]>
Commit | Line | Data |
---|---|---|
1 | /**************************************************************** | |
2 | * | |
3 | * The author of this software is David M. Gay. | |
4 | * | |
5 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. | |
6 | * Copyright (C) 2002, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. | |
7 | * | |
8 | * Permission to use, copy, modify, and distribute this software for any | |
9 | * purpose without fee is hereby granted, provided that this entire notice | |
10 | * is included in all copies of any software which is or includes a copy | |
11 | * or modification of this software and in all copies of the supporting | |
12 | * documentation for such software. | |
13 | * | |
14 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED | |
15 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY | |
16 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY | |
17 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. | |
18 | * | |
19 | ***************************************************************/ | |
20 | ||
21 | /* Please send bug reports to | |
22 | David M. Gay | |
23 | Bell Laboratories, Room 2C-463 | |
24 | 600 Mountain Avenue | |
25 | Murray Hill, NJ 07974-0636 | |
26 | U.S.A. | |
27 | dmg@bell-labs.com | |
28 | */ | |
29 | ||
30 | /* On a machine with IEEE extended-precision registers, it is | |
31 | * necessary to specify double-precision (53-bit) rounding precision | |
32 | * before invoking strtod or dtoa. If the machine uses (the equivalent | |
33 | * of) Intel 80x87 arithmetic, the call | |
34 | * _control87(PC_53, MCW_PC); | |
35 | * does this with many compilers. Whether this or another call is | |
36 | * appropriate depends on the compiler; for this to work, it may be | |
37 | * necessary to #include "float.h" or another system-dependent header | |
38 | * file. | |
39 | */ | |
40 | ||
41 | /* strtod for IEEE-arithmetic machines. | |
42 | * | |
43 | * This strtod returns a nearest machine number to the input decimal | |
44 | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are | |
45 | * broken by the IEEE round-even rule. Otherwise ties are broken by | |
46 | * biased rounding (add half and chop). | |
47 | * | |
48 | * Inspired loosely by William D. Clinger's paper "How to Read Floating | |
49 | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. | |
50 | * | |
51 | * Modifications: | |
52 | * | |
53 | * 1. We only require IEEE. | |
54 | * 2. We get by with floating-point arithmetic in a case that | |
55 | * Clinger missed -- when we're computing d * 10^n | |
56 | * for a small integer d and the integer n is not too | |
57 | * much larger than 22 (the maximum integer k for which | |
58 | * we can represent 10^k exactly), we may be able to | |
59 | * compute (d*10^k) * 10^(e-k) with just one roundoff. | |
60 | * 3. Rather than a bit-at-a-time adjustment of the binary | |
61 | * result in the hard case, we use floating-point | |
62 | * arithmetic to determine the adjustment to within | |
63 | * one bit; only in really hard cases do we need to | |
64 | * compute a second residual. | |
65 | * 4. Because of 3., we don't need a large table of powers of 10 | |
66 | * for ten-to-e (just some small tables, e.g. of 10^k | |
67 | * for 0 <= k <= 22). | |
68 | */ | |
69 | ||
70 | /* | |
71 | * #define IEEE_8087 for IEEE-arithmetic machines where the least | |
72 | * significant byte has the lowest address. | |
73 | * #define IEEE_MC68k for IEEE-arithmetic machines where the most | |
74 | * significant byte has the lowest address. | |
75 | * #define No_leftright to omit left-right logic in fast floating-point | |
76 | * computation of dtoa. | |
77 | * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 | |
78 | * and Honor_FLT_ROUNDS is not #defined. | |
79 | * #define Inaccurate_Divide for IEEE-format with correctly rounded | |
80 | * products but inaccurate quotients, e.g., for Intel i860. | |
81 | * #define USE_LONG_LONG on machines that have a "long long" | |
82 | * integer type (of >= 64 bits), and performance testing shows that | |
83 | * it is faster than 32-bit fallback (which is often not the case | |
84 | * on 32-bit machines). On such machines, you can #define Just_16 | |
85 | * to store 16 bits per 32-bit int32_t when doing high-precision integer | |
86 | * arithmetic. Whether this speeds things up or slows things down | |
87 | * depends on the machine and the number being converted. | |
88 | * #define Bad_float_h if your system lacks a float.h or if it does not | |
89 | * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, | |
90 | * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. | |
91 | * #define INFNAN_CHECK on IEEE systems to cause strtod to check for | |
92 | * Infinity and NaN (case insensitively). On some systems (e.g., | |
93 | * some HP systems), it may be necessary to #define NAN_WORD0 | |
94 | * appropriately -- to the most significant word of a quiet NaN. | |
95 | * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) | |
96 | * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, | |
97 | * strtod also accepts (case insensitively) strings of the form | |
98 | * NaN(x), where x is a string of hexadecimal digits and spaces; | |
99 | * if there is only one string of hexadecimal digits, it is taken | |
100 | * for the 52 fraction bits of the resulting NaN; if there are two | |
101 | * or more strings of hex digits, the first is for the high 20 bits, | |
102 | * the second and subsequent for the low 32 bits, with intervening | |
103 | * white space ignored; but if this results in none of the 52 | |
104 | * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 | |
105 | * and NAN_WORD1 are used instead. | |
106 | * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that | |
107 | * avoids underflows on inputs whose result does not underflow. | |
108 | * If you #define NO_IEEE_Scale on a machine that uses IEEE-format | |
109 | * floating-point numbers and flushes underflows to zero rather | |
110 | * than implementing gradual underflow, then you must also #define | |
111 | * Sudden_Underflow. | |
112 | * #define YES_ALIAS to permit aliasing certain double values with | |
113 | * arrays of ULongs. This leads to slightly better code with | |
114 | * some compilers and was always used prior to 19990916, but it | |
115 | * is not strictly legal and can cause trouble with aggressively | |
116 | * optimizing compilers (e.g., gcc 2.95.1 under -O2). | |
117 | * #define SET_INEXACT if IEEE arithmetic is being used and extra | |
118 | * computation should be done to set the inexact flag when the | |
119 | * result is inexact and avoid setting inexact when the result | |
120 | * is exact. In this case, dtoa.c must be compiled in | |
121 | * an environment, perhaps provided by #include "dtoa.c" in a | |
122 | * suitable wrapper, that defines two functions, | |
123 | * int get_inexact(void); | |
124 | * void clear_inexact(void); | |
125 | * such that get_inexact() returns a nonzero value if the | |
126 | * inexact bit is already set, and clear_inexact() sets the | |
127 | * inexact bit to 0. When SET_INEXACT is #defined, strtod | |
128 | * also does extra computations to set the underflow and overflow | |
129 | * flags when appropriate (i.e., when the result is tiny and | |
130 | * inexact or when it is a numeric value rounded to +-infinity). | |
131 | * #define NO_ERRNO if strtod should not assign errno = ERANGE when | |
132 | * the result overflows to +-Infinity or underflows to 0. | |
133 | */ | |
134 | ||
135 | #include "config.h" | |
136 | #include "dtoa.h" | |
137 | ||
138 | #if HAVE(ERRNO_H) | |
139 | #include <errno.h> | |
140 | #else | |
141 | #define NO_ERRNO | |
142 | #endif | |
143 | #include <float.h> | |
144 | #include <math.h> | |
145 | #include <stdint.h> | |
146 | #include <stdlib.h> | |
147 | #include <string.h> | |
148 | #include <wtf/AlwaysInline.h> | |
149 | #include <wtf/Assertions.h> | |
150 | #include <wtf/FastMalloc.h> | |
151 | #include <wtf/Vector.h> | |
152 | #include <wtf/Threading.h> | |
153 | ||
154 | #include <stdio.h> | |
155 | ||
156 | #if COMPILER(MSVC) | |
157 | #pragma warning(disable: 4244) | |
158 | #pragma warning(disable: 4245) | |
159 | #pragma warning(disable: 4554) | |
160 | #endif | |
161 | ||
162 | #if PLATFORM(BIG_ENDIAN) | |
163 | #define IEEE_MC68k | |
164 | #elif PLATFORM(MIDDLE_ENDIAN) | |
165 | #define IEEE_ARM | |
166 | #else | |
167 | #define IEEE_8087 | |
168 | #endif | |
169 | ||
170 | #define INFNAN_CHECK | |
171 | ||
172 | #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) != 1 | |
173 | Exactly one of IEEE_8087, IEEE_ARM or IEEE_MC68k should be defined. | |
174 | #endif | |
175 | ||
176 | namespace WTF { | |
177 | ||
178 | #if ENABLE(JSC_MULTIPLE_THREADS) | |
179 | Mutex* s_dtoaP5Mutex; | |
180 | #endif | |
181 | ||
182 | typedef union { double d; uint32_t L[2]; } U; | |
183 | ||
184 | #ifdef YES_ALIAS | |
185 | #define dval(x) x | |
186 | #ifdef IEEE_8087 | |
187 | #define word0(x) ((uint32_t*)&x)[1] | |
188 | #define word1(x) ((uint32_t*)&x)[0] | |
189 | #else | |
190 | #define word0(x) ((uint32_t*)&x)[0] | |
191 | #define word1(x) ((uint32_t*)&x)[1] | |
192 | #endif | |
193 | #else | |
194 | #ifdef IEEE_8087 | |
195 | #define word0(x) (x)->L[1] | |
196 | #define word1(x) (x)->L[0] | |
197 | #else | |
198 | #define word0(x) (x)->L[0] | |
199 | #define word1(x) (x)->L[1] | |
200 | #endif | |
201 | #define dval(x) (x)->d | |
202 | #endif | |
203 | ||
204 | /* The following definition of Storeinc is appropriate for MIPS processors. | |
205 | * An alternative that might be better on some machines is | |
206 | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) | |
207 | */ | |
208 | #if defined(IEEE_8087) || defined(IEEE_ARM) | |
209 | #define Storeinc(a,b,c) (((unsigned short*)a)[1] = (unsigned short)b, ((unsigned short*)a)[0] = (unsigned short)c, a++) | |
210 | #else | |
211 | #define Storeinc(a,b,c) (((unsigned short*)a)[0] = (unsigned short)b, ((unsigned short*)a)[1] = (unsigned short)c, a++) | |
212 | #endif | |
213 | ||
214 | #define Exp_shift 20 | |
215 | #define Exp_shift1 20 | |
216 | #define Exp_msk1 0x100000 | |
217 | #define Exp_msk11 0x100000 | |
218 | #define Exp_mask 0x7ff00000 | |
219 | #define P 53 | |
220 | #define Bias 1023 | |
221 | #define Emin (-1022) | |
222 | #define Exp_1 0x3ff00000 | |
223 | #define Exp_11 0x3ff00000 | |
224 | #define Ebits 11 | |
225 | #define Frac_mask 0xfffff | |
226 | #define Frac_mask1 0xfffff | |
227 | #define Ten_pmax 22 | |
228 | #define Bletch 0x10 | |
229 | #define Bndry_mask 0xfffff | |
230 | #define Bndry_mask1 0xfffff | |
231 | #define LSB 1 | |
232 | #define Sign_bit 0x80000000 | |
233 | #define Log2P 1 | |
234 | #define Tiny0 0 | |
235 | #define Tiny1 1 | |
236 | #define Quick_max 14 | |
237 | #define Int_max 14 | |
238 | ||
239 | #if !defined(NO_IEEE_Scale) | |
240 | #undef Avoid_Underflow | |
241 | #define Avoid_Underflow | |
242 | #endif | |
243 | ||
244 | #if !defined(Flt_Rounds) | |
245 | #if defined(FLT_ROUNDS) | |
246 | #define Flt_Rounds FLT_ROUNDS | |
247 | #else | |
248 | #define Flt_Rounds 1 | |
249 | #endif | |
250 | #endif /*Flt_Rounds*/ | |
251 | ||
252 | ||
253 | #define rounded_product(a,b) a *= b | |
254 | #define rounded_quotient(a,b) a /= b | |
255 | ||
256 | #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) | |
257 | #define Big1 0xffffffff | |
258 | ||
259 | ||
260 | // FIXME: we should remove non-Pack_32 mode since it is unused and unmaintained | |
261 | #ifndef Pack_32 | |
262 | #define Pack_32 | |
263 | #endif | |
264 | ||
265 | #if PLATFORM(PPC64) || PLATFORM(X86_64) | |
266 | // 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware. | |
267 | #define USE_LONG_LONG | |
268 | #endif | |
269 | ||
270 | #ifndef USE_LONG_LONG | |
271 | #ifdef Just_16 | |
272 | #undef Pack_32 | |
273 | /* When Pack_32 is not defined, we store 16 bits per 32-bit int32_t. | |
274 | * This makes some inner loops simpler and sometimes saves work | |
275 | * during multiplications, but it often seems to make things slightly | |
276 | * slower. Hence the default is now to store 32 bits per int32_t. | |
277 | */ | |
278 | #endif | |
279 | #endif | |
280 | ||
281 | #define Kmax 15 | |
282 | ||
283 | struct BigInt { | |
284 | BigInt() : sign(0) { } | |
285 | int sign; | |
286 | ||
287 | void clear() | |
288 | { | |
289 | sign = 0; | |
290 | m_words.clear(); | |
291 | } | |
292 | ||
293 | size_t size() const | |
294 | { | |
295 | return m_words.size(); | |
296 | } | |
297 | ||
298 | void resize(size_t s) | |
299 | { | |
300 | m_words.resize(s); | |
301 | } | |
302 | ||
303 | uint32_t* words() | |
304 | { | |
305 | return m_words.data(); | |
306 | } | |
307 | ||
308 | const uint32_t* words() const | |
309 | { | |
310 | return m_words.data(); | |
311 | } | |
312 | ||
313 | void append(uint32_t w) | |
314 | { | |
315 | m_words.append(w); | |
316 | } | |
317 | ||
318 | Vector<uint32_t, 16> m_words; | |
319 | }; | |
320 | ||
321 | static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */ | |
322 | { | |
323 | #ifdef USE_LONG_LONG | |
324 | unsigned long long carry; | |
325 | #else | |
326 | uint32_t carry; | |
327 | #endif | |
328 | ||
329 | int wds = b.size(); | |
330 | uint32_t* x = b.words(); | |
331 | int i = 0; | |
332 | carry = a; | |
333 | do { | |
334 | #ifdef USE_LONG_LONG | |
335 | unsigned long long y = *x * (unsigned long long)m + carry; | |
336 | carry = y >> 32; | |
337 | *x++ = (uint32_t)y & 0xffffffffUL; | |
338 | #else | |
339 | #ifdef Pack_32 | |
340 | uint32_t xi = *x; | |
341 | uint32_t y = (xi & 0xffff) * m + carry; | |
342 | uint32_t z = (xi >> 16) * m + (y >> 16); | |
343 | carry = z >> 16; | |
344 | *x++ = (z << 16) + (y & 0xffff); | |
345 | #else | |
346 | uint32_t y = *x * m + carry; | |
347 | carry = y >> 16; | |
348 | *x++ = y & 0xffff; | |
349 | #endif | |
350 | #endif | |
351 | } while (++i < wds); | |
352 | ||
353 | if (carry) | |
354 | b.append((uint32_t)carry); | |
355 | } | |
356 | ||
357 | static void s2b(BigInt& b, const char* s, int nd0, int nd, uint32_t y9) | |
358 | { | |
359 | int k; | |
360 | int32_t y; | |
361 | int32_t x = (nd + 8) / 9; | |
362 | ||
363 | for (k = 0, y = 1; x > y; y <<= 1, k++) { } | |
364 | #ifdef Pack_32 | |
365 | b.sign = 0; | |
366 | b.resize(1); | |
367 | b.words()[0] = y9; | |
368 | #else | |
369 | b.sign = 0; | |
370 | b.resize((b->x[1] = y9 >> 16) ? 2 : 1); | |
371 | b.words()[0] = y9 & 0xffff; | |
372 | #endif | |
373 | ||
374 | int i = 9; | |
375 | if (9 < nd0) { | |
376 | s += 9; | |
377 | do { | |
378 | multadd(b, 10, *s++ - '0'); | |
379 | } while (++i < nd0); | |
380 | s++; | |
381 | } else | |
382 | s += 10; | |
383 | for (; i < nd; i++) | |
384 | multadd(b, 10, *s++ - '0'); | |
385 | } | |
386 | ||
387 | static int hi0bits(uint32_t x) | |
388 | { | |
389 | int k = 0; | |
390 | ||
391 | if (!(x & 0xffff0000)) { | |
392 | k = 16; | |
393 | x <<= 16; | |
394 | } | |
395 | if (!(x & 0xff000000)) { | |
396 | k += 8; | |
397 | x <<= 8; | |
398 | } | |
399 | if (!(x & 0xf0000000)) { | |
400 | k += 4; | |
401 | x <<= 4; | |
402 | } | |
403 | if (!(x & 0xc0000000)) { | |
404 | k += 2; | |
405 | x <<= 2; | |
406 | } | |
407 | if (!(x & 0x80000000)) { | |
408 | k++; | |
409 | if (!(x & 0x40000000)) | |
410 | return 32; | |
411 | } | |
412 | return k; | |
413 | } | |
414 | ||
415 | static int lo0bits (uint32_t* y) | |
416 | { | |
417 | int k; | |
418 | uint32_t x = *y; | |
419 | ||
420 | if (x & 7) { | |
421 | if (x & 1) | |
422 | return 0; | |
423 | if (x & 2) { | |
424 | *y = x >> 1; | |
425 | return 1; | |
426 | } | |
427 | *y = x >> 2; | |
428 | return 2; | |
429 | } | |
430 | k = 0; | |
431 | if (!(x & 0xffff)) { | |
432 | k = 16; | |
433 | x >>= 16; | |
434 | } | |
435 | if (!(x & 0xff)) { | |
436 | k += 8; | |
437 | x >>= 8; | |
438 | } | |
439 | if (!(x & 0xf)) { | |
440 | k += 4; | |
441 | x >>= 4; | |
442 | } | |
443 | if (!(x & 0x3)) { | |
444 | k += 2; | |
445 | x >>= 2; | |
446 | } | |
447 | if (!(x & 1)) { | |
448 | k++; | |
449 | x >>= 1; | |
450 | if (!x & 1) | |
451 | return 32; | |
452 | } | |
453 | *y = x; | |
454 | return k; | |
455 | } | |
456 | ||
457 | static void i2b(BigInt& b, int i) | |
458 | { | |
459 | b.sign = 0; | |
460 | b.resize(1); | |
461 | b.words()[0] = i; | |
462 | } | |
463 | ||
464 | static void mult(BigInt& aRef, const BigInt& bRef) | |
465 | { | |
466 | const BigInt* a = &aRef; | |
467 | const BigInt* b = &bRef; | |
468 | BigInt c; | |
469 | int wa, wb, wc; | |
470 | const uint32_t *x = 0, *xa, *xb, *xae, *xbe; | |
471 | uint32_t *xc, *xc0; | |
472 | uint32_t y; | |
473 | #ifdef USE_LONG_LONG | |
474 | unsigned long long carry, z; | |
475 | #else | |
476 | uint32_t carry, z; | |
477 | #endif | |
478 | ||
479 | if (a->size() < b->size()) { | |
480 | const BigInt* tmp = a; | |
481 | a = b; | |
482 | b = tmp; | |
483 | } | |
484 | ||
485 | wa = a->size(); | |
486 | wb = b->size(); | |
487 | wc = wa + wb; | |
488 | c.resize(wc); | |
489 | ||
490 | for (xc = c.words(), xa = xc + wc; xc < xa; xc++) | |
491 | *xc = 0; | |
492 | xa = a->words(); | |
493 | xae = xa + wa; | |
494 | xb = b->words(); | |
495 | xbe = xb + wb; | |
496 | xc0 = c.words(); | |
497 | #ifdef USE_LONG_LONG | |
498 | for (; xb < xbe; xc0++) { | |
499 | if ((y = *xb++)) { | |
500 | x = xa; | |
501 | xc = xc0; | |
502 | carry = 0; | |
503 | do { | |
504 | z = *x++ * (unsigned long long)y + *xc + carry; | |
505 | carry = z >> 32; | |
506 | *xc++ = (uint32_t)z & 0xffffffffUL; | |
507 | } while (x < xae); | |
508 | *xc = (uint32_t)carry; | |
509 | } | |
510 | } | |
511 | #else | |
512 | #ifdef Pack_32 | |
513 | for (; xb < xbe; xb++, xc0++) { | |
514 | if ((y = *xb & 0xffff)) { | |
515 | x = xa; | |
516 | xc = xc0; | |
517 | carry = 0; | |
518 | do { | |
519 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; | |
520 | carry = z >> 16; | |
521 | uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; | |
522 | carry = z2 >> 16; | |
523 | Storeinc(xc, z2, z); | |
524 | } while (x < xae); | |
525 | *xc = carry; | |
526 | } | |
527 | if ((y = *xb >> 16)) { | |
528 | x = xa; | |
529 | xc = xc0; | |
530 | carry = 0; | |
531 | uint32_t z2 = *xc; | |
532 | do { | |
533 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; | |
534 | carry = z >> 16; | |
535 | Storeinc(xc, z, z2); | |
536 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; | |
537 | carry = z2 >> 16; | |
538 | } while (x < xae); | |
539 | *xc = z2; | |
540 | } | |
541 | } | |
542 | #else | |
543 | for(; xb < xbe; xc0++) { | |
544 | if ((y = *xb++)) { | |
545 | x = xa; | |
546 | xc = xc0; | |
547 | carry = 0; | |
548 | do { | |
549 | z = *x++ * y + *xc + carry; | |
550 | carry = z >> 16; | |
551 | *xc++ = z & 0xffff; | |
552 | } while (x < xae); | |
553 | *xc = carry; | |
554 | } | |
555 | } | |
556 | #endif | |
557 | #endif | |
558 | for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { } | |
559 | c.resize(wc); | |
560 | aRef = c; | |
561 | } | |
562 | ||
563 | struct P5Node { | |
564 | BigInt val; | |
565 | P5Node* next; | |
566 | }; | |
567 | ||
568 | static P5Node* p5s; | |
569 | static int p5s_count; | |
570 | ||
571 | static ALWAYS_INLINE void pow5mult(BigInt& b, int k) | |
572 | { | |
573 | static int p05[3] = { 5, 25, 125 }; | |
574 | ||
575 | if (int i = k & 3) | |
576 | multadd(b, p05[i - 1], 0); | |
577 | ||
578 | if (!(k >>= 2)) | |
579 | return; | |
580 | ||
581 | #if ENABLE(JSC_MULTIPLE_THREADS) | |
582 | s_dtoaP5Mutex->lock(); | |
583 | #endif | |
584 | P5Node* p5 = p5s; | |
585 | ||
586 | if (!p5) { | |
587 | /* first time */ | |
588 | p5 = new P5Node; | |
589 | i2b(p5->val, 625); | |
590 | p5->next = 0; | |
591 | p5s = p5; | |
592 | p5s_count = 1; | |
593 | } | |
594 | ||
595 | int p5s_count_local = p5s_count; | |
596 | #if ENABLE(JSC_MULTIPLE_THREADS) | |
597 | s_dtoaP5Mutex->unlock(); | |
598 | #endif | |
599 | int p5s_used = 0; | |
600 | ||
601 | for (;;) { | |
602 | if (k & 1) | |
603 | mult(b, p5->val); | |
604 | ||
605 | if (!(k >>= 1)) | |
606 | break; | |
607 | ||
608 | if (++p5s_used == p5s_count_local) { | |
609 | #if ENABLE(JSC_MULTIPLE_THREADS) | |
610 | s_dtoaP5Mutex->lock(); | |
611 | #endif | |
612 | if (p5s_used == p5s_count) { | |
613 | ASSERT(!p5->next); | |
614 | p5->next = new P5Node; | |
615 | p5->next->next = 0; | |
616 | p5->next->val = p5->val; | |
617 | mult(p5->next->val, p5->next->val); | |
618 | ++p5s_count; | |
619 | } | |
620 | ||
621 | p5s_count_local = p5s_count; | |
622 | #if ENABLE(JSC_MULTIPLE_THREADS) | |
623 | s_dtoaP5Mutex->unlock(); | |
624 | #endif | |
625 | } | |
626 | p5 = p5->next; | |
627 | } | |
628 | } | |
629 | ||
630 | static ALWAYS_INLINE void lshift(BigInt& b, int k) | |
631 | { | |
632 | #ifdef Pack_32 | |
633 | int n = k >> 5; | |
634 | #else | |
635 | int n = k >> 4; | |
636 | #endif | |
637 | ||
638 | int origSize = b.size(); | |
639 | int n1 = n + origSize + 1; | |
640 | ||
641 | if (k &= 0x1f) | |
642 | b.resize(b.size() + n + 1); | |
643 | else | |
644 | b.resize(b.size() + n); | |
645 | ||
646 | const uint32_t* srcStart = b.words(); | |
647 | uint32_t* dstStart = b.words(); | |
648 | const uint32_t* src = srcStart + origSize - 1; | |
649 | uint32_t* dst = dstStart + n1 - 1; | |
650 | #ifdef Pack_32 | |
651 | if (k) { | |
652 | uint32_t hiSubword = 0; | |
653 | int s = 32 - k; | |
654 | for (; src >= srcStart; --src) { | |
655 | *dst-- = hiSubword | *src >> s; | |
656 | hiSubword = *src << k; | |
657 | } | |
658 | *dst = hiSubword; | |
659 | ASSERT(dst == dstStart + n); | |
660 | ||
661 | b.resize(origSize + n + (b.words()[n1 - 1] != 0)); | |
662 | } | |
663 | #else | |
664 | if (k &= 0xf) { | |
665 | uint32_t hiSubword = 0; | |
666 | int s = 16 - k; | |
667 | for (; src >= srcStart; --src) { | |
668 | *dst-- = hiSubword | *src >> s; | |
669 | hiSubword = (*src << k) & 0xffff; | |
670 | } | |
671 | *dst = hiSubword; | |
672 | ASSERT(dst == dstStart + n); | |
673 | result->wds = b->wds + n + (result->x[n1 - 1] != 0); | |
674 | } | |
675 | #endif | |
676 | else { | |
677 | do { | |
678 | *--dst = *src--; | |
679 | } while (src >= srcStart); | |
680 | } | |
681 | for (dst = dstStart + n; dst != dstStart; ) | |
682 | *--dst = 0; | |
683 | ||
684 | ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); | |
685 | } | |
686 | ||
687 | static int cmp(const BigInt& a, const BigInt& b) | |
688 | { | |
689 | const uint32_t *xa, *xa0, *xb, *xb0; | |
690 | int i, j; | |
691 | ||
692 | i = a.size(); | |
693 | j = b.size(); | |
694 | ASSERT(i <= 1 || a.words()[i - 1]); | |
695 | ASSERT(j <= 1 || b.words()[j - 1]); | |
696 | if (i -= j) | |
697 | return i; | |
698 | xa0 = a.words(); | |
699 | xa = xa0 + j; | |
700 | xb0 = b.words(); | |
701 | xb = xb0 + j; | |
702 | for (;;) { | |
703 | if (*--xa != *--xb) | |
704 | return *xa < *xb ? -1 : 1; | |
705 | if (xa <= xa0) | |
706 | break; | |
707 | } | |
708 | return 0; | |
709 | } | |
710 | ||
711 | static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef) | |
712 | { | |
713 | const BigInt* a = &aRef; | |
714 | const BigInt* b = &bRef; | |
715 | int i, wa, wb; | |
716 | uint32_t *xc; | |
717 | ||
718 | i = cmp(*a, *b); | |
719 | if (!i) { | |
720 | c.sign = 0; | |
721 | c.resize(1); | |
722 | c.words()[0] = 0; | |
723 | return; | |
724 | } | |
725 | if (i < 0) { | |
726 | const BigInt* tmp = a; | |
727 | a = b; | |
728 | b = tmp; | |
729 | i = 1; | |
730 | } else | |
731 | i = 0; | |
732 | ||
733 | wa = a->size(); | |
734 | const uint32_t* xa = a->words(); | |
735 | const uint32_t* xae = xa + wa; | |
736 | wb = b->size(); | |
737 | const uint32_t* xb = b->words(); | |
738 | const uint32_t* xbe = xb + wb; | |
739 | ||
740 | c.resize(wa); | |
741 | c.sign = i; | |
742 | xc = c.words(); | |
743 | #ifdef USE_LONG_LONG | |
744 | unsigned long long borrow = 0; | |
745 | do { | |
746 | unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow; | |
747 | borrow = y >> 32 & (uint32_t)1; | |
748 | *xc++ = (uint32_t)y & 0xffffffffUL; | |
749 | } while (xb < xbe); | |
750 | while (xa < xae) { | |
751 | unsigned long long y = *xa++ - borrow; | |
752 | borrow = y >> 32 & (uint32_t)1; | |
753 | *xc++ = (uint32_t)y & 0xffffffffUL; | |
754 | } | |
755 | #else | |
756 | uint32_t borrow = 0; | |
757 | #ifdef Pack_32 | |
758 | do { | |
759 | uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; | |
760 | borrow = (y & 0x10000) >> 16; | |
761 | uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; | |
762 | borrow = (z & 0x10000) >> 16; | |
763 | Storeinc(xc, z, y); | |
764 | } while (xb < xbe); | |
765 | while (xa < xae) { | |
766 | uint32_t y = (*xa & 0xffff) - borrow; | |
767 | borrow = (y & 0x10000) >> 16; | |
768 | uint32_t z = (*xa++ >> 16) - borrow; | |
769 | borrow = (z & 0x10000) >> 16; | |
770 | Storeinc(xc, z, y); | |
771 | } | |
772 | #else | |
773 | do { | |
774 | uint32_t y = *xa++ - *xb++ - borrow; | |
775 | borrow = (y & 0x10000) >> 16; | |
776 | *xc++ = y & 0xffff; | |
777 | } while (xb < xbe); | |
778 | while (xa < xae) { | |
779 | uint32_t y = *xa++ - borrow; | |
780 | borrow = (y & 0x10000) >> 16; | |
781 | *xc++ = y & 0xffff; | |
782 | } | |
783 | #endif | |
784 | #endif | |
785 | while (!*--xc) | |
786 | wa--; | |
787 | c.resize(wa); | |
788 | } | |
789 | ||
790 | static double ulp(U *x) | |
791 | { | |
792 | register int32_t L; | |
793 | U u; | |
794 | ||
795 | L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1; | |
796 | #ifndef Avoid_Underflow | |
797 | #ifndef Sudden_Underflow | |
798 | if (L > 0) { | |
799 | #endif | |
800 | #endif | |
801 | word0(&u) = L; | |
802 | word1(&u) = 0; | |
803 | #ifndef Avoid_Underflow | |
804 | #ifndef Sudden_Underflow | |
805 | } else { | |
806 | L = -L >> Exp_shift; | |
807 | if (L < Exp_shift) { | |
808 | word0(&u) = 0x80000 >> L; | |
809 | word1(&u) = 0; | |
810 | } else { | |
811 | word0(&u) = 0; | |
812 | L -= Exp_shift; | |
813 | word1(&u) = L >= 31 ? 1 : 1 << 31 - L; | |
814 | } | |
815 | } | |
816 | #endif | |
817 | #endif | |
818 | return dval(&u); | |
819 | } | |
820 | ||
821 | static double b2d(const BigInt& a, int* e) | |
822 | { | |
823 | const uint32_t* xa; | |
824 | const uint32_t* xa0; | |
825 | uint32_t w; | |
826 | uint32_t y; | |
827 | uint32_t z; | |
828 | int k; | |
829 | U d; | |
830 | ||
831 | #define d0 word0(&d) | |
832 | #define d1 word1(&d) | |
833 | ||
834 | xa0 = a.words(); | |
835 | xa = xa0 + a.size(); | |
836 | y = *--xa; | |
837 | ASSERT(y); | |
838 | k = hi0bits(y); | |
839 | *e = 32 - k; | |
840 | #ifdef Pack_32 | |
841 | if (k < Ebits) { | |
842 | d0 = Exp_1 | (y >> (Ebits - k)); | |
843 | w = xa > xa0 ? *--xa : 0; | |
844 | d1 = (y << (32 - Ebits + k)) | (w >> (Ebits - k)); | |
845 | goto ret_d; | |
846 | } | |
847 | z = xa > xa0 ? *--xa : 0; | |
848 | if (k -= Ebits) { | |
849 | d0 = Exp_1 | (y << k) | (z >> (32 - k)); | |
850 | y = xa > xa0 ? *--xa : 0; | |
851 | d1 = (z << k) | (y >> (32 - k)); | |
852 | } else { | |
853 | d0 = Exp_1 | y; | |
854 | d1 = z; | |
855 | } | |
856 | #else | |
857 | if (k < Ebits + 16) { | |
858 | z = xa > xa0 ? *--xa : 0; | |
859 | d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; | |
860 | w = xa > xa0 ? *--xa : 0; | |
861 | y = xa > xa0 ? *--xa : 0; | |
862 | d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; | |
863 | goto ret_d; | |
864 | } | |
865 | z = xa > xa0 ? *--xa : 0; | |
866 | w = xa > xa0 ? *--xa : 0; | |
867 | k -= Ebits + 16; | |
868 | d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; | |
869 | y = xa > xa0 ? *--xa : 0; | |
870 | d1 = w << k + 16 | y << k; | |
871 | #endif | |
872 | ret_d: | |
873 | #undef d0 | |
874 | #undef d1 | |
875 | return dval(&d); | |
876 | } | |
877 | ||
878 | static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits) | |
879 | { | |
880 | int de, k; | |
881 | uint32_t *x, y, z; | |
882 | #ifndef Sudden_Underflow | |
883 | int i; | |
884 | #endif | |
885 | #define d0 word0(d) | |
886 | #define d1 word1(d) | |
887 | ||
888 | b.sign = 0; | |
889 | #ifdef Pack_32 | |
890 | b.resize(1); | |
891 | #else | |
892 | b.resize(2); | |
893 | #endif | |
894 | x = b.words(); | |
895 | ||
896 | z = d0 & Frac_mask; | |
897 | d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ | |
898 | #ifdef Sudden_Underflow | |
899 | de = (int)(d0 >> Exp_shift); | |
900 | #else | |
901 | if ((de = (int)(d0 >> Exp_shift))) | |
902 | z |= Exp_msk1; | |
903 | #endif | |
904 | #ifdef Pack_32 | |
905 | if ((y = d1)) { | |
906 | if ((k = lo0bits(&y))) { | |
907 | x[0] = y | (z << (32 - k)); | |
908 | z >>= k; | |
909 | } else | |
910 | x[0] = y; | |
911 | if (z) { | |
912 | b.resize(2); | |
913 | x[1] = z; | |
914 | } | |
915 | ||
916 | #ifndef Sudden_Underflow | |
917 | i = b.size(); | |
918 | #endif | |
919 | } else { | |
920 | k = lo0bits(&z); | |
921 | x[0] = z; | |
922 | #ifndef Sudden_Underflow | |
923 | i = 1; | |
924 | #endif | |
925 | b.resize(1); | |
926 | k += 32; | |
927 | } | |
928 | #else | |
929 | if ((y = d1)) { | |
930 | if ((k = lo0bits(&y))) { | |
931 | if (k >= 16) { | |
932 | x[0] = y | z << 32 - k & 0xffff; | |
933 | x[1] = z >> k - 16 & 0xffff; | |
934 | x[2] = z >> k; | |
935 | i = 2; | |
936 | } else { | |
937 | x[0] = y & 0xffff; | |
938 | x[1] = y >> 16 | z << 16 - k & 0xffff; | |
939 | x[2] = z >> k & 0xffff; | |
940 | x[3] = z >> k + 16; | |
941 | i = 3; | |
942 | } | |
943 | } else { | |
944 | x[0] = y & 0xffff; | |
945 | x[1] = y >> 16; | |
946 | x[2] = z & 0xffff; | |
947 | x[3] = z >> 16; | |
948 | i = 3; | |
949 | } | |
950 | } else { | |
951 | k = lo0bits(&z); | |
952 | if (k >= 16) { | |
953 | x[0] = z; | |
954 | i = 0; | |
955 | } else { | |
956 | x[0] = z & 0xffff; | |
957 | x[1] = z >> 16; | |
958 | i = 1; | |
959 | } | |
960 | k += 32; | |
961 | } while (!x[i]) | |
962 | --i; | |
963 | b->resize(i + 1); | |
964 | #endif | |
965 | #ifndef Sudden_Underflow | |
966 | if (de) { | |
967 | #endif | |
968 | *e = de - Bias - (P - 1) + k; | |
969 | *bits = P - k; | |
970 | #ifndef Sudden_Underflow | |
971 | } else { | |
972 | *e = de - Bias - (P - 1) + 1 + k; | |
973 | #ifdef Pack_32 | |
974 | *bits = (32 * i) - hi0bits(x[i - 1]); | |
975 | #else | |
976 | *bits = (i + 2) * 16 - hi0bits(x[i]); | |
977 | #endif | |
978 | } | |
979 | #endif | |
980 | } | |
981 | #undef d0 | |
982 | #undef d1 | |
983 | ||
984 | static double ratio(const BigInt& a, const BigInt& b) | |
985 | { | |
986 | U da, db; | |
987 | int k, ka, kb; | |
988 | ||
989 | dval(&da) = b2d(a, &ka); | |
990 | dval(&db) = b2d(b, &kb); | |
991 | #ifdef Pack_32 | |
992 | k = ka - kb + 32 * (a.size() - b.size()); | |
993 | #else | |
994 | k = ka - kb + 16 * (a.size() - b.size()); | |
995 | #endif | |
996 | if (k > 0) | |
997 | word0(&da) += k * Exp_msk1; | |
998 | else { | |
999 | k = -k; | |
1000 | word0(&db) += k * Exp_msk1; | |
1001 | } | |
1002 | return dval(&da) / dval(&db); | |
1003 | } | |
1004 | ||
1005 | static const double tens[] = { | |
1006 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, | |
1007 | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | |
1008 | 1e20, 1e21, 1e22 | |
1009 | }; | |
1010 | ||
1011 | static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; | |
1012 | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, | |
1013 | #ifdef Avoid_Underflow | |
1014 | 9007199254740992. * 9007199254740992.e-256 | |
1015 | /* = 2^106 * 1e-53 */ | |
1016 | #else | |
1017 | 1e-256 | |
1018 | #endif | |
1019 | }; | |
1020 | ||
1021 | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ | |
1022 | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ | |
1023 | #define Scale_Bit 0x10 | |
1024 | #define n_bigtens 5 | |
1025 | ||
1026 | #if defined(INFNAN_CHECK) | |
1027 | ||
1028 | #ifndef NAN_WORD0 | |
1029 | #define NAN_WORD0 0x7ff80000 | |
1030 | #endif | |
1031 | ||
1032 | #ifndef NAN_WORD1 | |
1033 | #define NAN_WORD1 0 | |
1034 | #endif | |
1035 | ||
1036 | static int match(const char** sp, const char* t) | |
1037 | { | |
1038 | int c, d; | |
1039 | const char* s = *sp; | |
1040 | ||
1041 | while ((d = *t++)) { | |
1042 | if ((c = *++s) >= 'A' && c <= 'Z') | |
1043 | c += 'a' - 'A'; | |
1044 | if (c != d) | |
1045 | return 0; | |
1046 | } | |
1047 | *sp = s + 1; | |
1048 | return 1; | |
1049 | } | |
1050 | ||
1051 | #ifndef No_Hex_NaN | |
1052 | static void hexnan(U* rvp, const char** sp) | |
1053 | { | |
1054 | uint32_t c, x[2]; | |
1055 | const char* s; | |
1056 | int havedig, udx0, xshift; | |
1057 | ||
1058 | x[0] = x[1] = 0; | |
1059 | havedig = xshift = 0; | |
1060 | udx0 = 1; | |
1061 | s = *sp; | |
1062 | while ((c = *(const unsigned char*)++s)) { | |
1063 | if (c >= '0' && c <= '9') | |
1064 | c -= '0'; | |
1065 | else if (c >= 'a' && c <= 'f') | |
1066 | c += 10 - 'a'; | |
1067 | else if (c >= 'A' && c <= 'F') | |
1068 | c += 10 - 'A'; | |
1069 | else if (c <= ' ') { | |
1070 | if (udx0 && havedig) { | |
1071 | udx0 = 0; | |
1072 | xshift = 1; | |
1073 | } | |
1074 | continue; | |
1075 | } else if (/*(*/ c == ')' && havedig) { | |
1076 | *sp = s + 1; | |
1077 | break; | |
1078 | } else | |
1079 | return; /* invalid form: don't change *sp */ | |
1080 | havedig = 1; | |
1081 | if (xshift) { | |
1082 | xshift = 0; | |
1083 | x[0] = x[1]; | |
1084 | x[1] = 0; | |
1085 | } | |
1086 | if (udx0) | |
1087 | x[0] = (x[0] << 4) | (x[1] >> 28); | |
1088 | x[1] = (x[1] << 4) | c; | |
1089 | } | |
1090 | if ((x[0] &= 0xfffff) || x[1]) { | |
1091 | word0(rvp) = Exp_mask | x[0]; | |
1092 | word1(rvp) = x[1]; | |
1093 | } | |
1094 | } | |
1095 | #endif /*No_Hex_NaN*/ | |
1096 | #endif /* INFNAN_CHECK */ | |
1097 | ||
1098 | double strtod(const char* s00, char** se) | |
1099 | { | |
1100 | #ifdef Avoid_Underflow | |
1101 | int scale; | |
1102 | #endif | |
1103 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, | |
1104 | e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; | |
1105 | const char *s, *s0, *s1; | |
1106 | double aadj, aadj1; | |
1107 | U aadj2, adj, rv, rv0; | |
1108 | int32_t L; | |
1109 | uint32_t y, z; | |
1110 | BigInt bb, bb1, bd, bd0, bs, delta; | |
1111 | #ifdef SET_INEXACT | |
1112 | int inexact, oldinexact; | |
1113 | #endif | |
1114 | ||
1115 | sign = nz0 = nz = 0; | |
1116 | dval(&rv) = 0; | |
1117 | for (s = s00; ; s++) | |
1118 | switch (*s) { | |
1119 | case '-': | |
1120 | sign = 1; | |
1121 | /* no break */ | |
1122 | case '+': | |
1123 | if (*++s) | |
1124 | goto break2; | |
1125 | /* no break */ | |
1126 | case 0: | |
1127 | goto ret0; | |
1128 | case '\t': | |
1129 | case '\n': | |
1130 | case '\v': | |
1131 | case '\f': | |
1132 | case '\r': | |
1133 | case ' ': | |
1134 | continue; | |
1135 | default: | |
1136 | goto break2; | |
1137 | } | |
1138 | break2: | |
1139 | if (*s == '0') { | |
1140 | nz0 = 1; | |
1141 | while (*++s == '0') { } | |
1142 | if (!*s) | |
1143 | goto ret; | |
1144 | } | |
1145 | s0 = s; | |
1146 | y = z = 0; | |
1147 | for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) | |
1148 | if (nd < 9) | |
1149 | y = (10 * y) + c - '0'; | |
1150 | else if (nd < 16) | |
1151 | z = (10 * z) + c - '0'; | |
1152 | nd0 = nd; | |
1153 | if (c == '.') { | |
1154 | c = *++s; | |
1155 | if (!nd) { | |
1156 | for (; c == '0'; c = *++s) | |
1157 | nz++; | |
1158 | if (c > '0' && c <= '9') { | |
1159 | s0 = s; | |
1160 | nf += nz; | |
1161 | nz = 0; | |
1162 | goto have_dig; | |
1163 | } | |
1164 | goto dig_done; | |
1165 | } | |
1166 | for (; c >= '0' && c <= '9'; c = *++s) { | |
1167 | have_dig: | |
1168 | nz++; | |
1169 | if (c -= '0') { | |
1170 | nf += nz; | |
1171 | for (i = 1; i < nz; i++) | |
1172 | if (nd++ < 9) | |
1173 | y *= 10; | |
1174 | else if (nd <= DBL_DIG + 1) | |
1175 | z *= 10; | |
1176 | if (nd++ < 9) | |
1177 | y = (10 * y) + c; | |
1178 | else if (nd <= DBL_DIG + 1) | |
1179 | z = (10 * z) + c; | |
1180 | nz = 0; | |
1181 | } | |
1182 | } | |
1183 | } | |
1184 | dig_done: | |
1185 | e = 0; | |
1186 | if (c == 'e' || c == 'E') { | |
1187 | if (!nd && !nz && !nz0) { | |
1188 | goto ret0; | |
1189 | } | |
1190 | s00 = s; | |
1191 | esign = 0; | |
1192 | switch (c = *++s) { | |
1193 | case '-': | |
1194 | esign = 1; | |
1195 | case '+': | |
1196 | c = *++s; | |
1197 | } | |
1198 | if (c >= '0' && c <= '9') { | |
1199 | while (c == '0') | |
1200 | c = *++s; | |
1201 | if (c > '0' && c <= '9') { | |
1202 | L = c - '0'; | |
1203 | s1 = s; | |
1204 | while ((c = *++s) >= '0' && c <= '9') | |
1205 | L = (10 * L) + c - '0'; | |
1206 | if (s - s1 > 8 || L > 19999) | |
1207 | /* Avoid confusion from exponents | |
1208 | * so large that e might overflow. | |
1209 | */ | |
1210 | e = 19999; /* safe for 16 bit ints */ | |
1211 | else | |
1212 | e = (int)L; | |
1213 | if (esign) | |
1214 | e = -e; | |
1215 | } else | |
1216 | e = 0; | |
1217 | } else | |
1218 | s = s00; | |
1219 | } | |
1220 | if (!nd) { | |
1221 | if (!nz && !nz0) { | |
1222 | #ifdef INFNAN_CHECK | |
1223 | /* Check for Nan and Infinity */ | |
1224 | switch(c) { | |
1225 | case 'i': | |
1226 | case 'I': | |
1227 | if (match(&s,"nf")) { | |
1228 | --s; | |
1229 | if (!match(&s,"inity")) | |
1230 | ++s; | |
1231 | word0(&rv) = 0x7ff00000; | |
1232 | word1(&rv) = 0; | |
1233 | goto ret; | |
1234 | } | |
1235 | break; | |
1236 | case 'n': | |
1237 | case 'N': | |
1238 | if (match(&s, "an")) { | |
1239 | word0(&rv) = NAN_WORD0; | |
1240 | word1(&rv) = NAN_WORD1; | |
1241 | #ifndef No_Hex_NaN | |
1242 | if (*s == '(') /*)*/ | |
1243 | hexnan(&rv, &s); | |
1244 | #endif | |
1245 | goto ret; | |
1246 | } | |
1247 | } | |
1248 | #endif /* INFNAN_CHECK */ | |
1249 | ret0: | |
1250 | s = s00; | |
1251 | sign = 0; | |
1252 | } | |
1253 | goto ret; | |
1254 | } | |
1255 | e1 = e -= nf; | |
1256 | ||
1257 | /* Now we have nd0 digits, starting at s0, followed by a | |
1258 | * decimal point, followed by nd-nd0 digits. The number we're | |
1259 | * after is the integer represented by those digits times | |
1260 | * 10**e */ | |
1261 | ||
1262 | if (!nd0) | |
1263 | nd0 = nd; | |
1264 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; | |
1265 | dval(&rv) = y; | |
1266 | if (k > 9) { | |
1267 | #ifdef SET_INEXACT | |
1268 | if (k > DBL_DIG) | |
1269 | oldinexact = get_inexact(); | |
1270 | #endif | |
1271 | dval(&rv) = tens[k - 9] * dval(&rv) + z; | |
1272 | } | |
1273 | if (nd <= DBL_DIG && Flt_Rounds == 1) { | |
1274 | if (!e) | |
1275 | goto ret; | |
1276 | if (e > 0) { | |
1277 | if (e <= Ten_pmax) { | |
1278 | /* rv = */ rounded_product(dval(&rv), tens[e]); | |
1279 | goto ret; | |
1280 | } | |
1281 | i = DBL_DIG - nd; | |
1282 | if (e <= Ten_pmax + i) { | |
1283 | /* A fancier test would sometimes let us do | |
1284 | * this for larger i values. | |
1285 | */ | |
1286 | e -= i; | |
1287 | dval(&rv) *= tens[i]; | |
1288 | /* rv = */ rounded_product(dval(&rv), tens[e]); | |
1289 | goto ret; | |
1290 | } | |
1291 | } | |
1292 | #ifndef Inaccurate_Divide | |
1293 | else if (e >= -Ten_pmax) { | |
1294 | /* rv = */ rounded_quotient(dval(&rv), tens[-e]); | |
1295 | goto ret; | |
1296 | } | |
1297 | #endif | |
1298 | } | |
1299 | e1 += nd - k; | |
1300 | ||
1301 | #ifdef SET_INEXACT | |
1302 | inexact = 1; | |
1303 | if (k <= DBL_DIG) | |
1304 | oldinexact = get_inexact(); | |
1305 | #endif | |
1306 | #ifdef Avoid_Underflow | |
1307 | scale = 0; | |
1308 | #endif | |
1309 | ||
1310 | /* Get starting approximation = rv * 10**e1 */ | |
1311 | ||
1312 | if (e1 > 0) { | |
1313 | if ((i = e1 & 15)) | |
1314 | dval(&rv) *= tens[i]; | |
1315 | if (e1 &= ~15) { | |
1316 | if (e1 > DBL_MAX_10_EXP) { | |
1317 | ovfl: | |
1318 | #ifndef NO_ERRNO | |
1319 | errno = ERANGE; | |
1320 | #endif | |
1321 | /* Can't trust HUGE_VAL */ | |
1322 | word0(&rv) = Exp_mask; | |
1323 | word1(&rv) = 0; | |
1324 | #ifdef SET_INEXACT | |
1325 | /* set overflow bit */ | |
1326 | dval(&rv0) = 1e300; | |
1327 | dval(&rv0) *= dval(&rv0); | |
1328 | #endif | |
1329 | goto ret; | |
1330 | } | |
1331 | e1 >>= 4; | |
1332 | for (j = 0; e1 > 1; j++, e1 >>= 1) | |
1333 | if (e1 & 1) | |
1334 | dval(&rv) *= bigtens[j]; | |
1335 | /* The last multiplication could overflow. */ | |
1336 | word0(&rv) -= P * Exp_msk1; | |
1337 | dval(&rv) *= bigtens[j]; | |
1338 | if ((z = word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) | |
1339 | goto ovfl; | |
1340 | if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { | |
1341 | /* set to largest number */ | |
1342 | /* (Can't trust DBL_MAX) */ | |
1343 | word0(&rv) = Big0; | |
1344 | word1(&rv) = Big1; | |
1345 | } else | |
1346 | word0(&rv) += P * Exp_msk1; | |
1347 | } | |
1348 | } else if (e1 < 0) { | |
1349 | e1 = -e1; | |
1350 | if ((i = e1 & 15)) | |
1351 | dval(&rv) /= tens[i]; | |
1352 | if (e1 >>= 4) { | |
1353 | if (e1 >= 1 << n_bigtens) | |
1354 | goto undfl; | |
1355 | #ifdef Avoid_Underflow | |
1356 | if (e1 & Scale_Bit) | |
1357 | scale = 2 * P; | |
1358 | for (j = 0; e1 > 0; j++, e1 >>= 1) | |
1359 | if (e1 & 1) | |
1360 | dval(&rv) *= tinytens[j]; | |
1361 | if (scale && (j = (2 * P) + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) { | |
1362 | /* scaled rv is denormal; zap j low bits */ | |
1363 | if (j >= 32) { | |
1364 | word1(&rv) = 0; | |
1365 | if (j >= 53) | |
1366 | word0(&rv) = (P + 2) * Exp_msk1; | |
1367 | else | |
1368 | word0(&rv) &= 0xffffffff << (j - 32); | |
1369 | } else | |
1370 | word1(&rv) &= 0xffffffff << j; | |
1371 | } | |
1372 | #else | |
1373 | for (j = 0; e1 > 1; j++, e1 >>= 1) | |
1374 | if (e1 & 1) | |
1375 | dval(&rv) *= tinytens[j]; | |
1376 | /* The last multiplication could underflow. */ | |
1377 | dval(&rv0) = dval(&rv); | |
1378 | dval(&rv) *= tinytens[j]; | |
1379 | if (!dval(&rv)) { | |
1380 | dval(&rv) = 2. * dval(&rv0); | |
1381 | dval(&rv) *= tinytens[j]; | |
1382 | #endif | |
1383 | if (!dval(&rv)) { | |
1384 | undfl: | |
1385 | dval(&rv) = 0.; | |
1386 | #ifndef NO_ERRNO | |
1387 | errno = ERANGE; | |
1388 | #endif | |
1389 | goto ret; | |
1390 | } | |
1391 | #ifndef Avoid_Underflow | |
1392 | word0(&rv) = Tiny0; | |
1393 | word1(&rv) = Tiny1; | |
1394 | /* The refinement below will clean | |
1395 | * this approximation up. | |
1396 | */ | |
1397 | } | |
1398 | #endif | |
1399 | } | |
1400 | } | |
1401 | ||
1402 | /* Now the hard part -- adjusting rv to the correct value.*/ | |
1403 | ||
1404 | /* Put digits into bd: true value = bd * 10^e */ | |
1405 | ||
1406 | s2b(bd0, s0, nd0, nd, y); | |
1407 | ||
1408 | for (;;) { | |
1409 | bd = bd0; | |
1410 | d2b(bb, &rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ | |
1411 | i2b(bs, 1); | |
1412 | ||
1413 | if (e >= 0) { | |
1414 | bb2 = bb5 = 0; | |
1415 | bd2 = bd5 = e; | |
1416 | } else { | |
1417 | bb2 = bb5 = -e; | |
1418 | bd2 = bd5 = 0; | |
1419 | } | |
1420 | if (bbe >= 0) | |
1421 | bb2 += bbe; | |
1422 | else | |
1423 | bd2 -= bbe; | |
1424 | bs2 = bb2; | |
1425 | #ifdef Avoid_Underflow | |
1426 | j = bbe - scale; | |
1427 | i = j + bbbits - 1; /* logb(rv) */ | |
1428 | if (i < Emin) /* denormal */ | |
1429 | j += P - Emin; | |
1430 | else | |
1431 | j = P + 1 - bbbits; | |
1432 | #else /*Avoid_Underflow*/ | |
1433 | #ifdef Sudden_Underflow | |
1434 | j = P + 1 - bbbits; | |
1435 | #else /*Sudden_Underflow*/ | |
1436 | j = bbe; | |
1437 | i = j + bbbits - 1; /* logb(rv) */ | |
1438 | if (i < Emin) /* denormal */ | |
1439 | j += P - Emin; | |
1440 | else | |
1441 | j = P + 1 - bbbits; | |
1442 | #endif /*Sudden_Underflow*/ | |
1443 | #endif /*Avoid_Underflow*/ | |
1444 | bb2 += j; | |
1445 | bd2 += j; | |
1446 | #ifdef Avoid_Underflow | |
1447 | bd2 += scale; | |
1448 | #endif | |
1449 | i = bb2 < bd2 ? bb2 : bd2; | |
1450 | if (i > bs2) | |
1451 | i = bs2; | |
1452 | if (i > 0) { | |
1453 | bb2 -= i; | |
1454 | bd2 -= i; | |
1455 | bs2 -= i; | |
1456 | } | |
1457 | if (bb5 > 0) { | |
1458 | pow5mult(bs, bb5); | |
1459 | mult(bb, bs); | |
1460 | } | |
1461 | if (bb2 > 0) | |
1462 | lshift(bb, bb2); | |
1463 | if (bd5 > 0) | |
1464 | pow5mult(bd, bd5); | |
1465 | if (bd2 > 0) | |
1466 | lshift(bd, bd2); | |
1467 | if (bs2 > 0) | |
1468 | lshift(bs, bs2); | |
1469 | diff(delta, bb, bd); | |
1470 | dsign = delta.sign; | |
1471 | delta.sign = 0; | |
1472 | i = cmp(delta, bs); | |
1473 | ||
1474 | if (i < 0) { | |
1475 | /* Error is less than half an ulp -- check for | |
1476 | * special case of mantissa a power of two. | |
1477 | */ | |
1478 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask | |
1479 | #ifdef Avoid_Underflow | |
1480 | || (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1 | |
1481 | #else | |
1482 | || (word0(&rv) & Exp_mask) <= Exp_msk1 | |
1483 | #endif | |
1484 | ) { | |
1485 | #ifdef SET_INEXACT | |
1486 | if (!delta->words()[0] && delta->size() <= 1) | |
1487 | inexact = 0; | |
1488 | #endif | |
1489 | break; | |
1490 | } | |
1491 | if (!delta.words()[0] && delta.size() <= 1) { | |
1492 | /* exact result */ | |
1493 | #ifdef SET_INEXACT | |
1494 | inexact = 0; | |
1495 | #endif | |
1496 | break; | |
1497 | } | |
1498 | lshift(delta, Log2P); | |
1499 | if (cmp(delta, bs) > 0) | |
1500 | goto drop_down; | |
1501 | break; | |
1502 | } | |
1503 | if (i == 0) { | |
1504 | /* exactly half-way between */ | |
1505 | if (dsign) { | |
1506 | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 | |
1507 | && word1(&rv) == ( | |
1508 | #ifdef Avoid_Underflow | |
1509 | (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) | |
1510 | ? (0xffffffff & (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) : | |
1511 | #endif | |
1512 | 0xffffffff)) { | |
1513 | /*boundary case -- increment exponent*/ | |
1514 | word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1; | |
1515 | word1(&rv) = 0; | |
1516 | #ifdef Avoid_Underflow | |
1517 | dsign = 0; | |
1518 | #endif | |
1519 | break; | |
1520 | } | |
1521 | } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { | |
1522 | drop_down: | |
1523 | /* boundary case -- decrement exponent */ | |
1524 | #ifdef Sudden_Underflow /*{{*/ | |
1525 | L = word0(&rv) & Exp_mask; | |
1526 | #ifdef Avoid_Underflow | |
1527 | if (L <= (scale ? (2 * P + 1) * Exp_msk1 : Exp_msk1)) | |
1528 | #else | |
1529 | if (L <= Exp_msk1) | |
1530 | #endif /*Avoid_Underflow*/ | |
1531 | goto undfl; | |
1532 | L -= Exp_msk1; | |
1533 | #else /*Sudden_Underflow}{*/ | |
1534 | #ifdef Avoid_Underflow | |
1535 | if (scale) { | |
1536 | L = word0(&rv) & Exp_mask; | |
1537 | if (L <= (2 * P + 1) * Exp_msk1) { | |
1538 | if (L > (P + 2) * Exp_msk1) | |
1539 | /* round even ==> */ | |
1540 | /* accept rv */ | |
1541 | break; | |
1542 | /* rv = smallest denormal */ | |
1543 | goto undfl; | |
1544 | } | |
1545 | } | |
1546 | #endif /*Avoid_Underflow*/ | |
1547 | L = (word0(&rv) & Exp_mask) - Exp_msk1; | |
1548 | #endif /*Sudden_Underflow}}*/ | |
1549 | word0(&rv) = L | Bndry_mask1; | |
1550 | word1(&rv) = 0xffffffff; | |
1551 | break; | |
1552 | } | |
1553 | if (!(word1(&rv) & LSB)) | |
1554 | break; | |
1555 | if (dsign) | |
1556 | dval(&rv) += ulp(&rv); | |
1557 | else { | |
1558 | dval(&rv) -= ulp(&rv); | |
1559 | #ifndef Sudden_Underflow | |
1560 | if (!dval(&rv)) | |
1561 | goto undfl; | |
1562 | #endif | |
1563 | } | |
1564 | #ifdef Avoid_Underflow | |
1565 | dsign = 1 - dsign; | |
1566 | #endif | |
1567 | break; | |
1568 | } | |
1569 | if ((aadj = ratio(delta, bs)) <= 2.) { | |
1570 | if (dsign) | |
1571 | aadj = aadj1 = 1.; | |
1572 | else if (word1(&rv) || word0(&rv) & Bndry_mask) { | |
1573 | #ifndef Sudden_Underflow | |
1574 | if (word1(&rv) == Tiny1 && !word0(&rv)) | |
1575 | goto undfl; | |
1576 | #endif | |
1577 | aadj = 1.; | |
1578 | aadj1 = -1.; | |
1579 | } else { | |
1580 | /* special case -- power of FLT_RADIX to be */ | |
1581 | /* rounded down... */ | |
1582 | ||
1583 | if (aadj < 2. / FLT_RADIX) | |
1584 | aadj = 1. / FLT_RADIX; | |
1585 | else | |
1586 | aadj *= 0.5; | |
1587 | aadj1 = -aadj; | |
1588 | } | |
1589 | } else { | |
1590 | aadj *= 0.5; | |
1591 | aadj1 = dsign ? aadj : -aadj; | |
1592 | #ifdef Check_FLT_ROUNDS | |
1593 | switch (Rounding) { | |
1594 | case 2: /* towards +infinity */ | |
1595 | aadj1 -= 0.5; | |
1596 | break; | |
1597 | case 0: /* towards 0 */ | |
1598 | case 3: /* towards -infinity */ | |
1599 | aadj1 += 0.5; | |
1600 | } | |
1601 | #else | |
1602 | if (Flt_Rounds == 0) | |
1603 | aadj1 += 0.5; | |
1604 | #endif /*Check_FLT_ROUNDS*/ | |
1605 | } | |
1606 | y = word0(&rv) & Exp_mask; | |
1607 | ||
1608 | /* Check for overflow */ | |
1609 | ||
1610 | if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) { | |
1611 | dval(&rv0) = dval(&rv); | |
1612 | word0(&rv) -= P * Exp_msk1; | |
1613 | adj.d = aadj1 * ulp(&rv); | |
1614 | dval(&rv) += adj.d; | |
1615 | if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { | |
1616 | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) | |
1617 | goto ovfl; | |
1618 | word0(&rv) = Big0; | |
1619 | word1(&rv) = Big1; | |
1620 | goto cont; | |
1621 | } else | |
1622 | word0(&rv) += P * Exp_msk1; | |
1623 | } else { | |
1624 | #ifdef Avoid_Underflow | |
1625 | if (scale && y <= 2 * P * Exp_msk1) { | |
1626 | if (aadj <= 0x7fffffff) { | |
1627 | if ((z = (uint32_t)aadj) <= 0) | |
1628 | z = 1; | |
1629 | aadj = z; | |
1630 | aadj1 = dsign ? aadj : -aadj; | |
1631 | } | |
1632 | dval(&aadj2) = aadj1; | |
1633 | word0(&aadj2) += (2 * P + 1) * Exp_msk1 - y; | |
1634 | aadj1 = dval(&aadj2); | |
1635 | } | |
1636 | adj.d = aadj1 * ulp(&rv); | |
1637 | dval(&rv) += adj.d; | |
1638 | #else | |
1639 | #ifdef Sudden_Underflow | |
1640 | if ((word0(&rv) & Exp_mask) <= P * Exp_msk1) { | |
1641 | dval(&rv0) = dval(&rv); | |
1642 | word0(&rv) += P * Exp_msk1; | |
1643 | adj.d = aadj1 * ulp(&rv); | |
1644 | dval(&rv) += adj.d; | |
1645 | if ((word0(&rv) & Exp_mask) <= P * Exp_msk1) | |
1646 | { | |
1647 | if (word0(&rv0) == Tiny0 && word1(&rv0) == Tiny1) | |
1648 | goto undfl; | |
1649 | word0(&rv) = Tiny0; | |
1650 | word1(&rv) = Tiny1; | |
1651 | goto cont; | |
1652 | } | |
1653 | else | |
1654 | word0(&rv) -= P * Exp_msk1; | |
1655 | } else { | |
1656 | adj.d = aadj1 * ulp(&rv); | |
1657 | dval(&rv) += adj.d; | |
1658 | } | |
1659 | #else /*Sudden_Underflow*/ | |
1660 | /* Compute adj so that the IEEE rounding rules will | |
1661 | * correctly round rv + adj in some half-way cases. | |
1662 | * If rv * ulp(rv) is denormalized (i.e., | |
1663 | * y <= (P - 1) * Exp_msk1), we must adjust aadj to avoid | |
1664 | * trouble from bits lost to denormalization; | |
1665 | * example: 1.2e-307 . | |
1666 | */ | |
1667 | if (y <= (P - 1) * Exp_msk1 && aadj > 1.) { | |
1668 | aadj1 = (double)(int)(aadj + 0.5); | |
1669 | if (!dsign) | |
1670 | aadj1 = -aadj1; | |
1671 | } | |
1672 | adj.d = aadj1 * ulp(&rv); | |
1673 | dval(&rv) += adj.d; | |
1674 | #endif /*Sudden_Underflow*/ | |
1675 | #endif /*Avoid_Underflow*/ | |
1676 | } | |
1677 | z = word0(&rv) & Exp_mask; | |
1678 | #ifndef SET_INEXACT | |
1679 | #ifdef Avoid_Underflow | |
1680 | if (!scale) | |
1681 | #endif | |
1682 | if (y == z) { | |
1683 | /* Can we stop now? */ | |
1684 | L = (int32_t)aadj; | |
1685 | aadj -= L; | |
1686 | /* The tolerances below are conservative. */ | |
1687 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { | |
1688 | if (aadj < .4999999 || aadj > .5000001) | |
1689 | break; | |
1690 | } else if (aadj < .4999999 / FLT_RADIX) | |
1691 | break; | |
1692 | } | |
1693 | #endif | |
1694 | cont: | |
1695 | ; | |
1696 | } | |
1697 | #ifdef SET_INEXACT | |
1698 | if (inexact) { | |
1699 | if (!oldinexact) { | |
1700 | word0(&rv0) = Exp_1 + (70 << Exp_shift); | |
1701 | word1(&rv0) = 0; | |
1702 | dval(&rv0) += 1.; | |
1703 | } | |
1704 | } else if (!oldinexact) | |
1705 | clear_inexact(); | |
1706 | #endif | |
1707 | #ifdef Avoid_Underflow | |
1708 | if (scale) { | |
1709 | word0(&rv0) = Exp_1 - 2 * P * Exp_msk1; | |
1710 | word1(&rv0) = 0; | |
1711 | dval(&rv) *= dval(&rv0); | |
1712 | #ifndef NO_ERRNO | |
1713 | /* try to avoid the bug of testing an 8087 register value */ | |
1714 | if (word0(&rv) == 0 && word1(&rv) == 0) | |
1715 | errno = ERANGE; | |
1716 | #endif | |
1717 | } | |
1718 | #endif /* Avoid_Underflow */ | |
1719 | #ifdef SET_INEXACT | |
1720 | if (inexact && !(word0(&rv) & Exp_mask)) { | |
1721 | /* set underflow bit */ | |
1722 | dval(&rv0) = 1e-300; | |
1723 | dval(&rv0) *= dval(&rv0); | |
1724 | } | |
1725 | #endif | |
1726 | ret: | |
1727 | if (se) | |
1728 | *se = const_cast<char*>(s); | |
1729 | return sign ? -dval(&rv) : dval(&rv); | |
1730 | } | |
1731 | ||
1732 | static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S) | |
1733 | { | |
1734 | size_t n; | |
1735 | uint32_t *bx, *bxe, q, *sx, *sxe; | |
1736 | #ifdef USE_LONG_LONG | |
1737 | unsigned long long borrow, carry, y, ys; | |
1738 | #else | |
1739 | uint32_t borrow, carry, y, ys; | |
1740 | #ifdef Pack_32 | |
1741 | uint32_t si, z, zs; | |
1742 | #endif | |
1743 | #endif | |
1744 | ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); | |
1745 | ASSERT(S.size() <= 1 || S.words()[S.size() - 1]); | |
1746 | ||
1747 | n = S.size(); | |
1748 | ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem"); | |
1749 | if (b.size() < n) | |
1750 | return 0; | |
1751 | sx = S.words(); | |
1752 | sxe = sx + --n; | |
1753 | bx = b.words(); | |
1754 | bxe = bx + n; | |
1755 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ | |
1756 | ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem"); | |
1757 | if (q) { | |
1758 | borrow = 0; | |
1759 | carry = 0; | |
1760 | do { | |
1761 | #ifdef USE_LONG_LONG | |
1762 | ys = *sx++ * (unsigned long long)q + carry; | |
1763 | carry = ys >> 32; | |
1764 | y = *bx - (ys & 0xffffffffUL) - borrow; | |
1765 | borrow = y >> 32 & (uint32_t)1; | |
1766 | *bx++ = (uint32_t)y & 0xffffffffUL; | |
1767 | #else | |
1768 | #ifdef Pack_32 | |
1769 | si = *sx++; | |
1770 | ys = (si & 0xffff) * q + carry; | |
1771 | zs = (si >> 16) * q + (ys >> 16); | |
1772 | carry = zs >> 16; | |
1773 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | |
1774 | borrow = (y & 0x10000) >> 16; | |
1775 | z = (*bx >> 16) - (zs & 0xffff) - borrow; | |
1776 | borrow = (z & 0x10000) >> 16; | |
1777 | Storeinc(bx, z, y); | |
1778 | #else | |
1779 | ys = *sx++ * q + carry; | |
1780 | carry = ys >> 16; | |
1781 | y = *bx - (ys & 0xffff) - borrow; | |
1782 | borrow = (y & 0x10000) >> 16; | |
1783 | *bx++ = y & 0xffff; | |
1784 | #endif | |
1785 | #endif | |
1786 | } while (sx <= sxe); | |
1787 | if (!*bxe) { | |
1788 | bx = b.words(); | |
1789 | while (--bxe > bx && !*bxe) | |
1790 | --n; | |
1791 | b.resize(n); | |
1792 | } | |
1793 | } | |
1794 | if (cmp(b, S) >= 0) { | |
1795 | q++; | |
1796 | borrow = 0; | |
1797 | carry = 0; | |
1798 | bx = b.words(); | |
1799 | sx = S.words(); | |
1800 | do { | |
1801 | #ifdef USE_LONG_LONG | |
1802 | ys = *sx++ + carry; | |
1803 | carry = ys >> 32; | |
1804 | y = *bx - (ys & 0xffffffffUL) - borrow; | |
1805 | borrow = y >> 32 & (uint32_t)1; | |
1806 | *bx++ = (uint32_t)y & 0xffffffffUL; | |
1807 | #else | |
1808 | #ifdef Pack_32 | |
1809 | si = *sx++; | |
1810 | ys = (si & 0xffff) + carry; | |
1811 | zs = (si >> 16) + (ys >> 16); | |
1812 | carry = zs >> 16; | |
1813 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | |
1814 | borrow = (y & 0x10000) >> 16; | |
1815 | z = (*bx >> 16) - (zs & 0xffff) - borrow; | |
1816 | borrow = (z & 0x10000) >> 16; | |
1817 | Storeinc(bx, z, y); | |
1818 | #else | |
1819 | ys = *sx++ + carry; | |
1820 | carry = ys >> 16; | |
1821 | y = *bx - (ys & 0xffff) - borrow; | |
1822 | borrow = (y & 0x10000) >> 16; | |
1823 | *bx++ = y & 0xffff; | |
1824 | #endif | |
1825 | #endif | |
1826 | } while (sx <= sxe); | |
1827 | bx = b.words(); | |
1828 | bxe = bx + n; | |
1829 | if (!*bxe) { | |
1830 | while (--bxe > bx && !*bxe) | |
1831 | --n; | |
1832 | b.resize(n); | |
1833 | } | |
1834 | } | |
1835 | return q; | |
1836 | } | |
1837 | ||
1838 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. | |
1839 | * | |
1840 | * Inspired by "How to Print Floating-Point Numbers Accurately" by | |
1841 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. | |
1842 | * | |
1843 | * Modifications: | |
1844 | * 1. Rather than iterating, we use a simple numeric overestimate | |
1845 | * to determine k = floor(log10(d)). We scale relevant | |
1846 | * quantities using O(log2(k)) rather than O(k) multiplications. | |
1847 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't | |
1848 | * try to generate digits strictly left to right. Instead, we | |
1849 | * compute with fewer bits and propagate the carry if necessary | |
1850 | * when rounding the final digit up. This is often faster. | |
1851 | * 3. Under the assumption that input will be rounded nearest, | |
1852 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. | |
1853 | * That is, we allow equality in stopping tests when the | |
1854 | * round-nearest rule will give the same floating-point value | |
1855 | * as would satisfaction of the stopping test with strict | |
1856 | * inequality. | |
1857 | * 4. We remove common factors of powers of 2 from relevant | |
1858 | * quantities. | |
1859 | * 5. When converting floating-point integers less than 1e16, | |
1860 | * we use floating-point arithmetic rather than resorting | |
1861 | * to multiple-precision integers. | |
1862 | * 6. When asked to produce fewer than 15 digits, we first try | |
1863 | * to get by with floating-point arithmetic; we resort to | |
1864 | * multiple-precision integer arithmetic only if we cannot | |
1865 | * guarantee that the floating-point calculation has given | |
1866 | * the correctly rounded result. For k requested digits and | |
1867 | * "uniformly" distributed input, the probability is | |
1868 | * something like 10^(k-15) that we must resort to the int32_t | |
1869 | * calculation. | |
1870 | */ | |
1871 | ||
1872 | void dtoa(char* result, double dd, int ndigits, int* decpt, int* sign, char** rve) | |
1873 | { | |
1874 | /* | |
1875 | Arguments ndigits, decpt, sign are similar to those | |
1876 | of ecvt and fcvt; trailing zeros are suppressed from | |
1877 | the returned string. If not null, *rve is set to point | |
1878 | to the end of the return value. If d is +-Infinity or NaN, | |
1879 | then *decpt is set to 9999. | |
1880 | ||
1881 | */ | |
1882 | ||
1883 | int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, | |
1884 | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, | |
1885 | spec_case, try_quick; | |
1886 | int32_t L; | |
1887 | #ifndef Sudden_Underflow | |
1888 | int denorm; | |
1889 | uint32_t x; | |
1890 | #endif | |
1891 | BigInt b, b1, delta, mlo, mhi, S; | |
1892 | U d2, eps, u; | |
1893 | double ds; | |
1894 | char *s, *s0; | |
1895 | #ifdef SET_INEXACT | |
1896 | int inexact, oldinexact; | |
1897 | #endif | |
1898 | ||
1899 | u.d = dd; | |
1900 | if (word0(&u) & Sign_bit) { | |
1901 | /* set sign for everything, including 0's and NaNs */ | |
1902 | *sign = 1; | |
1903 | word0(&u) &= ~Sign_bit; /* clear sign bit */ | |
1904 | } else | |
1905 | *sign = 0; | |
1906 | ||
1907 | if ((word0(&u) & Exp_mask) == Exp_mask) | |
1908 | { | |
1909 | /* Infinity or NaN */ | |
1910 | *decpt = 9999; | |
1911 | if (!word1(&u) && !(word0(&u) & 0xfffff)) | |
1912 | strcpy(result, "Infinity"); | |
1913 | else | |
1914 | strcpy(result, "NaN"); | |
1915 | return; | |
1916 | } | |
1917 | if (!dval(&u)) { | |
1918 | *decpt = 1; | |
1919 | result[0] = '0'; | |
1920 | result[1] = '\0'; | |
1921 | return; | |
1922 | } | |
1923 | ||
1924 | #ifdef SET_INEXACT | |
1925 | try_quick = oldinexact = get_inexact(); | |
1926 | inexact = 1; | |
1927 | #endif | |
1928 | ||
1929 | d2b(b, &u, &be, &bbits); | |
1930 | #ifdef Sudden_Underflow | |
1931 | i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)); | |
1932 | #else | |
1933 | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { | |
1934 | #endif | |
1935 | dval(&d2) = dval(&u); | |
1936 | word0(&d2) &= Frac_mask1; | |
1937 | word0(&d2) |= Exp_11; | |
1938 | ||
1939 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 | |
1940 | * log10(x) = log(x) / log(10) | |
1941 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) | |
1942 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) | |
1943 | * | |
1944 | * This suggests computing an approximation k to log10(d) by | |
1945 | * | |
1946 | * k = (i - Bias)*0.301029995663981 | |
1947 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); | |
1948 | * | |
1949 | * We want k to be too large rather than too small. | |
1950 | * The error in the first-order Taylor series approximation | |
1951 | * is in our favor, so we just round up the constant enough | |
1952 | * to compensate for any error in the multiplication of | |
1953 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, | |
1954 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, | |
1955 | * adding 1e-13 to the constant term more than suffices. | |
1956 | * Hence we adjust the constant term to 0.1760912590558. | |
1957 | * (We could get a more accurate k by invoking log10, | |
1958 | * but this is probably not worthwhile.) | |
1959 | */ | |
1960 | ||
1961 | i -= Bias; | |
1962 | #ifndef Sudden_Underflow | |
1963 | denorm = 0; | |
1964 | } else { | |
1965 | /* d is denormalized */ | |
1966 | ||
1967 | i = bbits + be + (Bias + (P - 1) - 1); | |
1968 | x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32)) | |
1969 | : word1(&u) << (32 - i); | |
1970 | dval(&d2) = x; | |
1971 | word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ | |
1972 | i -= (Bias + (P - 1) - 1) + 1; | |
1973 | denorm = 1; | |
1974 | } | |
1975 | #endif | |
1976 | ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); | |
1977 | k = (int)ds; | |
1978 | if (ds < 0. && ds != k) | |
1979 | k--; /* want k = floor(ds) */ | |
1980 | k_check = 1; | |
1981 | if (k >= 0 && k <= Ten_pmax) { | |
1982 | if (dval(&u) < tens[k]) | |
1983 | k--; | |
1984 | k_check = 0; | |
1985 | } | |
1986 | j = bbits - i - 1; | |
1987 | if (j >= 0) { | |
1988 | b2 = 0; | |
1989 | s2 = j; | |
1990 | } else { | |
1991 | b2 = -j; | |
1992 | s2 = 0; | |
1993 | } | |
1994 | if (k >= 0) { | |
1995 | b5 = 0; | |
1996 | s5 = k; | |
1997 | s2 += k; | |
1998 | } else { | |
1999 | b2 -= k; | |
2000 | b5 = -k; | |
2001 | s5 = 0; | |
2002 | } | |
2003 | ||
2004 | #ifndef SET_INEXACT | |
2005 | #ifdef Check_FLT_ROUNDS | |
2006 | try_quick = Rounding == 1; | |
2007 | #else | |
2008 | try_quick = 1; | |
2009 | #endif | |
2010 | #endif /*SET_INEXACT*/ | |
2011 | ||
2012 | leftright = 1; | |
2013 | ilim = ilim1 = -1; | |
2014 | i = 18; | |
2015 | ndigits = 0; | |
2016 | s = s0 = result; | |
2017 | ||
2018 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { | |
2019 | ||
2020 | /* Try to get by with floating-point arithmetic. */ | |
2021 | ||
2022 | i = 0; | |
2023 | dval(&d2) = dval(&u); | |
2024 | k0 = k; | |
2025 | ilim0 = ilim; | |
2026 | ieps = 2; /* conservative */ | |
2027 | if (k > 0) { | |
2028 | ds = tens[k & 0xf]; | |
2029 | j = k >> 4; | |
2030 | if (j & Bletch) { | |
2031 | /* prevent overflows */ | |
2032 | j &= Bletch - 1; | |
2033 | dval(&u) /= bigtens[n_bigtens - 1]; | |
2034 | ieps++; | |
2035 | } | |
2036 | for (; j; j >>= 1, i++) { | |
2037 | if (j & 1) { | |
2038 | ieps++; | |
2039 | ds *= bigtens[i]; | |
2040 | } | |
2041 | } | |
2042 | dval(&u) /= ds; | |
2043 | } else if ((j1 = -k)) { | |
2044 | dval(&u) *= tens[j1 & 0xf]; | |
2045 | for (j = j1 >> 4; j; j >>= 1, i++) { | |
2046 | if (j & 1) { | |
2047 | ieps++; | |
2048 | dval(&u) *= bigtens[i]; | |
2049 | } | |
2050 | } | |
2051 | } | |
2052 | if (k_check && dval(&u) < 1. && ilim > 0) { | |
2053 | if (ilim1 <= 0) | |
2054 | goto fast_failed; | |
2055 | ilim = ilim1; | |
2056 | k--; | |
2057 | dval(&u) *= 10.; | |
2058 | ieps++; | |
2059 | } | |
2060 | dval(&eps) = (ieps * dval(&u)) + 7.; | |
2061 | word0(&eps) -= (P - 1) * Exp_msk1; | |
2062 | if (ilim == 0) { | |
2063 | S.clear(); | |
2064 | mhi.clear(); | |
2065 | dval(&u) -= 5.; | |
2066 | if (dval(&u) > dval(&eps)) | |
2067 | goto one_digit; | |
2068 | if (dval(&u) < -dval(&eps)) | |
2069 | goto no_digits; | |
2070 | goto fast_failed; | |
2071 | } | |
2072 | #ifndef No_leftright | |
2073 | if (leftright) { | |
2074 | /* Use Steele & White method of only | |
2075 | * generating digits needed. | |
2076 | */ | |
2077 | dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps); | |
2078 | for (i = 0;;) { | |
2079 | L = (long int)dval(&u); | |
2080 | dval(&u) -= L; | |
2081 | *s++ = '0' + (int)L; | |
2082 | if (dval(&u) < dval(&eps)) | |
2083 | goto ret; | |
2084 | if (1. - dval(&u) < dval(&eps)) | |
2085 | goto bump_up; | |
2086 | if (++i >= ilim) | |
2087 | break; | |
2088 | dval(&eps) *= 10.; | |
2089 | dval(&u) *= 10.; | |
2090 | } | |
2091 | } else { | |
2092 | #endif | |
2093 | /* Generate ilim digits, then fix them up. */ | |
2094 | dval(&eps) *= tens[ilim - 1]; | |
2095 | for (i = 1;; i++, dval(&u) *= 10.) { | |
2096 | L = (int32_t)(dval(&u)); | |
2097 | if (!(dval(&u) -= L)) | |
2098 | ilim = i; | |
2099 | *s++ = '0' + (int)L; | |
2100 | if (i == ilim) { | |
2101 | if (dval(&u) > 0.5 + dval(&eps)) | |
2102 | goto bump_up; | |
2103 | else if (dval(&u) < 0.5 - dval(&eps)) { | |
2104 | while (*--s == '0') { } | |
2105 | s++; | |
2106 | goto ret; | |
2107 | } | |
2108 | break; | |
2109 | } | |
2110 | } | |
2111 | #ifndef No_leftright | |
2112 | } | |
2113 | #endif | |
2114 | fast_failed: | |
2115 | s = s0; | |
2116 | dval(&u) = dval(&d2); | |
2117 | k = k0; | |
2118 | ilim = ilim0; | |
2119 | } | |
2120 | ||
2121 | /* Do we have a "small" integer? */ | |
2122 | ||
2123 | if (be >= 0 && k <= Int_max) { | |
2124 | /* Yes. */ | |
2125 | ds = tens[k]; | |
2126 | if (ndigits < 0 && ilim <= 0) { | |
2127 | S.clear(); | |
2128 | mhi.clear(); | |
2129 | if (ilim < 0 || dval(&u) <= 5 * ds) | |
2130 | goto no_digits; | |
2131 | goto one_digit; | |
2132 | } | |
2133 | for (i = 1;; i++, dval(&u) *= 10.) { | |
2134 | L = (int32_t)(dval(&u) / ds); | |
2135 | dval(&u) -= L * ds; | |
2136 | #ifdef Check_FLT_ROUNDS | |
2137 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ | |
2138 | if (dval(&u) < 0) { | |
2139 | L--; | |
2140 | dval(&u) += ds; | |
2141 | } | |
2142 | #endif | |
2143 | *s++ = '0' + (int)L; | |
2144 | if (!dval(&u)) { | |
2145 | #ifdef SET_INEXACT | |
2146 | inexact = 0; | |
2147 | #endif | |
2148 | break; | |
2149 | } | |
2150 | if (i == ilim) { | |
2151 | dval(&u) += dval(&u); | |
2152 | if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) { | |
2153 | bump_up: | |
2154 | while (*--s == '9') | |
2155 | if (s == s0) { | |
2156 | k++; | |
2157 | *s = '0'; | |
2158 | break; | |
2159 | } | |
2160 | ++*s++; | |
2161 | } | |
2162 | break; | |
2163 | } | |
2164 | } | |
2165 | goto ret; | |
2166 | } | |
2167 | ||
2168 | m2 = b2; | |
2169 | m5 = b5; | |
2170 | mhi.clear(); | |
2171 | mlo.clear(); | |
2172 | if (leftright) { | |
2173 | i = | |
2174 | #ifndef Sudden_Underflow | |
2175 | denorm ? be + (Bias + (P - 1) - 1 + 1) : | |
2176 | #endif | |
2177 | 1 + P - bbits; | |
2178 | b2 += i; | |
2179 | s2 += i; | |
2180 | i2b(mhi, 1); | |
2181 | } | |
2182 | if (m2 > 0 && s2 > 0) { | |
2183 | i = m2 < s2 ? m2 : s2; | |
2184 | b2 -= i; | |
2185 | m2 -= i; | |
2186 | s2 -= i; | |
2187 | } | |
2188 | if (b5 > 0) { | |
2189 | if (leftright) { | |
2190 | if (m5 > 0) { | |
2191 | pow5mult(mhi, m5); | |
2192 | mult(b, mhi); | |
2193 | } | |
2194 | if ((j = b5 - m5)) | |
2195 | pow5mult(b, j); | |
2196 | } else | |
2197 | pow5mult(b, b5); | |
2198 | } | |
2199 | i2b(S, 1); | |
2200 | if (s5 > 0) | |
2201 | pow5mult(S, s5); | |
2202 | ||
2203 | /* Check for special case that d is a normalized power of 2. */ | |
2204 | ||
2205 | spec_case = 0; | |
2206 | if (!word1(&u) && !(word0(&u) & Bndry_mask) | |
2207 | #ifndef Sudden_Underflow | |
2208 | && word0(&u) & (Exp_mask & ~Exp_msk1) | |
2209 | #endif | |
2210 | ) { | |
2211 | /* The special case */ | |
2212 | b2 += Log2P; | |
2213 | s2 += Log2P; | |
2214 | spec_case = 1; | |
2215 | } | |
2216 | ||
2217 | /* Arrange for convenient computation of quotients: | |
2218 | * shift left if necessary so divisor has 4 leading 0 bits. | |
2219 | * | |
2220 | * Perhaps we should just compute leading 28 bits of S once | |
2221 | * and for all and pass them and a shift to quorem, so it | |
2222 | * can do shifts and ors to compute the numerator for q. | |
2223 | */ | |
2224 | #ifdef Pack_32 | |
2225 | if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f)) | |
2226 | i = 32 - i; | |
2227 | #else | |
2228 | if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0xf)) | |
2229 | i = 16 - i; | |
2230 | #endif | |
2231 | if (i > 4) { | |
2232 | i -= 4; | |
2233 | b2 += i; | |
2234 | m2 += i; | |
2235 | s2 += i; | |
2236 | } else if (i < 4) { | |
2237 | i += 28; | |
2238 | b2 += i; | |
2239 | m2 += i; | |
2240 | s2 += i; | |
2241 | } | |
2242 | if (b2 > 0) | |
2243 | lshift(b, b2); | |
2244 | if (s2 > 0) | |
2245 | lshift(S, s2); | |
2246 | if (k_check) { | |
2247 | if (cmp(b,S) < 0) { | |
2248 | k--; | |
2249 | multadd(b, 10, 0); /* we botched the k estimate */ | |
2250 | if (leftright) | |
2251 | multadd(mhi, 10, 0); | |
2252 | ilim = ilim1; | |
2253 | } | |
2254 | } | |
2255 | ||
2256 | if (leftright) { | |
2257 | if (m2 > 0) | |
2258 | lshift(mhi, m2); | |
2259 | ||
2260 | /* Compute mlo -- check for special case | |
2261 | * that d is a normalized power of 2. | |
2262 | */ | |
2263 | ||
2264 | mlo = mhi; | |
2265 | if (spec_case) { | |
2266 | mhi = mlo; | |
2267 | lshift(mhi, Log2P); | |
2268 | } | |
2269 | ||
2270 | for (i = 1;;i++) { | |
2271 | dig = quorem(b,S) + '0'; | |
2272 | /* Do we yet have the shortest decimal string | |
2273 | * that will round to d? | |
2274 | */ | |
2275 | j = cmp(b, mlo); | |
2276 | diff(delta, S, mhi); | |
2277 | j1 = delta.sign ? 1 : cmp(b, delta); | |
2278 | if (j1 == 0 && !(word1(&u) & 1)) { | |
2279 | if (dig == '9') | |
2280 | goto round_9_up; | |
2281 | if (j > 0) | |
2282 | dig++; | |
2283 | #ifdef SET_INEXACT | |
2284 | else if (!b->x[0] && b->wds <= 1) | |
2285 | inexact = 0; | |
2286 | #endif | |
2287 | *s++ = dig; | |
2288 | goto ret; | |
2289 | } | |
2290 | if (j < 0 || (j == 0 && !(word1(&u) & 1))) { | |
2291 | if (!b.words()[0] && b.size() <= 1) { | |
2292 | #ifdef SET_INEXACT | |
2293 | inexact = 0; | |
2294 | #endif | |
2295 | goto accept_dig; | |
2296 | } | |
2297 | if (j1 > 0) { | |
2298 | lshift(b, 1); | |
2299 | j1 = cmp(b, S); | |
2300 | if ((j1 > 0 || (j1 == 0 && (dig & 1))) && dig++ == '9') | |
2301 | goto round_9_up; | |
2302 | } | |
2303 | accept_dig: | |
2304 | *s++ = dig; | |
2305 | goto ret; | |
2306 | } | |
2307 | if (j1 > 0) { | |
2308 | if (dig == '9') { /* possible if i == 1 */ | |
2309 | round_9_up: | |
2310 | *s++ = '9'; | |
2311 | goto roundoff; | |
2312 | } | |
2313 | *s++ = dig + 1; | |
2314 | goto ret; | |
2315 | } | |
2316 | *s++ = dig; | |
2317 | if (i == ilim) | |
2318 | break; | |
2319 | multadd(b, 10, 0); | |
2320 | multadd(mlo, 10, 0); | |
2321 | multadd(mhi, 10, 0); | |
2322 | } | |
2323 | } else | |
2324 | for (i = 1;; i++) { | |
2325 | *s++ = dig = quorem(b,S) + '0'; | |
2326 | if (!b.words()[0] && b.size() <= 1) { | |
2327 | #ifdef SET_INEXACT | |
2328 | inexact = 0; | |
2329 | #endif | |
2330 | goto ret; | |
2331 | } | |
2332 | if (i >= ilim) | |
2333 | break; | |
2334 | multadd(b, 10, 0); | |
2335 | } | |
2336 | ||
2337 | /* Round off last digit */ | |
2338 | ||
2339 | lshift(b, 1); | |
2340 | j = cmp(b, S); | |
2341 | if (j > 0 || (j == 0 && (dig & 1))) { | |
2342 | roundoff: | |
2343 | while (*--s == '9') | |
2344 | if (s == s0) { | |
2345 | k++; | |
2346 | *s++ = '1'; | |
2347 | goto ret; | |
2348 | } | |
2349 | ++*s++; | |
2350 | } else { | |
2351 | while (*--s == '0') { } | |
2352 | s++; | |
2353 | } | |
2354 | goto ret; | |
2355 | no_digits: | |
2356 | k = -1 - ndigits; | |
2357 | goto ret; | |
2358 | one_digit: | |
2359 | *s++ = '1'; | |
2360 | k++; | |
2361 | goto ret; | |
2362 | ret: | |
2363 | #ifdef SET_INEXACT | |
2364 | if (inexact) { | |
2365 | if (!oldinexact) { | |
2366 | word0(&u) = Exp_1 + (70 << Exp_shift); | |
2367 | word1(&u) = 0; | |
2368 | dval(&u) += 1.; | |
2369 | } | |
2370 | } else if (!oldinexact) | |
2371 | clear_inexact(); | |
2372 | #endif | |
2373 | *s = 0; | |
2374 | *decpt = k + 1; | |
2375 | if (rve) | |
2376 | *rve = s; | |
2377 | } | |
2378 | ||
2379 | } // namespace WTF |