m_matches[i]); | |
58 | for (size_t i = 0; i < other->m_ranges.size(); ++i) | |
59 | addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end); | |
60 | for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i) | |
61 | addSorted(m_matchesUnicode, other->m_matchesUnicode[i]); | |
62 | for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i) | |
63 | addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end); | |
64 | } | |
65 | ||
66 | void putChar(UChar ch) | |
67 | { | |
68 | if (ch <= 0x7f) { | |
69 | if (m_isCaseInsensitive && isASCIIAlpha(ch)) { | |
70 | addSorted(m_matches, toASCIIUpper(ch)); | |
71 | addSorted(m_matches, toASCIILower(ch)); | |
72 | } else | |
73 | addSorted(m_matches, ch); | |
74 | } else { | |
75 | UChar upper, lower; | |
76 | if (m_isCaseInsensitive && ((upper = Unicode::toUpper(ch)) != (lower = Unicode::toLower(ch)))) { | |
77 | addSorted(m_matchesUnicode, upper); | |
78 | addSorted(m_matchesUnicode, lower); | |
79 | } else | |
80 | addSorted(m_matchesUnicode, ch); | |
81 | } | |
82 | } | |
83 | ||
84 | // returns true if this character has another case, and 'ch' is the upper case form. | |
85 | static inline bool isUnicodeUpper(UChar ch) | |
86 | { | |
87 | return ch != Unicode::toLower(ch); | |
88 | } | |
89 | ||
90 | // returns true if this character has another case, and 'ch' is the lower case form. | |
91 | static inline bool isUnicodeLower(UChar ch) | |
92 | { | |
93 | return ch != Unicode::toUpper(ch); | |
94 | } | |
95 | ||
96 | void putRange(UChar lo, UChar hi) | |
97 | { | |
98 | if (lo <= 0x7f) { | |
99 | char asciiLo = lo; | |
100 | char asciiHi = std::min(hi, (UChar)0x7f); | |
101 | addSortedRange(m_ranges, lo, asciiHi); | |
102 | ||
103 | if (m_isCaseInsensitive) { | |
104 | if ((asciiLo <= 'Z') && (asciiHi >= 'A')) | |
105 | addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A')); | |
106 | if ((asciiLo <= 'z') && (asciiHi >= 'a')) | |
107 | addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a')); | |
108 | } | |
109 | } | |
110 | if (hi >= 0x80) { | |
111 | uint32_t unicodeCurr = std::max(lo, (UChar)0x80); | |
112 | addSortedRange(m_rangesUnicode, unicodeCurr, hi); | |
113 | ||
114 | if (m_isCaseInsensitive) { | |
115 | while (unicodeCurr <= hi) { | |
116 | // If the upper bound of the range (hi) is 0xffff, the increments to | |
117 | // unicodeCurr in this loop may take it to 0x10000. This is fine | |
118 | // (if so we won't re-enter the loop, since the loop condition above | |
119 | // will definitely fail) - but this does mean we cannot use a UChar | |
120 | // to represent unicodeCurr, we must use a 32-bit value instead. | |
121 | ASSERT(unicodeCurr <= 0xffff); | |
122 | ||
123 | if (isUnicodeUpper(unicodeCurr)) { | |
124 | UChar lowerCaseRangeBegin = Unicode::toLower(unicodeCurr); | |
125 | UChar lowerCaseRangeEnd = lowerCaseRangeBegin; | |
126 | while ((++unicodeCurr <= hi) && isUnicodeUpper(unicodeCurr) && (Unicode::toLower(unicodeCurr) == (lowerCaseRangeEnd + 1))) | |
127 | lowerCaseRangeEnd++; | |
128 | addSortedRange(m_rangesUnicode, lowerCaseRangeBegin, lowerCaseRangeEnd); | |
129 | } else if (isUnicodeLower(unicodeCurr)) { | |
130 | UChar upperCaseRangeBegin = Unicode::toUpper(unicodeCurr); | |
131 | UChar upperCaseRangeEnd = upperCaseRangeBegin; | |
132 | while ((++unicodeCurr <= hi) && isUnicodeLower(unicodeCurr) && (Unicode::toUpper(unicodeCurr) == (upperCaseRangeEnd + 1))) | |
133 | upperCaseRangeEnd++; | |
134 | addSortedRange(m_rangesUnicode, upperCaseRangeBegin, upperCaseRangeEnd); | |
135 | } else | |
136 | ++unicodeCurr; | |
137 | } | |
138 | } | |
139 | } | |
140 | } | |
141 | ||
142 | CharacterClass* charClass() | |
143 | { | |
144 | CharacterClass* characterClass = new CharacterClass(); | |
145 | ||
146 | characterClass->m_matches.append(m_matches); | |
147 | characterClass->m_ranges.append(m_ranges); | |
148 | characterClass->m_matchesUnicode.append(m_matchesUnicode); | |
149 | characterClass->m_rangesUnicode.append(m_rangesUnicode); | |
150 | ||
151 | reset(); | |
152 | ||
153 | return characterClass; | |
154 | } | |
155 | ||
156 | private: | |
157 | void addSorted(Vector<UChar>& matches, UChar ch) | |
158 | { | |
159 | unsigned pos = 0; | |
160 | unsigned range = matches.size(); | |
161 | ||
162 | // binary chop, find position to insert char. | |
163 | while (range) { | |
164 | unsigned index = range >> 1; | |
165 | ||
166 | int val = matches[pos+index] - ch; | |
167 | if (!val) | |
168 | return; | |
169 | else if (val > 0) | |
170 | range = index; | |
171 | else { | |
172 | pos += (index+1); | |
173 | range -= (index+1); | |
174 | } | |
175 | } | |
176 | ||
177 | if (pos == matches.size()) | |
178 | matches.append(ch); | |
179 | else | |
180 | matches.insert(pos, ch); | |
181 | } | |
182 | ||
183 | void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi) | |
184 | { | |
185 | unsigned end = ranges.size(); | |
186 | ||
187 | // Simple linear scan - I doubt there are that many ranges anyway... | |
188 | // feel free to fix this with something faster (eg binary chop). | |
189 | for (unsigned i = 0; i < end; ++i) { | |
190 | // does the new range fall before the current position in the array | |
191 | if (hi < ranges[i].begin) { | |
192 | // optional optimization: concatenate appending ranges? - may not be worthwhile. | |
193 | if (hi == (ranges[i].begin - 1)) { | |
194 | ranges[i].begin = lo; | |
195 | return; | |
196 | } | |
197 | ranges.insert(i, CharacterRange(lo, hi)); | |
198 | return; | |
199 | } | |
200 | // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining | |
201 | // If the new range start at or before the end of the last range, then the overlap (if it starts one after the | |
202 | // end of the last range they concatenate, which is just as good. | |
203 | if (lo <= (ranges[i].end + 1)) { | |
204 | // found an intersect! we'll replace this entry in the array. | |
205 | ranges[i].begin = std::min(ranges[i].begin, lo); | |
206 | ranges[i].end = std::max(ranges[i].end, hi); | |
207 | ||
208 | // now check if the new range can subsume any subsequent ranges. | |
209 | unsigned next = i+1; | |
210 | // each iteration of the loop we will either remove something from the list, or break the loop. | |
211 | while (next < ranges.size()) { | |
212 | if (ranges[next].begin <= (ranges[i].end + 1)) { | |
213 | // the next entry now overlaps / concatenates this one. | |
214 | ranges[i].end = std::max(ranges[i].end, ranges[next].end); | |
215 | ranges.remove(next); | |
216 | } else | |
217 | break; | |
218 | } | |
219 | ||
220 | return; | |
221 | } | |
222 | } | |
223 | ||
224 | // CharacterRange comes after all existing ranges. | |
225 | ranges.append(CharacterRange(lo, hi)); | |
226 | } | |
227 | ||
228 | bool m_isCaseInsensitive; | |
229 | ||
230 | Vector<UChar> m_matches; | |
231 | Vector<CharacterRange> m_ranges; | |
232 | Vector<UChar> m_matchesUnicode; | |
233 | Vector<CharacterRange> m_rangesUnicode; | |
234 | }; | |
235 | ||
236 | ||
237 | CharacterClass* newlineCreate() | |
238 | { | |
239 | CharacterClass* characterClass = new CharacterClass(); | |
240 | ||
241 | characterClass->m_matches.append('\n'); | |
242 | characterClass->m_matches.append('\r'); | |
243 | characterClass->m_matchesUnicode.append(0x2028); | |
244 | characterClass->m_matchesUnicode.append(0x2029); | |
245 | ||
246 | return characterClass; | |
247 | } | |
248 | ||
249 | CharacterClass* digitsCreate() | |
250 | { | |
251 | CharacterClass* characterClass = new CharacterClass(); | |
252 | ||
253 | characterClass->m_ranges.append(CharacterRange('0', '9')); | |
254 | ||
255 | return characterClass; | |
256 | } | |
257 | ||
258 | CharacterClass* spacesCreate() | |
259 | { | |
260 | CharacterClass* characterClass = new CharacterClass(); | |
261 | ||
262 | characterClass->m_matches.append(' '); | |
263 | characterClass->m_ranges.append(CharacterRange('\t', '\r')); | |
264 | characterClass->m_matchesUnicode.append(0x00a0); | |
265 | characterClass->m_matchesUnicode.append(0x1680); | |
266 | characterClass->m_matchesUnicode.append(0x180e); | |
267 | characterClass->m_matchesUnicode.append(0x2028); | |
268 | characterClass->m_matchesUnicode.append(0x2029); | |
269 | characterClass->m_matchesUnicode.append(0x202f); | |
270 | characterClass->m_matchesUnicode.append(0x205f); | |
271 | characterClass->m_matchesUnicode.append(0x3000); | |
272 | characterClass->m_rangesUnicode.append(CharacterRange(0x2000, 0x200a)); | |
273 | ||
274 | return characterClass; | |
275 | } | |
276 | ||
277 | CharacterClass* wordcharCreate() | |
278 | { | |
279 | CharacterClass* characterClass = new CharacterClass(); | |
280 | ||
281 | characterClass->m_matches.append('_'); | |
282 | characterClass->m_ranges.append(CharacterRange('0', '9')); | |
283 | characterClass->m_ranges.append(CharacterRange('A', 'Z')); | |
284 | characterClass->m_ranges.append(CharacterRange('a', 'z')); | |
285 | ||
286 | return characterClass; | |
287 | } | |
288 | ||
289 | CharacterClass* nondigitsCreate() | |
290 | { | |
291 | CharacterClass* characterClass = new CharacterClass(); | |
292 | ||
293 | characterClass->m_ranges.append(CharacterRange(0, '0' - 1)); | |
294 | characterClass->m_ranges.append(CharacterRange('9' + 1, 0x7f)); | |
295 | characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff)); | |
296 | ||
297 | return characterClass; | |
298 | } | |
299 | ||
300 | CharacterClass* nonspacesCreate() | |
301 | { | |
302 | CharacterClass* characterClass = new CharacterClass(); | |
303 | ||
304 | characterClass->m_ranges.append(CharacterRange(0, '\t' - 1)); | |
305 | characterClass->m_ranges.append(CharacterRange('\r' + 1, ' ' - 1)); | |
306 | characterClass->m_ranges.append(CharacterRange(' ' + 1, 0x7f)); | |
307 | characterClass->m_rangesUnicode.append(CharacterRange(0x0080, 0x009f)); | |
308 | characterClass->m_rangesUnicode.append(CharacterRange(0x00a1, 0x167f)); | |
309 | characterClass->m_rangesUnicode.append(CharacterRange(0x1681, 0x180d)); | |
310 | characterClass->m_rangesUnicode.append(CharacterRange(0x180f, 0x1fff)); | |
311 | characterClass->m_rangesUnicode.append(CharacterRange(0x200b, 0x2027)); | |
312 | characterClass->m_rangesUnicode.append(CharacterRange(0x202a, 0x202e)); | |
313 | characterClass->m_rangesUnicode.append(CharacterRange(0x2030, 0x205e)); | |
314 | characterClass->m_rangesUnicode.append(CharacterRange(0x2060, 0x2fff)); | |
315 | characterClass->m_rangesUnicode.append(CharacterRange(0x3001, 0xffff)); | |
316 | ||
317 | return characterClass; | |
318 | } | |
319 | ||
320 | CharacterClass* nonwordcharCreate() | |
321 | { | |
322 | CharacterClass* characterClass = new CharacterClass(); | |
323 | ||
324 | characterClass->m_matches.append('`'); | |
325 | characterClass->m_ranges.append(CharacterRange(0, '0' - 1)); | |
326 | characterClass->m_ranges.append(CharacterRange('9' + 1, 'A' - 1)); | |
327 | characterClass->m_ranges.append(CharacterRange('Z' + 1, '_' - 1)); | |
328 | characterClass->m_ranges.append(CharacterRange('z' + 1, 0x7f)); | |
329 | characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff)); | |
330 | ||
331 | return characterClass; | |
332 | } | |
333 | ||
334 | ||
335 | class RegexPatternConstructor { | |
336 | public: | |
337 | RegexPatternConstructor(RegexPattern& pattern) | |
338 | : m_pattern(pattern) | |
339 | , m_characterClassConstructor(pattern.m_ignoreCase) | |
340 | { | |
341 | } | |
342 | ||
343 | ~RegexPatternConstructor() | |
344 | { | |
345 | } | |
346 | ||
347 | void reset() | |
348 | { | |
349 | m_pattern.reset(); | |
350 | m_characterClassConstructor.reset(); | |
351 | } | |
352 | ||
353 | void assertionBOL() | |
354 | { | |
355 | m_alternative->m_terms.append(PatternTerm::BOL()); | |
356 | } | |
357 | void assertionEOL() | |
358 | { | |
359 | m_alternative->m_terms.append(PatternTerm::EOL()); | |
360 | } | |
361 | void assertionWordBoundary(bool invert) | |
362 | { | |
363 | m_alternative->m_terms.append(PatternTerm::WordBoundary(invert)); | |
364 | } | |
365 | ||
366 | void atomPatternCharacter(UChar ch) | |
367 | { | |
368 | // We handle case-insensitive checking of unicode characters which do have both | |
369 | // cases by handling them as if they were defined using a CharacterClass. | |
370 | if (m_pattern.m_ignoreCase && !isASCII(ch) && (Unicode::toUpper(ch) != Unicode::toLower(ch))) { | |
371 | atomCharacterClassBegin(); | |
372 | atomCharacterClassAtom(ch); | |
373 | atomCharacterClassEnd(); | |
374 | } else | |
375 | m_alternative->m_terms.append(PatternTerm(ch)); | |
376 | } | |
377 | ||
378 | void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert) | |
379 | { | |
380 | switch (classID) { | |
381 | case DigitClassID: | |
382 | m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert)); | |
383 | break; | |
384 | case SpaceClassID: | |
385 | m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert)); | |
386 | break; | |
387 | case WordClassID: | |
388 | m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert)); | |
389 | break; | |
390 | case NewlineClassID: | |
391 | m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert)); | |
392 | break; | |
393 | } | |
394 | } | |
395 | ||
396 | void atomCharacterClassBegin(bool invert = false) | |
397 | { | |
398 | m_invertCharacterClass = invert; | |
399 | } | |
400 | ||
401 | void atomCharacterClassAtom(UChar ch) | |
402 | { | |
403 | m_characterClassConstructor.putChar(ch); | |
404 | } | |
405 | ||
406 | void atomCharacterClassRange(UChar begin, UChar end) | |
407 | { | |
408 | m_characterClassConstructor.putRange(begin, end); | |
409 | } | |
410 | ||
411 | void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert) | |
412 | { | |
413 | ASSERT(classID != NewlineClassID); | |
414 | ||
415 | switch (classID) { | |
416 | case DigitClassID: | |
417 | m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass()); | |
418 | break; | |
419 | ||
420 | case SpaceClassID: | |
421 | m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass()); | |
422 | break; | |
423 | ||
424 | case WordClassID: | |
425 | m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass()); | |
426 | break; | |
427 | ||
428 | default: | |
429 | ASSERT_NOT_REACHED(); | |
430 | } | |
431 | } | |
432 | ||
433 | void atomCharacterClassEnd() | |
434 | { | |
435 | CharacterClass* newCharacterClass = m_characterClassConstructor.charClass(); | |
436 | m_pattern.m_userCharacterClasses.append(newCharacterClass); | |
437 | m_alternative->m_terms.append(PatternTerm(newCharacterClass, m_invertCharacterClass)); | |
438 | } | |
439 | ||
440 | void atomParenthesesSubpatternBegin(bool capture = true) | |
441 | { | |
442 | unsigned subpatternId = m_pattern.m_numSubpatterns + 1; | |
443 | if (capture) | |
444 | m_pattern.m_numSubpatterns++; | |
445 | ||
446 | PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative); | |
447 | m_pattern.m_disjunctions.append(parenthesesDisjunction); | |
448 | m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction, capture)); | |
449 | m_alternative = parenthesesDisjunction->addNewAlternative(); | |
450 | } | |
451 | ||
452 | void atomParentheticalAssertionBegin(bool invert = false) | |
453 | { | |
454 | PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative); | |
455 | m_pattern.m_disjunctions.append(parenthesesDisjunction); | |
456 | m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction, invert)); | |
457 | m_alternative = parenthesesDisjunction->addNewAlternative(); | |
458 | } | |
459 | ||
460 | void atomParenthesesEnd() | |
461 | { | |
462 | ASSERT(m_alternative->m_parent); | |
463 | ASSERT(m_alternative->m_parent->m_parent); | |
464 | m_alternative = m_alternative->m_parent->m_parent; | |
465 | ||
466 | m_alternative->lastTerm().parentheses.lastSubpatternId = m_pattern.m_numSubpatterns; | |
467 | } | |
468 | ||
469 | void atomBackReference(unsigned subpatternId) | |
470 | { | |
471 | ASSERT(subpatternId); | |
472 | m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId); | |
473 | ||
474 | if (subpatternId > m_pattern.m_numSubpatterns) { | |
475 | m_alternative->m_terms.append(PatternTerm::ForwardReference()); | |
476 | return; | |
477 | } | |
478 | ||
479 | PatternAlternative* currentAlternative = m_alternative; | |
480 | ASSERT(currentAlternative); | |
481 | ||
482 | // Note to self: if we waited until the AST was baked, we could also remove forwards refs | |
483 | while ((currentAlternative = currentAlternative->m_parent->m_parent)) { | |
484 | PatternTerm& term = currentAlternative->lastTerm(); | |
485 | ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion)); | |
486 | ||
487 | if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.invertOrCapture && (subpatternId == term.subpatternId)) { | |
488 | m_alternative->m_terms.append(PatternTerm::ForwardReference()); | |
489 | return; | |
490 | } | |
491 | } | |
492 | ||
493 | m_alternative->m_terms.append(PatternTerm(subpatternId)); | |
494 | } | |
495 | ||
496 | PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction) | |
497 | { | |
498 | PatternDisjunction* newDisjunction = new PatternDisjunction(); | |
499 | ||
500 | newDisjunction->m_parent = disjunction->m_parent; | |
501 | for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { | |
502 | PatternAlternative* alternative = disjunction->m_alternatives[alt]; | |
503 | PatternAlternative* newAlternative = newDisjunction->addNewAlternative(); | |
504 | for (unsigned i = 0; i < alternative->m_terms.size(); ++i) | |
505 | newAlternative->m_terms.append(copyTerm(alternative->m_terms[i])); | |
506 | } | |
507 | ||
508 | m_pattern.m_disjunctions.append(newDisjunction); | |
509 | return newDisjunction; | |
510 | } | |
511 | ||
512 | PatternTerm copyTerm(PatternTerm& term) | |
513 | { | |
514 | if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion)) | |
515 | return PatternTerm(term); | |
516 | ||
517 | PatternTerm termCopy = term; | |
518 | termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction); | |
519 | return termCopy; | |
520 | } | |
521 | ||
522 | void quantifyAtom(unsigned min, unsigned max, bool greedy) | |
523 | { | |
524 | ASSERT(min <= max); | |
525 | ASSERT(m_alternative->m_terms.size()); | |
526 | ||
527 | if (!max) { | |
528 | m_alternative->removeLastTerm(); | |
529 | return; | |
530 | } | |
531 | ||
532 | PatternTerm& term = m_alternative->lastTerm(); | |
533 | ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary); | |
534 | ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount)); | |
535 | ||
536 | // For any assertion with a zero minimum, not matching is valid and has no effect, | |
537 | // remove it. Otherwise, we need to match as least once, but there is no point | |
538 | // matching more than once, so remove the quantifier. It is not entirely clear | |
539 | // from the spec whether or not this behavior is correct, but I believe this | |
540 | // matches Firefox. :-/ | |
541 | if (term.type == PatternTerm::TypeParentheticalAssertion) { | |
542 | if (!min) | |
543 | m_alternative->removeLastTerm(); | |
544 | return; | |
545 | } | |
546 | ||
547 | if (min == 0) | |
548 | term.quantify(max, greedy ? QuantifierGreedy : QuantifierNonGreedy); | |
549 | else if (min == max) | |
550 | term.quantify(min, QuantifierFixedCount); | |
551 | else { | |
552 | term.quantify(min, QuantifierFixedCount); | |
553 | m_alternative->m_terms.append(copyTerm(term)); | |
554 | // NOTE: this term is interesting from an analysis perspective, in that it can be ignored..... | |
555 | m_alternative->lastTerm().quantify((max == UINT_MAX) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy); | |
556 | if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern) | |
557 | m_alternative->lastTerm().parentheses.isCopy = true; | |
558 | } | |
559 | } | |
560 | ||
561 | void disjunction() | |
562 | { | |
563 | m_alternative = m_alternative->m_parent->addNewAlternative(); | |
564 | } | |
565 | ||
566 | void regexBegin() | |
567 | { | |
568 | m_pattern.m_body = new PatternDisjunction(); | |
569 | m_alternative = m_pattern.m_body->addNewAlternative(); | |
570 | m_pattern.m_disjunctions.append(m_pattern.m_body); | |
571 | } | |
572 | void regexEnd() | |
573 | { | |
574 | } | |
575 | void regexError() | |
576 | { | |
577 | } | |
578 | ||
579 | unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition) | |
580 | { | |
581 | alternative->m_hasFixedSize = true; | |
582 | unsigned currentInputPosition = initialInputPosition; | |
583 | ||
584 | for (unsigned i = 0; i < alternative->m_terms.size(); ++i) { | |
585 | PatternTerm& term = alternative->m_terms[i]; | |
586 | ||
587 | switch (term.type) { | |
588 | case PatternTerm::TypeAssertionBOL: | |
589 | case PatternTerm::TypeAssertionEOL: | |
590 | case PatternTerm::TypeAssertionWordBoundary: | |
591 | term.inputPosition = currentInputPosition; | |
592 | break; | |
593 | ||
594 | case PatternTerm::TypeBackReference: | |
595 | term.inputPosition = currentInputPosition; | |
596 | term.frameLocation = currentCallFrameSize; | |
597 | currentCallFrameSize += RegexStackSpaceForBackTrackInfoBackReference; | |
598 | alternative->m_hasFixedSize = false; | |
599 | break; | |
600 | ||
601 | case PatternTerm::TypeForwardReference: | |
602 | break; | |
603 | ||
604 | case PatternTerm::TypePatternCharacter: | |
605 | term.inputPosition = currentInputPosition; | |
606 | if (term.quantityType != QuantifierFixedCount) { | |
607 | term.frameLocation = currentCallFrameSize; | |
608 | currentCallFrameSize += RegexStackSpaceForBackTrackInfoPatternCharacter; | |
609 | alternative->m_hasFixedSize = false; | |
610 | } else | |
611 | currentInputPosition += term.quantityCount; | |
612 | break; | |
613 | ||
614 | case PatternTerm::TypeCharacterClass: | |
615 | term.inputPosition = currentInputPosition; | |
616 | if (term.quantityType != QuantifierFixedCount) { | |
617 | term.frameLocation = currentCallFrameSize; | |
618 | currentCallFrameSize += RegexStackSpaceForBackTrackInfoCharacterClass; | |
619 | alternative->m_hasFixedSize = false; | |
620 | } else | |
621 | currentInputPosition += term.quantityCount; | |
622 | break; | |
623 | ||
624 | case PatternTerm::TypeParenthesesSubpattern: | |
625 | // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own. | |
626 | term.frameLocation = currentCallFrameSize; | |
627 | if ((term.quantityCount == 1) && !term.parentheses.isCopy) { | |
628 | if (term.quantityType == QuantifierFixedCount) { | |
629 | currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition); | |
630 | currentInputPosition += term.parentheses.disjunction->m_minimumSize; | |
631 | } else { | |
632 | currentCallFrameSize += RegexStackSpaceForBackTrackInfoParenthesesOnce; | |
633 | currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition); | |
634 | } | |
635 | term.inputPosition = currentInputPosition; | |
636 | } else { | |
637 | term.inputPosition = currentInputPosition; | |
638 | setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition); | |
639 | currentCallFrameSize += RegexStackSpaceForBackTrackInfoParentheses; | |
640 | } | |
641 | // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length. | |
642 | alternative->m_hasFixedSize = false; | |
643 | break; | |
644 | ||
645 | case PatternTerm::TypeParentheticalAssertion: | |
646 | term.inputPosition = currentInputPosition; | |
647 | term.frameLocation = currentCallFrameSize; | |
648 | currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + RegexStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition); | |
649 | break; | |
650 | } | |
651 | } | |
652 | ||
653 | alternative->m_minimumSize = currentInputPosition - initialInputPosition; | |
654 | return currentCallFrameSize; | |
655 | } | |
656 | ||
657 | unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition) | |
658 | { | |
659 | if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1)) | |
660 | initialCallFrameSize += RegexStackSpaceForBackTrackInfoAlternative; | |
661 | ||
662 | unsigned minimumInputSize = UINT_MAX; | |
663 | unsigned maximumCallFrameSize = 0; | |
664 | bool hasFixedSize = true; | |
665 | ||
666 | for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { | |
667 | PatternAlternative* alternative = disjunction->m_alternatives[alt]; | |
668 | unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition); | |
669 | minimumInputSize = min(minimumInputSize, alternative->m_minimumSize); | |
670 | maximumCallFrameSize = max(maximumCallFrameSize, currentAlternativeCallFrameSize); | |
671 | hasFixedSize &= alternative->m_hasFixedSize; | |
672 | } | |
673 | ||
674 | ASSERT(minimumInputSize != UINT_MAX); | |
675 | ASSERT(maximumCallFrameSize >= initialCallFrameSize); | |
676 | ||
677 | disjunction->m_hasFixedSize = hasFixedSize; | |
678 | disjunction->m_minimumSize = minimumInputSize; | |
679 | disjunction->m_callFrameSize = maximumCallFrameSize; | |
680 | return maximumCallFrameSize; | |
681 | } | |
682 | ||
683 | void setupOffsets() | |
684 | { | |
685 | setupDisjunctionOffsets(m_pattern.m_body, 0, 0); | |
686 | } | |
687 | ||
688 | private: | |
689 | RegexPattern& m_pattern; | |
690 | PatternAlternative* m_alternative; | |
691 | CharacterClassConstructor m_characterClassConstructor; | |
692 | bool m_invertCharacterClass; | |
693 | }; | |
694 | ||
695 | ||
696 | const char* compileRegex(const UString& patternString, RegexPattern& pattern) | |
697 | { | |
698 | RegexPatternConstructor constructor(pattern); | |
699 | ||
700 | if (const char* error = parse(constructor, patternString)) | |
701 | return error; | |
702 | ||
703 | // If the pattern contains illegal backreferences reset & reparse. | |
704 | // Quoting Netscape's "What's new in JavaScript 1.2", | |
705 | // "Note: if the number of left parentheses is less than the number specified | |
706 | // in \#, the \# is taken as an octal escape as described in the next row." | |
707 | if (pattern.containsIllegalBackReference()) { | |
708 | unsigned numSubpatterns = pattern.m_numSubpatterns; | |
709 | ||
710 | constructor.reset(); | |
711 | #ifndef NDEBUG | |
712 | const char* error = | |
713 | #endif | |
714 | parse(constructor, patternString, numSubpatterns); | |
715 | ||
716 | ASSERT(!error); | |
717 | ASSERT(numSubpatterns == pattern.m_numSubpatterns); | |
718 | } | |
719 | ||
720 | constructor.setupOffsets(); | |
721 | ||
722 | return false; | |
723 | }; | |
724 | ||
725 | ||
726 | } } | |
727 | ||
728 | #endif |