]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (C) 2008 Apple Inc. All rights reserved. | |
3 | * Copyright (C) 2009 Jian Li <jianli@chromium.org> | |
4 | * | |
5 | * Redistribution and use in source and binary forms, with or without | |
6 | * modification, are permitted provided that the following conditions | |
7 | * are met: | |
8 | * | |
9 | * 1. Redistributions of source code must retain the above copyright | |
10 | * notice, this list of conditions and the following disclaimer. | |
11 | * 2. Redistributions in binary form must reproduce the above copyright | |
12 | * notice, this list of conditions and the following disclaimer in the | |
13 | * documentation and/or other materials provided with the distribution. | |
14 | * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of | |
15 | * its contributors may be used to endorse or promote products derived | |
16 | * from this software without specific prior written permission. | |
17 | * | |
18 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY | |
19 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
20 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
21 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY | |
22 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
23 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
24 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
25 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
28 | */ | |
29 | ||
30 | /* Thread local storage is implemented by using either pthread API or Windows | |
31 | * native API. There is subtle semantic discrepancy for the cleanup function | |
32 | * implementation as noted below: | |
33 | * @ In pthread implementation, the destructor function will be called | |
34 | * repeatedly if there is still non-NULL value associated with the function. | |
35 | * @ In Windows native implementation, the destructor function will be called | |
36 | * only once. | |
37 | * This semantic discrepancy does not impose any problem because nowhere in | |
38 | * WebKit the repeated call bahavior is utilized. | |
39 | */ | |
40 | ||
41 | #ifndef WTF_ThreadSpecific_h | |
42 | #define WTF_ThreadSpecific_h | |
43 | ||
44 | #include <wtf/Noncopyable.h> | |
45 | ||
46 | #if USE(PTHREADS) | |
47 | #include <pthread.h> | |
48 | #elif PLATFORM(WIN_OS) | |
49 | #include <windows.h> | |
50 | #endif | |
51 | ||
52 | namespace WTF { | |
53 | ||
54 | #if !USE(PTHREADS) && PLATFORM(WIN_OS) | |
55 | // ThreadSpecificThreadExit should be called each time when a thread is detached. | |
56 | // This is done automatically for threads created with WTF::createThread. | |
57 | void ThreadSpecificThreadExit(); | |
58 | #endif | |
59 | ||
60 | template<typename T> class ThreadSpecific : Noncopyable { | |
61 | public: | |
62 | ThreadSpecific(); | |
63 | T* operator->(); | |
64 | operator T*(); | |
65 | T& operator*(); | |
66 | ~ThreadSpecific(); | |
67 | ||
68 | private: | |
69 | #if !USE(PTHREADS) && PLATFORM(WIN_OS) | |
70 | friend void ThreadSpecificThreadExit(); | |
71 | #endif | |
72 | ||
73 | T* get(); | |
74 | void set(T*); | |
75 | void static destroy(void* ptr); | |
76 | ||
77 | #if USE(PTHREADS) || PLATFORM(WIN_OS) | |
78 | struct Data : Noncopyable { | |
79 | Data(T* value, ThreadSpecific<T>* owner) : value(value), owner(owner) {} | |
80 | ||
81 | T* value; | |
82 | ThreadSpecific<T>* owner; | |
83 | #if !USE(PTHREADS) | |
84 | void (*destructor)(void*); | |
85 | #endif | |
86 | }; | |
87 | #endif | |
88 | ||
89 | #if USE(PTHREADS) | |
90 | pthread_key_t m_key; | |
91 | #elif PLATFORM(WIN_OS) | |
92 | int m_index; | |
93 | #endif | |
94 | }; | |
95 | ||
96 | #if USE(PTHREADS) | |
97 | template<typename T> | |
98 | inline ThreadSpecific<T>::ThreadSpecific() | |
99 | { | |
100 | int error = pthread_key_create(&m_key, destroy); | |
101 | if (error) | |
102 | CRASH(); | |
103 | } | |
104 | ||
105 | template<typename T> | |
106 | inline ThreadSpecific<T>::~ThreadSpecific() | |
107 | { | |
108 | pthread_key_delete(m_key); // Does not invoke destructor functions. | |
109 | } | |
110 | ||
111 | template<typename T> | |
112 | inline T* ThreadSpecific<T>::get() | |
113 | { | |
114 | Data* data = static_cast<Data*>(pthread_getspecific(m_key)); | |
115 | return data ? data->value : 0; | |
116 | } | |
117 | ||
118 | template<typename T> | |
119 | inline void ThreadSpecific<T>::set(T* ptr) | |
120 | { | |
121 | ASSERT(!get()); | |
122 | pthread_setspecific(m_key, new Data(ptr, this)); | |
123 | } | |
124 | ||
125 | #elif PLATFORM(WIN_OS) | |
126 | ||
127 | // The maximum number of TLS keys that can be created. For simplification, we assume that: | |
128 | // 1) Once the instance of ThreadSpecific<> is created, it will not be destructed until the program dies. | |
129 | // 2) We do not need to hold many instances of ThreadSpecific<> data. This fixed number should be far enough. | |
130 | const int kMaxTlsKeySize = 256; | |
131 | ||
132 | extern long g_tls_key_count; | |
133 | extern DWORD g_tls_keys[kMaxTlsKeySize]; | |
134 | ||
135 | template<typename T> | |
136 | inline ThreadSpecific<T>::ThreadSpecific() | |
137 | : m_index(-1) | |
138 | { | |
139 | DWORD tls_key = TlsAlloc(); | |
140 | if (tls_key == TLS_OUT_OF_INDEXES) | |
141 | CRASH(); | |
142 | ||
143 | m_index = InterlockedIncrement(&g_tls_key_count) - 1; | |
144 | if (m_index >= kMaxTlsKeySize) | |
145 | CRASH(); | |
146 | g_tls_keys[m_index] = tls_key; | |
147 | } | |
148 | ||
149 | template<typename T> | |
150 | inline ThreadSpecific<T>::~ThreadSpecific() | |
151 | { | |
152 | // Does not invoke destructor functions. They will be called from ThreadSpecificThreadExit when the thread is detached. | |
153 | TlsFree(g_tls_keys[m_index]); | |
154 | } | |
155 | ||
156 | template<typename T> | |
157 | inline T* ThreadSpecific<T>::get() | |
158 | { | |
159 | Data* data = static_cast<Data*>(TlsGetValue(g_tls_keys[m_index])); | |
160 | return data ? data->value : 0; | |
161 | } | |
162 | ||
163 | template<typename T> | |
164 | inline void ThreadSpecific<T>::set(T* ptr) | |
165 | { | |
166 | ASSERT(!get()); | |
167 | Data* data = new Data(ptr, this); | |
168 | data->destructor = &ThreadSpecific<T>::destroy; | |
169 | TlsSetValue(g_tls_keys[m_index], data); | |
170 | } | |
171 | ||
172 | #else | |
173 | #error ThreadSpecific is not implemented for this platform. | |
174 | #endif | |
175 | ||
176 | template<typename T> | |
177 | inline void ThreadSpecific<T>::destroy(void* ptr) | |
178 | { | |
179 | Data* data = static_cast<Data*>(ptr); | |
180 | ||
181 | #if USE(PTHREADS) | |
182 | // We want get() to keep working while data destructor works, because it can be called indirectly by the destructor. | |
183 | // Some pthreads implementations zero out the pointer before calling destroy(), so we temporarily reset it. | |
184 | pthread_setspecific(data->owner->m_key, ptr); | |
185 | #endif | |
186 | ||
187 | data->value->~T(); | |
188 | fastFree(data->value); | |
189 | ||
190 | #if USE(PTHREADS) | |
191 | pthread_setspecific(data->owner->m_key, 0); | |
192 | #elif PLATFORM(WIN_OS) | |
193 | TlsSetValue(g_tls_keys[data->owner->m_index], 0); | |
194 | #else | |
195 | #error ThreadSpecific is not implemented for this platform. | |
196 | #endif | |
197 | ||
198 | delete data; | |
199 | } | |
200 | ||
201 | template<typename T> | |
202 | inline ThreadSpecific<T>::operator T*() | |
203 | { | |
204 | T* ptr = static_cast<T*>(get()); | |
205 | if (!ptr) { | |
206 | // Set up thread-specific value's memory pointer before invoking constructor, in case any function it calls | |
207 | // needs to access the value, to avoid recursion. | |
208 | ptr = static_cast<T*>(fastMalloc(sizeof(T))); | |
209 | set(ptr); | |
210 | new (ptr) T; | |
211 | } | |
212 | return ptr; | |
213 | } | |
214 | ||
215 | template<typename T> | |
216 | inline T* ThreadSpecific<T>::operator->() | |
217 | { | |
218 | return operator T*(); | |
219 | } | |
220 | ||
221 | template<typename T> | |
222 | inline T& ThreadSpecific<T>::operator*() | |
223 | { | |
224 | return *operator T*(); | |
225 | } | |
226 | ||
227 | } | |
228 | ||
229 | #endif |