]>
Commit | Line | Data |
---|---|---|
1 | // Copyright (c) 2007, Google Inc. | |
2 | // All rights reserved. | |
3 | // | |
4 | // Redistribution and use in source and binary forms, with or without | |
5 | // modification, are permitted provided that the following conditions are | |
6 | // met: | |
7 | // | |
8 | // * Redistributions of source code must retain the above copyright | |
9 | // notice, this list of conditions and the following disclaimer. | |
10 | // * Redistributions in binary form must reproduce the above | |
11 | // copyright notice, this list of conditions and the following disclaimer | |
12 | // in the documentation and/or other materials provided with the | |
13 | // distribution. | |
14 | // * Neither the name of Google Inc. nor the names of its | |
15 | // contributors may be used to endorse or promote products derived from | |
16 | // this software without specific prior written permission. | |
17 | // | |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
29 | ||
30 | // --- | |
31 | // Author: Geoff Pike | |
32 | // | |
33 | // This file provides a minimal cache that can hold a <key, value> pair | |
34 | // with little if any wasted space. The types of the key and value | |
35 | // must be unsigned integral types or at least have unsigned semantics | |
36 | // for >>, casting, and similar operations. | |
37 | // | |
38 | // Synchronization is not provided. However, the cache is implemented | |
39 | // as an array of cache entries whose type is chosen at compile time. | |
40 | // If a[i] is atomic on your hardware for the chosen array type then | |
41 | // raciness will not necessarily lead to bugginess. The cache entries | |
42 | // must be large enough to hold a partial key and a value packed | |
43 | // together. The partial keys are bit strings of length | |
44 | // kKeybits - kHashbits, and the values are bit strings of length kValuebits. | |
45 | // | |
46 | // In an effort to use minimal space, every cache entry represents | |
47 | // some <key, value> pair; the class provides no way to mark a cache | |
48 | // entry as empty or uninitialized. In practice, you may want to have | |
49 | // reserved keys or values to get around this limitation. For example, in | |
50 | // tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as | |
51 | // "unknown sizeclass." | |
52 | // | |
53 | // Usage Considerations | |
54 | // -------------------- | |
55 | // | |
56 | // kHashbits controls the size of the cache. The best value for | |
57 | // kHashbits will of course depend on the application. Perhaps try | |
58 | // tuning the value of kHashbits by measuring different values on your | |
59 | // favorite benchmark. Also remember not to be a pig; other | |
60 | // programs that need resources may suffer if you are. | |
61 | // | |
62 | // The main uses for this class will be when performance is | |
63 | // critical and there's a convenient type to hold the cache's | |
64 | // entries. As described above, the number of bits required | |
65 | // for a cache entry is (kKeybits - kHashbits) + kValuebits. Suppose | |
66 | // kKeybits + kValuebits is 43. Then it probably makes sense to | |
67 | // chose kHashbits >= 11 so that cache entries fit in a uint32. | |
68 | // | |
69 | // On the other hand, suppose kKeybits = kValuebits = 64. Then | |
70 | // using this class may be less worthwhile. You'll probably | |
71 | // be using 128 bits for each entry anyway, so maybe just pick | |
72 | // a hash function, H, and use an array indexed by H(key): | |
73 | // void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); } | |
74 | // V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... } | |
75 | // etc. | |
76 | // | |
77 | // Further Details | |
78 | // --------------- | |
79 | // | |
80 | // For caches used only by one thread, the following is true: | |
81 | // 1. For a cache c, | |
82 | // (c.Put(key, value), c.GetOrDefault(key, 0)) == value | |
83 | // and | |
84 | // (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value | |
85 | // if the elided code contains no c.Put calls. | |
86 | // | |
87 | // 2. Has(key) will return false if no <key, value> pair with that key | |
88 | // has ever been Put. However, a newly initialized cache will have | |
89 | // some <key, value> pairs already present. When you create a new | |
90 | // cache, you must specify an "initial value." The initialization | |
91 | // procedure is equivalent to Clear(initial_value), which is | |
92 | // equivalent to Put(k, initial_value) for all keys k from 0 to | |
93 | // 2^kHashbits - 1. | |
94 | // | |
95 | // 3. If key and key' differ then the only way Put(key, value) may | |
96 | // cause Has(key') to change is that Has(key') may change from true to | |
97 | // false. Furthermore, a Put() call that doesn't change Has(key') | |
98 | // doesn't change GetOrDefault(key', ...) either. | |
99 | // | |
100 | // Implementation details: | |
101 | // | |
102 | // This is a direct-mapped cache with 2^kHashbits entries; | |
103 | // the hash function simply takes the low bits of the key. | |
104 | // So, we don't have to store the low bits of the key in the entries. | |
105 | // Instead, an entry is the high bits of a key and a value, packed | |
106 | // together. E.g., a 20 bit key and a 7 bit value only require | |
107 | // a uint16 for each entry if kHashbits >= 11. | |
108 | // | |
109 | // Alternatives to this scheme will be added as needed. | |
110 | ||
111 | #ifndef TCMALLOC_PACKED_CACHE_INL_H__ | |
112 | #define TCMALLOC_PACKED_CACHE_INL_H__ | |
113 | ||
114 | #ifndef WTF_CHANGES | |
115 | #include "base/basictypes.h" // for COMPILE_ASSERT | |
116 | #include "base/logging.h" // for DCHECK | |
117 | #endif | |
118 | ||
119 | #ifndef DCHECK_EQ | |
120 | #define DCHECK_EQ(val1, val2) ASSERT((val1) == (val2)) | |
121 | #endif | |
122 | ||
123 | // A safe way of doing "(1 << n) - 1" -- without worrying about overflow | |
124 | // Note this will all be resolved to a constant expression at compile-time | |
125 | #define N_ONES_(IntType, N) \ | |
126 | ( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 + \ | |
127 | (static_cast<IntType>(1) << ((N)-1))) ) | |
128 | ||
129 | // The types K and V provide upper bounds on the number of valid keys | |
130 | // and values, but we explicitly require the keys to be less than | |
131 | // 2^kKeybits and the values to be less than 2^kValuebits. The size of | |
132 | // the table is controlled by kHashbits, and the type of each entry in | |
133 | // the cache is T. See also the big comment at the top of the file. | |
134 | template <int kKeybits, typename T> | |
135 | class PackedCache { | |
136 | public: | |
137 | typedef uintptr_t K; | |
138 | typedef size_t V; | |
139 | static const size_t kHashbits = 12; | |
140 | static const size_t kValuebits = 8; | |
141 | ||
142 | explicit PackedCache(V initial_value) { | |
143 | COMPILE_ASSERT(kKeybits <= sizeof(K) * 8, key_size); | |
144 | COMPILE_ASSERT(kValuebits <= sizeof(V) * 8, value_size); | |
145 | COMPILE_ASSERT(kHashbits <= kKeybits, hash_function); | |
146 | COMPILE_ASSERT(kKeybits - kHashbits + kValuebits <= kTbits, | |
147 | entry_size_must_be_big_enough); | |
148 | Clear(initial_value); | |
149 | } | |
150 | ||
151 | void Put(K key, V value) { | |
152 | DCHECK_EQ(key, key & kKeyMask); | |
153 | DCHECK_EQ(value, value & kValueMask); | |
154 | array_[Hash(key)] = static_cast<T>(KeyToUpper(key) | value); | |
155 | } | |
156 | ||
157 | bool Has(K key) const { | |
158 | DCHECK_EQ(key, key & kKeyMask); | |
159 | return KeyMatch(array_[Hash(key)], key); | |
160 | } | |
161 | ||
162 | V GetOrDefault(K key, V default_value) const { | |
163 | // As with other code in this class, we touch array_ as few times | |
164 | // as we can. Assuming entries are read atomically (e.g., their | |
165 | // type is uintptr_t on most hardware) then certain races are | |
166 | // harmless. | |
167 | DCHECK_EQ(key, key & kKeyMask); | |
168 | T entry = array_[Hash(key)]; | |
169 | return KeyMatch(entry, key) ? EntryToValue(entry) : default_value; | |
170 | } | |
171 | ||
172 | void Clear(V value) { | |
173 | DCHECK_EQ(value, value & kValueMask); | |
174 | for (int i = 0; i < 1 << kHashbits; i++) { | |
175 | array_[i] = static_cast<T>(value); | |
176 | } | |
177 | } | |
178 | ||
179 | private: | |
180 | // We are going to pack a value and the upper part of a key into | |
181 | // an entry of type T. The UPPER type is for the upper part of a key, | |
182 | // after the key has been masked and shifted for inclusion in an entry. | |
183 | typedef T UPPER; | |
184 | ||
185 | static V EntryToValue(T t) { return t & kValueMask; } | |
186 | ||
187 | static UPPER EntryToUpper(T t) { return t & kUpperMask; } | |
188 | ||
189 | // If v is a V and u is an UPPER then you can create an entry by | |
190 | // doing u | v. kHashbits determines where in a K to find the upper | |
191 | // part of the key, and kValuebits determines where in the entry to put | |
192 | // it. | |
193 | static UPPER KeyToUpper(K k) { | |
194 | const int shift = kHashbits - kValuebits; | |
195 | // Assume kHashbits >= kValuebits. It would be easy to lift this assumption. | |
196 | return static_cast<T>(k >> shift) & kUpperMask; | |
197 | } | |
198 | ||
199 | // This is roughly the inverse of KeyToUpper(). Some of the key has been | |
200 | // thrown away, since KeyToUpper() masks off the low bits of the key. | |
201 | static K UpperToPartialKey(UPPER u) { | |
202 | DCHECK_EQ(u, u & kUpperMask); | |
203 | const int shift = kHashbits - kValuebits; | |
204 | // Assume kHashbits >= kValuebits. It would be easy to lift this assumption. | |
205 | return static_cast<K>(u) << shift; | |
206 | } | |
207 | ||
208 | static size_t Hash(K key) { | |
209 | return static_cast<size_t>(key) & N_ONES_(size_t, kHashbits); | |
210 | } | |
211 | ||
212 | // Does the entry's partial key match the relevant part of the given key? | |
213 | static bool KeyMatch(T entry, K key) { | |
214 | return ((KeyToUpper(key) ^ entry) & kUpperMask) == 0; | |
215 | } | |
216 | ||
217 | static const size_t kTbits = 8 * sizeof(T); | |
218 | static const int kUpperbits = kKeybits - kHashbits; | |
219 | ||
220 | // For masking a K. | |
221 | static const K kKeyMask = N_ONES_(K, kKeybits); | |
222 | ||
223 | // For masking a T. | |
224 | static const T kUpperMask = N_ONES_(T, kUpperbits) << kValuebits; | |
225 | ||
226 | // For masking a V or a T. | |
227 | static const V kValueMask = N_ONES_(V, kValuebits); | |
228 | ||
229 | T array_[1 << kHashbits]; | |
230 | }; | |
231 | ||
232 | #undef N_ONES_ | |
233 | ||
234 | #endif // TCMALLOC_PACKED_CACHE_INL_H__ |