]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (C) 2011 Apple Inc. All rights reserved. | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #ifndef Uint16WithFraction_h | |
27 | #define Uint16WithFraction_h | |
28 | ||
29 | #include <wtf/MathExtras.h> | |
30 | ||
31 | namespace JSC { | |
32 | ||
33 | // Would be nice if this was a static const member, but the OS X linker | |
34 | // seems to want a symbol in the binary in that case... | |
35 | #define oneGreaterThanMaxUInt16 0x10000 | |
36 | ||
37 | // A uint16_t with an infinite precision fraction. Upon overflowing | |
38 | // the uint16_t range, this class will clamp to oneGreaterThanMaxUInt16. | |
39 | // This is used in converting the fraction part of a number to a string. | |
40 | class Uint16WithFraction { | |
41 | public: | |
42 | explicit Uint16WithFraction(double number, uint16_t divideByExponent = 0) | |
43 | { | |
44 | ASSERT(number && std::isfinite(number) && !std::signbit(number)); | |
45 | ||
46 | // Check for values out of uint16_t range. | |
47 | if (number >= oneGreaterThanMaxUInt16) { | |
48 | m_values.append(oneGreaterThanMaxUInt16); | |
49 | m_leadingZeros = 0; | |
50 | return; | |
51 | } | |
52 | ||
53 | // Append the units to m_values. | |
54 | double integerPart = floor(number); | |
55 | m_values.append(static_cast<uint32_t>(integerPart)); | |
56 | ||
57 | bool sign; | |
58 | int32_t exponent; | |
59 | uint64_t mantissa; | |
60 | decomposeDouble(number - integerPart, sign, exponent, mantissa); | |
61 | ASSERT(!sign && exponent < 0); | |
62 | exponent -= divideByExponent; | |
63 | ||
64 | int32_t zeroBits = -exponent; | |
65 | --zeroBits; | |
66 | ||
67 | // Append the append words for to m_values. | |
68 | while (zeroBits >= 32) { | |
69 | m_values.append(0); | |
70 | zeroBits -= 32; | |
71 | } | |
72 | ||
73 | // Left align the 53 bits of the mantissa within 96 bits. | |
74 | uint32_t values[3]; | |
75 | values[0] = static_cast<uint32_t>(mantissa >> 21); | |
76 | values[1] = static_cast<uint32_t>(mantissa << 11); | |
77 | values[2] = 0; | |
78 | // Shift based on the remainder of the exponent. | |
79 | if (zeroBits) { | |
80 | values[2] = values[1] << (32 - zeroBits); | |
81 | values[1] = (values[1] >> zeroBits) | (values[0] << (32 - zeroBits)); | |
82 | values[0] = (values[0] >> zeroBits); | |
83 | } | |
84 | m_values.append(values[0]); | |
85 | m_values.append(values[1]); | |
86 | m_values.append(values[2]); | |
87 | ||
88 | // Canonicalize; remove any trailing zeros. | |
89 | while (m_values.size() > 1 && !m_values.last()) | |
90 | m_values.removeLast(); | |
91 | ||
92 | // Count the number of leading zero, this is useful in optimizing multiplies. | |
93 | m_leadingZeros = 0; | |
94 | while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) | |
95 | ++m_leadingZeros; | |
96 | } | |
97 | ||
98 | Uint16WithFraction& operator*=(uint16_t multiplier) | |
99 | { | |
100 | ASSERT(checkConsistency()); | |
101 | ||
102 | // iteratate backwards over the fraction until we reach the leading zeros, | |
103 | // passing the carry from one calculation into the next. | |
104 | uint64_t accumulator = 0; | |
105 | for (size_t i = m_values.size(); i > m_leadingZeros; ) { | |
106 | --i; | |
107 | accumulator += static_cast<uint64_t>(m_values[i]) * static_cast<uint64_t>(multiplier); | |
108 | m_values[i] = static_cast<uint32_t>(accumulator); | |
109 | accumulator >>= 32; | |
110 | } | |
111 | ||
112 | if (!m_leadingZeros) { | |
113 | // With a multiplicand and multiplier in the uint16_t range, this cannot carry | |
114 | // (even allowing for the infinity value). | |
115 | ASSERT(!accumulator); | |
116 | // Check for overflow & clamp to 'infinity'. | |
117 | if (m_values[0] >= oneGreaterThanMaxUInt16) { | |
118 | m_values.shrink(1); | |
119 | m_values[0] = oneGreaterThanMaxUInt16; | |
120 | m_leadingZeros = 0; | |
121 | return *this; | |
122 | } | |
123 | } else if (accumulator) { | |
124 | // Check for carry from the last multiply, if so overwrite last leading zero. | |
125 | m_values[--m_leadingZeros] = static_cast<uint32_t>(accumulator); | |
126 | // The limited range of the multiplier should mean that even if we carry into | |
127 | // the units, we don't need to check for overflow of the uint16_t range. | |
128 | ASSERT(m_values[0] < oneGreaterThanMaxUInt16); | |
129 | } | |
130 | ||
131 | // Multiplication by an even value may introduce trailing zeros; if so, clean them | |
132 | // up. (Keeping the value in a normalized form makes some of the comparison operations | |
133 | // more efficient). | |
134 | while (m_values.size() > 1 && !m_values.last()) | |
135 | m_values.removeLast(); | |
136 | ASSERT(checkConsistency()); | |
137 | return *this; | |
138 | } | |
139 | ||
140 | bool operator<(const Uint16WithFraction& other) | |
141 | { | |
142 | ASSERT(checkConsistency()); | |
143 | ASSERT(other.checkConsistency()); | |
144 | ||
145 | // Iterate over the common lengths of arrays. | |
146 | size_t minSize = std::min(m_values.size(), other.m_values.size()); | |
147 | for (size_t index = 0; index < minSize; ++index) { | |
148 | // If we find a value that is not equal, compare and return. | |
149 | uint32_t fromThis = m_values[index]; | |
150 | uint32_t fromOther = other.m_values[index]; | |
151 | if (fromThis != fromOther) | |
152 | return fromThis < fromOther; | |
153 | } | |
154 | // If these numbers have the same lengths, they are equal, | |
155 | // otherwise which ever number has a longer fraction in larger. | |
156 | return other.m_values.size() > minSize; | |
157 | } | |
158 | ||
159 | // Return the floor (non-fractional portion) of the number, clearing this to zero, | |
160 | // leaving the fractional part unchanged. | |
161 | uint32_t floorAndSubtract() | |
162 | { | |
163 | // 'floor' is simple the integer portion of the value. | |
164 | uint32_t floor = m_values[0]; | |
165 | ||
166 | // If floor is non-zero, | |
167 | if (floor) { | |
168 | m_values[0] = 0; | |
169 | m_leadingZeros = 1; | |
170 | while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) | |
171 | ++m_leadingZeros; | |
172 | } | |
173 | ||
174 | return floor; | |
175 | } | |
176 | ||
177 | // Compare this value to 0.5, returns -1 for less than, 0 for equal, 1 for greater. | |
178 | int comparePoint5() | |
179 | { | |
180 | ASSERT(checkConsistency()); | |
181 | // If units != 0, this is greater than 0.5. | |
182 | if (m_values[0]) | |
183 | return 1; | |
184 | // If size == 1 this value is 0, hence < 0.5. | |
185 | if (m_values.size() == 1) | |
186 | return -1; | |
187 | // Compare to 0.5. | |
188 | if (m_values[1] > 0x80000000ul) | |
189 | return 1; | |
190 | if (m_values[1] < 0x80000000ul) | |
191 | return -1; | |
192 | // Check for more words - since normalized numbers have no trailing zeros, if | |
193 | // there are more that two digits we can assume at least one more is non-zero, | |
194 | // and hence the value is > 0.5. | |
195 | return m_values.size() > 2 ? 1 : 0; | |
196 | } | |
197 | ||
198 | // Return true if the sum of this plus addend would be greater than 1. | |
199 | bool sumGreaterThanOne(const Uint16WithFraction& addend) | |
200 | { | |
201 | ASSERT(checkConsistency()); | |
202 | ASSERT(addend.checkConsistency()); | |
203 | ||
204 | // First, sum the units. If the result is greater than one, return true. | |
205 | // If equal to one, return true if either number has a fractional part. | |
206 | uint32_t sum = m_values[0] + addend.m_values[0]; | |
207 | if (sum) | |
208 | return sum > 1 || std::max(m_values.size(), addend.m_values.size()) > 1; | |
209 | ||
210 | // We could still produce a result greater than zero if addition of the next | |
211 | // word from the fraction were to carry, leaving a result > 0. | |
212 | ||
213 | // Iterate over the common lengths of arrays. | |
214 | size_t minSize = std::min(m_values.size(), addend.m_values.size()); | |
215 | for (size_t index = 1; index < minSize; ++index) { | |
216 | // Sum the next word from this & the addend. | |
217 | uint32_t fromThis = m_values[index]; | |
218 | uint32_t fromAddend = addend.m_values[index]; | |
219 | sum = fromThis + fromAddend; | |
220 | ||
221 | // Check for overflow. If so, check whether the remaining result is non-zero, | |
222 | // or if there are any further words in the fraction. | |
223 | if (sum < fromThis) | |
224 | return sum || (index + 1) < std::max(m_values.size(), addend.m_values.size()); | |
225 | ||
226 | // If the sum is uint32_t max, then we would carry a 1 if addition of the next | |
227 | // digits in the number were to overflow. | |
228 | if (sum != 0xFFFFFFFF) | |
229 | return false; | |
230 | } | |
231 | return false; | |
232 | } | |
233 | ||
234 | private: | |
235 | bool checkConsistency() const | |
236 | { | |
237 | // All values should have at least one value. | |
238 | return (m_values.size()) | |
239 | // The units value must be a uint16_t, or the value is the overflow value. | |
240 | && (m_values[0] < oneGreaterThanMaxUInt16 || (m_values[0] == oneGreaterThanMaxUInt16 && m_values.size() == 1)) | |
241 | // There should be no trailing zeros (unless this value is zero!). | |
242 | && (m_values.last() || m_values.size() == 1); | |
243 | } | |
244 | ||
245 | // The internal storage of the number. This vector is always at least one entry in size, | |
246 | // with the first entry holding the portion of the number greater than zero. The first | |
247 | // value always hold a value in the uint16_t range, or holds the value oneGreaterThanMaxUInt16 to | |
248 | // indicate the value has overflowed to >= 0x10000. If the units value is oneGreaterThanMaxUInt16, | |
249 | // there can be no fraction (size must be 1). | |
250 | // | |
251 | // Subsequent values in the array represent portions of the fractional part of this number. | |
252 | // The total value of the number is the sum of (m_values[i] / pow(2^32, i)), for each i | |
253 | // in the array. The vector should contain no trailing zeros, except for the value '0', | |
254 | // represented by a vector contianing a single zero value. These constraints are checked | |
255 | // by 'checkConsistency()', above. | |
256 | // | |
257 | // The inline capacity of the vector is set to be able to contain any IEEE double (1 for | |
258 | // the units column, 32 for zeros introduced due to an exponent up to -3FE, and 2 for | |
259 | // bits taken from the mantissa). | |
260 | Vector<uint32_t, 36> m_values; | |
261 | ||
262 | // Cache a count of the number of leading zeros in m_values. We can use this to optimize | |
263 | // methods that would otherwise need visit all words in the vector, e.g. multiplication. | |
264 | size_t m_leadingZeros; | |
265 | }; | |
266 | ||
267 | } | |
268 | ||
269 | #endif | |
270 |