]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) | |
3 | * Copyright (C) 2003, 2007, 2008, 2009, 2012 Apple Inc. All rights reserved. | |
4 | * Copyright (C) 2003 Peter Kelly (pmk@post.com) | |
5 | * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com) | |
6 | * | |
7 | * This library is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU Lesser General Public | |
9 | * License as published by the Free Software Foundation; either | |
10 | * version 2 of the License, or (at your option) any later version. | |
11 | * | |
12 | * This library is distributed in the hope that it will be useful, | |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 | * Lesser General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU Lesser General Public | |
18 | * License along with this library; if not, write to the Free Software | |
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
20 | * | |
21 | */ | |
22 | ||
23 | #include "config.h" | |
24 | #include "JSArray.h" | |
25 | ||
26 | #include "ArrayPrototype.h" | |
27 | #include "ButterflyInlines.h" | |
28 | #include "CachedCall.h" | |
29 | #include "CopiedSpace.h" | |
30 | #include "CopiedSpaceInlines.h" | |
31 | #include "Error.h" | |
32 | #include "Executable.h" | |
33 | #include "GetterSetter.h" | |
34 | #include "IndexingHeaderInlines.h" | |
35 | #include "PropertyNameArray.h" | |
36 | #include "Reject.h" | |
37 | #include <wtf/AVLTree.h> | |
38 | #include <wtf/Assertions.h> | |
39 | #include <wtf/OwnPtr.h> | |
40 | #include <Operations.h> | |
41 | ||
42 | using namespace std; | |
43 | using namespace WTF; | |
44 | ||
45 | namespace JSC { | |
46 | ||
47 | ASSERT_HAS_TRIVIAL_DESTRUCTOR(JSArray); | |
48 | ||
49 | const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0, CREATE_METHOD_TABLE(JSArray)}; | |
50 | ||
51 | Butterfly* createArrayButterflyInDictionaryIndexingMode(VM& vm, unsigned initialLength) | |
52 | { | |
53 | Butterfly* butterfly = Butterfly::create( | |
54 | vm, 0, 0, true, IndexingHeader(), ArrayStorage::sizeFor(0)); | |
55 | ArrayStorage* storage = butterfly->arrayStorage(); | |
56 | storage->setLength(initialLength); | |
57 | storage->setVectorLength(0); | |
58 | storage->m_indexBias = 0; | |
59 | storage->m_sparseMap.clear(); | |
60 | storage->m_numValuesInVector = 0; | |
61 | return butterfly; | |
62 | } | |
63 | ||
64 | void JSArray::setLengthWritable(ExecState* exec, bool writable) | |
65 | { | |
66 | ASSERT(isLengthWritable() || !writable); | |
67 | if (!isLengthWritable() || writable) | |
68 | return; | |
69 | ||
70 | enterDictionaryIndexingMode(exec->vm()); | |
71 | ||
72 | SparseArrayValueMap* map = arrayStorage()->m_sparseMap.get(); | |
73 | ASSERT(map); | |
74 | map->setLengthIsReadOnly(); | |
75 | } | |
76 | ||
77 | // Defined in ES5.1 15.4.5.1 | |
78 | bool JSArray::defineOwnProperty(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor, bool throwException) | |
79 | { | |
80 | JSArray* array = jsCast<JSArray*>(object); | |
81 | ||
82 | // 3. If P is "length", then | |
83 | if (propertyName == exec->propertyNames().length) { | |
84 | // All paths through length definition call the default [[DefineOwnProperty]], hence: | |
85 | // from ES5.1 8.12.9 7.a. | |
86 | if (descriptor.configurablePresent() && descriptor.configurable()) | |
87 | return reject(exec, throwException, "Attempting to change configurable attribute of unconfigurable property."); | |
88 | // from ES5.1 8.12.9 7.b. | |
89 | if (descriptor.enumerablePresent() && descriptor.enumerable()) | |
90 | return reject(exec, throwException, "Attempting to change enumerable attribute of unconfigurable property."); | |
91 | ||
92 | // a. If the [[Value]] field of Desc is absent, then | |
93 | // a.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Desc, and Throw as arguments. | |
94 | if (descriptor.isAccessorDescriptor()) | |
95 | return reject(exec, throwException, "Attempting to change access mechanism for an unconfigurable property."); | |
96 | // from ES5.1 8.12.9 10.a. | |
97 | if (!array->isLengthWritable() && descriptor.writablePresent() && descriptor.writable()) | |
98 | return reject(exec, throwException, "Attempting to change writable attribute of unconfigurable property."); | |
99 | // This descriptor is either just making length read-only, or changing nothing! | |
100 | if (!descriptor.value()) { | |
101 | if (descriptor.writablePresent()) | |
102 | array->setLengthWritable(exec, descriptor.writable()); | |
103 | return true; | |
104 | } | |
105 | ||
106 | // b. Let newLenDesc be a copy of Desc. | |
107 | // c. Let newLen be ToUint32(Desc.[[Value]]). | |
108 | unsigned newLen = descriptor.value().toUInt32(exec); | |
109 | // d. If newLen is not equal to ToNumber( Desc.[[Value]]), throw a RangeError exception. | |
110 | if (newLen != descriptor.value().toNumber(exec)) { | |
111 | throwError(exec, createRangeError(exec, "Invalid array length")); | |
112 | return false; | |
113 | } | |
114 | ||
115 | // Based on SameValue check in 8.12.9, this is always okay. | |
116 | if (newLen == array->length()) { | |
117 | if (descriptor.writablePresent()) | |
118 | array->setLengthWritable(exec, descriptor.writable()); | |
119 | return true; | |
120 | } | |
121 | ||
122 | // e. Set newLenDesc.[[Value] to newLen. | |
123 | // f. If newLen >= oldLen, then | |
124 | // f.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments. | |
125 | // g. Reject if oldLenDesc.[[Writable]] is false. | |
126 | if (!array->isLengthWritable()) | |
127 | return reject(exec, throwException, "Attempting to change value of a readonly property."); | |
128 | ||
129 | // h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true. | |
130 | // i. Else, | |
131 | // i.i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted. | |
132 | // i.ii. Let newWritable be false. | |
133 | // i.iii. Set newLenDesc.[[Writable] to true. | |
134 | // j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments. | |
135 | // k. If succeeded is false, return false. | |
136 | // l. While newLen < oldLen repeat, | |
137 | // l.i. Set oldLen to oldLen – 1. | |
138 | // l.ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing ToString(oldLen) and false as arguments. | |
139 | // l.iii. If deleteSucceeded is false, then | |
140 | if (!array->setLength(exec, newLen, throwException)) { | |
141 | // 1. Set newLenDesc.[[Value] to oldLen+1. | |
142 | // 2. If newWritable is false, set newLenDesc.[[Writable] to false. | |
143 | // 3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and false as arguments. | |
144 | // 4. Reject. | |
145 | if (descriptor.writablePresent()) | |
146 | array->setLengthWritable(exec, descriptor.writable()); | |
147 | return false; | |
148 | } | |
149 | ||
150 | // m. If newWritable is false, then | |
151 | // i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", | |
152 | // Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always | |
153 | // return true. | |
154 | if (descriptor.writablePresent()) | |
155 | array->setLengthWritable(exec, descriptor.writable()); | |
156 | // n. Return true. | |
157 | return true; | |
158 | } | |
159 | ||
160 | // 4. Else if P is an array index (15.4), then | |
161 | // a. Let index be ToUint32(P). | |
162 | unsigned index = propertyName.asIndex(); | |
163 | if (index != PropertyName::NotAnIndex) { | |
164 | // b. Reject if index >= oldLen and oldLenDesc.[[Writable]] is false. | |
165 | if (index >= array->length() && !array->isLengthWritable()) | |
166 | return reject(exec, throwException, "Attempting to define numeric property on array with non-writable length property."); | |
167 | // c. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and false as arguments. | |
168 | // d. Reject if succeeded is false. | |
169 | // e. If index >= oldLen | |
170 | // e.i. Set oldLenDesc.[[Value]] to index + 1. | |
171 | // e.ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", oldLenDesc, and false as arguments. This call will always return true. | |
172 | // f. Return true. | |
173 | return array->defineOwnIndexedProperty(exec, index, descriptor, throwException); | |
174 | } | |
175 | ||
176 | return array->JSObject::defineOwnNonIndexProperty(exec, propertyName, descriptor, throwException); | |
177 | } | |
178 | ||
179 | bool JSArray::getOwnPropertySlot(JSCell* cell, ExecState* exec, PropertyName propertyName, PropertySlot& slot) | |
180 | { | |
181 | JSArray* thisObject = jsCast<JSArray*>(cell); | |
182 | if (propertyName == exec->propertyNames().length) { | |
183 | slot.setValue(jsNumber(thisObject->length())); | |
184 | return true; | |
185 | } | |
186 | ||
187 | return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot); | |
188 | } | |
189 | ||
190 | bool JSArray::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor) | |
191 | { | |
192 | JSArray* thisObject = jsCast<JSArray*>(object); | |
193 | if (propertyName == exec->propertyNames().length) { | |
194 | descriptor.setDescriptor(jsNumber(thisObject->length()), thisObject->isLengthWritable() ? DontDelete | DontEnum : DontDelete | DontEnum | ReadOnly); | |
195 | return true; | |
196 | } | |
197 | ||
198 | return JSObject::getOwnPropertyDescriptor(thisObject, exec, propertyName, descriptor); | |
199 | } | |
200 | ||
201 | // ECMA 15.4.5.1 | |
202 | void JSArray::put(JSCell* cell, ExecState* exec, PropertyName propertyName, JSValue value, PutPropertySlot& slot) | |
203 | { | |
204 | JSArray* thisObject = jsCast<JSArray*>(cell); | |
205 | ||
206 | if (propertyName == exec->propertyNames().length) { | |
207 | unsigned newLength = value.toUInt32(exec); | |
208 | if (value.toNumber(exec) != static_cast<double>(newLength)) { | |
209 | throwError(exec, createRangeError(exec, ASCIILiteral("Invalid array length"))); | |
210 | return; | |
211 | } | |
212 | thisObject->setLength(exec, newLength, slot.isStrictMode()); | |
213 | return; | |
214 | } | |
215 | ||
216 | JSObject::put(thisObject, exec, propertyName, value, slot); | |
217 | } | |
218 | ||
219 | bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, PropertyName propertyName) | |
220 | { | |
221 | JSArray* thisObject = jsCast<JSArray*>(cell); | |
222 | ||
223 | if (propertyName == exec->propertyNames().length) | |
224 | return false; | |
225 | ||
226 | return JSObject::deleteProperty(thisObject, exec, propertyName); | |
227 | } | |
228 | ||
229 | static int compareKeysForQSort(const void* a, const void* b) | |
230 | { | |
231 | unsigned da = *static_cast<const unsigned*>(a); | |
232 | unsigned db = *static_cast<const unsigned*>(b); | |
233 | return (da > db) - (da < db); | |
234 | } | |
235 | ||
236 | void JSArray::getOwnNonIndexPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode) | |
237 | { | |
238 | JSArray* thisObject = jsCast<JSArray*>(object); | |
239 | ||
240 | if (mode == IncludeDontEnumProperties) | |
241 | propertyNames.add(exec->propertyNames().length); | |
242 | ||
243 | JSObject::getOwnNonIndexPropertyNames(thisObject, exec, propertyNames, mode); | |
244 | } | |
245 | ||
246 | // This method makes room in the vector, but leaves the new space for count slots uncleared. | |
247 | bool JSArray::unshiftCountSlowCase(VM& vm, bool addToFront, unsigned count) | |
248 | { | |
249 | ArrayStorage* storage = ensureArrayStorage(vm); | |
250 | Butterfly* butterfly = storage->butterfly(); | |
251 | unsigned propertyCapacity = structure()->outOfLineCapacity(); | |
252 | unsigned propertySize = structure()->outOfLineSize(); | |
253 | ||
254 | // If not, we should have handled this on the fast path. | |
255 | ASSERT(!addToFront || count > storage->m_indexBias); | |
256 | ||
257 | // Step 1: | |
258 | // Gather 4 key metrics: | |
259 | // * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors). | |
260 | // * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more. | |
261 | // * currentCapacity - what is the current size of the vector, including any pre-capacity. | |
262 | // * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength. | |
263 | ||
264 | unsigned length = storage->length(); | |
265 | unsigned usedVectorLength = min(storage->vectorLength(), length); | |
266 | ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH); | |
267 | // Check that required vector length is possible, in an overflow-safe fashion. | |
268 | if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength) | |
269 | return false; | |
270 | unsigned requiredVectorLength = usedVectorLength + count; | |
271 | ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH); | |
272 | // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH. | |
273 | ASSERT(storage->vectorLength() <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - storage->vectorLength()) >= storage->m_indexBias); | |
274 | unsigned currentCapacity = storage->vectorLength() + storage->m_indexBias; | |
275 | // The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH. | |
276 | unsigned desiredCapacity = min(MAX_STORAGE_VECTOR_LENGTH, max(BASE_VECTOR_LEN, requiredVectorLength) << 1); | |
277 | ||
278 | // Step 2: | |
279 | // We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing one. | |
280 | ||
281 | void* newAllocBase = 0; | |
282 | unsigned newStorageCapacity; | |
283 | // If the current storage array is sufficiently large (but not too large!) then just keep using it. | |
284 | if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) { | |
285 | newAllocBase = butterfly->base(structure()); | |
286 | newStorageCapacity = currentCapacity; | |
287 | } else { | |
288 | size_t newSize = Butterfly::totalSize(0, propertyCapacity, true, ArrayStorage::sizeFor(desiredCapacity)); | |
289 | if (!vm.heap.tryAllocateStorage(newSize, &newAllocBase)) | |
290 | return false; | |
291 | newStorageCapacity = desiredCapacity; | |
292 | } | |
293 | ||
294 | // Step 3: | |
295 | // Work out where we're going to move things to. | |
296 | ||
297 | // Determine how much of the vector to use as pre-capacity, and how much as post-capacity. | |
298 | // If we're adding to the end, we'll add all the new space to the end. | |
299 | // If the vector had no free post-capacity (length >= m_vectorLength), don't give it any. | |
300 | // If it did, we calculate the amount that will remain based on an atomic decay - leave the | |
301 | // vector with half the post-capacity it had previously. | |
302 | unsigned postCapacity = 0; | |
303 | if (!addToFront) | |
304 | postCapacity = max(newStorageCapacity - requiredVectorLength, count); | |
305 | else if (length < storage->vectorLength()) { | |
306 | // Atomic decay, + the post-capacity cannot be greater than what is available. | |
307 | postCapacity = min((storage->vectorLength() - length) >> 1, newStorageCapacity - requiredVectorLength); | |
308 | // If we're moving contents within the same allocation, the post-capacity is being reduced. | |
309 | ASSERT(newAllocBase != butterfly->base(structure()) || postCapacity < storage->vectorLength() - length); | |
310 | } | |
311 | ||
312 | unsigned newVectorLength = requiredVectorLength + postCapacity; | |
313 | unsigned newIndexBias = newStorageCapacity - newVectorLength; | |
314 | ||
315 | Butterfly* newButterfly = Butterfly::fromBase(newAllocBase, newIndexBias, propertyCapacity); | |
316 | ||
317 | if (addToFront) { | |
318 | ASSERT(count + usedVectorLength <= newVectorLength); | |
319 | memmove(newButterfly->arrayStorage()->m_vector + count, storage->m_vector, sizeof(JSValue) * usedVectorLength); | |
320 | memmove(newButterfly->propertyStorage() - propertySize, butterfly->propertyStorage() - propertySize, sizeof(JSValue) * propertySize + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0)); | |
321 | } else if ((newAllocBase != butterfly->base(structure())) || (newIndexBias != storage->m_indexBias)) { | |
322 | memmove(newButterfly->propertyStorage() - propertySize, butterfly->propertyStorage() - propertySize, sizeof(JSValue) * propertySize + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0)); | |
323 | memmove(newButterfly->arrayStorage()->m_vector, storage->m_vector, sizeof(JSValue) * usedVectorLength); | |
324 | ||
325 | WriteBarrier<Unknown>* newVector = newButterfly->arrayStorage()->m_vector; | |
326 | for (unsigned i = requiredVectorLength; i < newVectorLength; i++) | |
327 | newVector[i].clear(); | |
328 | } | |
329 | ||
330 | newButterfly->arrayStorage()->setVectorLength(newVectorLength); | |
331 | newButterfly->arrayStorage()->m_indexBias = newIndexBias; | |
332 | ||
333 | m_butterfly = newButterfly; | |
334 | ||
335 | return true; | |
336 | } | |
337 | ||
338 | bool JSArray::setLengthWithArrayStorage(ExecState* exec, unsigned newLength, bool throwException, ArrayStorage* storage) | |
339 | { | |
340 | unsigned length = storage->length(); | |
341 | ||
342 | // If the length is read only then we enter sparse mode, so should enter the following 'if'. | |
343 | ASSERT(isLengthWritable() || storage->m_sparseMap); | |
344 | ||
345 | if (SparseArrayValueMap* map = storage->m_sparseMap.get()) { | |
346 | // Fail if the length is not writable. | |
347 | if (map->lengthIsReadOnly()) | |
348 | return reject(exec, throwException, StrictModeReadonlyPropertyWriteError); | |
349 | ||
350 | if (newLength < length) { | |
351 | // Copy any keys we might be interested in into a vector. | |
352 | Vector<unsigned, 0, UnsafeVectorOverflow> keys; | |
353 | keys.reserveInitialCapacity(min(map->size(), static_cast<size_t>(length - newLength))); | |
354 | SparseArrayValueMap::const_iterator end = map->end(); | |
355 | for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) { | |
356 | unsigned index = static_cast<unsigned>(it->key); | |
357 | if (index < length && index >= newLength) | |
358 | keys.append(index); | |
359 | } | |
360 | ||
361 | // Check if the array is in sparse mode. If so there may be non-configurable | |
362 | // properties, so we have to perform deletion with caution, if not we can | |
363 | // delete values in any order. | |
364 | if (map->sparseMode()) { | |
365 | qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort); | |
366 | unsigned i = keys.size(); | |
367 | while (i) { | |
368 | unsigned index = keys[--i]; | |
369 | SparseArrayValueMap::iterator it = map->find(index); | |
370 | ASSERT(it != map->notFound()); | |
371 | if (it->value.attributes & DontDelete) { | |
372 | storage->setLength(index + 1); | |
373 | return reject(exec, throwException, "Unable to delete property."); | |
374 | } | |
375 | map->remove(it); | |
376 | } | |
377 | } else { | |
378 | for (unsigned i = 0; i < keys.size(); ++i) | |
379 | map->remove(keys[i]); | |
380 | if (map->isEmpty()) | |
381 | deallocateSparseIndexMap(); | |
382 | } | |
383 | } | |
384 | } | |
385 | ||
386 | if (newLength < length) { | |
387 | // Delete properties from the vector. | |
388 | unsigned usedVectorLength = min(length, storage->vectorLength()); | |
389 | for (unsigned i = newLength; i < usedVectorLength; ++i) { | |
390 | WriteBarrier<Unknown>& valueSlot = storage->m_vector[i]; | |
391 | bool hadValue = valueSlot; | |
392 | valueSlot.clear(); | |
393 | storage->m_numValuesInVector -= hadValue; | |
394 | } | |
395 | } | |
396 | ||
397 | storage->setLength(newLength); | |
398 | ||
399 | return true; | |
400 | } | |
401 | ||
402 | bool JSArray::setLength(ExecState* exec, unsigned newLength, bool throwException) | |
403 | { | |
404 | switch (structure()->indexingType()) { | |
405 | case ArrayClass: | |
406 | if (!newLength) | |
407 | return true; | |
408 | if (newLength >= MIN_SPARSE_ARRAY_INDEX) { | |
409 | return setLengthWithArrayStorage( | |
410 | exec, newLength, throwException, | |
411 | convertContiguousToArrayStorage(exec->vm())); | |
412 | } | |
413 | createInitialUndecided(exec->vm(), newLength); | |
414 | return true; | |
415 | ||
416 | case ArrayWithUndecided: | |
417 | case ArrayWithInt32: | |
418 | case ArrayWithDouble: | |
419 | case ArrayWithContiguous: | |
420 | if (newLength == m_butterfly->publicLength()) | |
421 | return true; | |
422 | if (newLength >= MAX_ARRAY_INDEX // This case ensures that we can do fast push. | |
423 | || (newLength >= MIN_SPARSE_ARRAY_INDEX | |
424 | && !isDenseEnoughForVector(newLength, countElements()))) { | |
425 | return setLengthWithArrayStorage( | |
426 | exec, newLength, throwException, | |
427 | ensureArrayStorage(exec->vm())); | |
428 | } | |
429 | if (newLength > m_butterfly->publicLength()) { | |
430 | ensureLength(exec->vm(), newLength); | |
431 | return true; | |
432 | } | |
433 | if (structure()->indexingType() == ArrayWithDouble) { | |
434 | for (unsigned i = m_butterfly->publicLength(); i-- > newLength;) | |
435 | m_butterfly->contiguousDouble()[i] = QNaN; | |
436 | } else { | |
437 | for (unsigned i = m_butterfly->publicLength(); i-- > newLength;) | |
438 | m_butterfly->contiguous()[i].clear(); | |
439 | } | |
440 | m_butterfly->setPublicLength(newLength); | |
441 | return true; | |
442 | ||
443 | case ArrayWithArrayStorage: | |
444 | case ArrayWithSlowPutArrayStorage: | |
445 | return setLengthWithArrayStorage(exec, newLength, throwException, arrayStorage()); | |
446 | ||
447 | default: | |
448 | CRASH(); | |
449 | return false; | |
450 | } | |
451 | } | |
452 | ||
453 | JSValue JSArray::pop(ExecState* exec) | |
454 | { | |
455 | switch (structure()->indexingType()) { | |
456 | case ArrayClass: | |
457 | return jsUndefined(); | |
458 | ||
459 | case ArrayWithUndecided: | |
460 | if (!m_butterfly->publicLength()) | |
461 | return jsUndefined(); | |
462 | // We have nothing but holes. So, drop down to the slow version. | |
463 | break; | |
464 | ||
465 | case ArrayWithInt32: | |
466 | case ArrayWithContiguous: { | |
467 | unsigned length = m_butterfly->publicLength(); | |
468 | ||
469 | if (!length--) | |
470 | return jsUndefined(); | |
471 | ||
472 | RELEASE_ASSERT(length < m_butterfly->vectorLength()); | |
473 | JSValue value = m_butterfly->contiguous()[length].get(); | |
474 | if (value) { | |
475 | m_butterfly->contiguous()[length].clear(); | |
476 | m_butterfly->setPublicLength(length); | |
477 | return value; | |
478 | } | |
479 | break; | |
480 | } | |
481 | ||
482 | case ArrayWithDouble: { | |
483 | unsigned length = m_butterfly->publicLength(); | |
484 | ||
485 | if (!length--) | |
486 | return jsUndefined(); | |
487 | ||
488 | RELEASE_ASSERT(length < m_butterfly->vectorLength()); | |
489 | double value = m_butterfly->contiguousDouble()[length]; | |
490 | if (value == value) { | |
491 | m_butterfly->contiguousDouble()[length] = QNaN; | |
492 | m_butterfly->setPublicLength(length); | |
493 | return JSValue(JSValue::EncodeAsDouble, value); | |
494 | } | |
495 | break; | |
496 | } | |
497 | ||
498 | case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: { | |
499 | ArrayStorage* storage = m_butterfly->arrayStorage(); | |
500 | ||
501 | unsigned length = storage->length(); | |
502 | if (!length) { | |
503 | if (!isLengthWritable()) | |
504 | throwTypeError(exec, StrictModeReadonlyPropertyWriteError); | |
505 | return jsUndefined(); | |
506 | } | |
507 | ||
508 | unsigned index = length - 1; | |
509 | if (index < storage->vectorLength()) { | |
510 | WriteBarrier<Unknown>& valueSlot = storage->m_vector[index]; | |
511 | if (valueSlot) { | |
512 | --storage->m_numValuesInVector; | |
513 | JSValue element = valueSlot.get(); | |
514 | valueSlot.clear(); | |
515 | ||
516 | RELEASE_ASSERT(isLengthWritable()); | |
517 | storage->setLength(index); | |
518 | return element; | |
519 | } | |
520 | } | |
521 | break; | |
522 | } | |
523 | ||
524 | default: | |
525 | CRASH(); | |
526 | return JSValue(); | |
527 | } | |
528 | ||
529 | unsigned index = getArrayLength() - 1; | |
530 | // Let element be the result of calling the [[Get]] internal method of O with argument indx. | |
531 | JSValue element = get(exec, index); | |
532 | if (exec->hadException()) | |
533 | return jsUndefined(); | |
534 | // Call the [[Delete]] internal method of O with arguments indx and true. | |
535 | if (!deletePropertyByIndex(this, exec, index)) { | |
536 | throwTypeError(exec, "Unable to delete property."); | |
537 | return jsUndefined(); | |
538 | } | |
539 | // Call the [[Put]] internal method of O with arguments "length", indx, and true. | |
540 | setLength(exec, index, true); | |
541 | // Return element. | |
542 | return element; | |
543 | } | |
544 | ||
545 | // Push & putIndex are almost identical, with two small differences. | |
546 | // - we always are writing beyond the current array bounds, so it is always necessary to update m_length & m_numValuesInVector. | |
547 | // - pushing to an array of length 2^32-1 stores the property, but throws a range error. | |
548 | void JSArray::push(ExecState* exec, JSValue value) | |
549 | { | |
550 | switch (structure()->indexingType()) { | |
551 | case ArrayClass: { | |
552 | createInitialUndecided(exec->vm(), 0); | |
553 | // Fall through. | |
554 | } | |
555 | ||
556 | case ArrayWithUndecided: { | |
557 | convertUndecidedForValue(exec->vm(), value); | |
558 | push(exec, value); | |
559 | return; | |
560 | } | |
561 | ||
562 | case ArrayWithInt32: { | |
563 | if (!value.isInt32()) { | |
564 | convertInt32ForValue(exec->vm(), value); | |
565 | push(exec, value); | |
566 | return; | |
567 | } | |
568 | ||
569 | unsigned length = m_butterfly->publicLength(); | |
570 | ASSERT(length <= m_butterfly->vectorLength()); | |
571 | if (length < m_butterfly->vectorLength()) { | |
572 | m_butterfly->contiguousInt32()[length].setWithoutWriteBarrier(value); | |
573 | m_butterfly->setPublicLength(length + 1); | |
574 | return; | |
575 | } | |
576 | ||
577 | if (length > MAX_ARRAY_INDEX) { | |
578 | methodTable()->putByIndex(this, exec, length, value, true); | |
579 | if (!exec->hadException()) | |
580 | throwError(exec, createRangeError(exec, "Invalid array length")); | |
581 | return; | |
582 | } | |
583 | ||
584 | putByIndexBeyondVectorLengthWithoutAttributes<Int32Shape>(exec, length, value); | |
585 | return; | |
586 | } | |
587 | ||
588 | case ArrayWithContiguous: { | |
589 | unsigned length = m_butterfly->publicLength(); | |
590 | ASSERT(length <= m_butterfly->vectorLength()); | |
591 | if (length < m_butterfly->vectorLength()) { | |
592 | m_butterfly->contiguous()[length].set(exec->vm(), this, value); | |
593 | m_butterfly->setPublicLength(length + 1); | |
594 | return; | |
595 | } | |
596 | ||
597 | if (length > MAX_ARRAY_INDEX) { | |
598 | methodTable()->putByIndex(this, exec, length, value, true); | |
599 | if (!exec->hadException()) | |
600 | throwError(exec, createRangeError(exec, "Invalid array length")); | |
601 | return; | |
602 | } | |
603 | ||
604 | putByIndexBeyondVectorLengthWithoutAttributes<ContiguousShape>(exec, length, value); | |
605 | return; | |
606 | } | |
607 | ||
608 | case ArrayWithDouble: { | |
609 | if (!value.isNumber()) { | |
610 | convertDoubleToContiguous(exec->vm()); | |
611 | push(exec, value); | |
612 | return; | |
613 | } | |
614 | double valueAsDouble = value.asNumber(); | |
615 | if (valueAsDouble != valueAsDouble) { | |
616 | convertDoubleToContiguous(exec->vm()); | |
617 | push(exec, value); | |
618 | return; | |
619 | } | |
620 | ||
621 | unsigned length = m_butterfly->publicLength(); | |
622 | ASSERT(length <= m_butterfly->vectorLength()); | |
623 | if (length < m_butterfly->vectorLength()) { | |
624 | m_butterfly->contiguousDouble()[length] = valueAsDouble; | |
625 | m_butterfly->setPublicLength(length + 1); | |
626 | return; | |
627 | } | |
628 | ||
629 | if (length > MAX_ARRAY_INDEX) { | |
630 | methodTable()->putByIndex(this, exec, length, value, true); | |
631 | if (!exec->hadException()) | |
632 | throwError(exec, createRangeError(exec, "Invalid array length")); | |
633 | return; | |
634 | } | |
635 | ||
636 | putByIndexBeyondVectorLengthWithoutAttributes<DoubleShape>(exec, length, value); | |
637 | break; | |
638 | } | |
639 | ||
640 | case ArrayWithSlowPutArrayStorage: { | |
641 | unsigned oldLength = length(); | |
642 | if (attemptToInterceptPutByIndexOnHole(exec, oldLength, value, true)) { | |
643 | if (!exec->hadException() && oldLength < 0xFFFFFFFFu) | |
644 | setLength(exec, oldLength + 1, true); | |
645 | return; | |
646 | } | |
647 | // Fall through. | |
648 | } | |
649 | ||
650 | case ArrayWithArrayStorage: { | |
651 | ArrayStorage* storage = m_butterfly->arrayStorage(); | |
652 | ||
653 | // Fast case - push within vector, always update m_length & m_numValuesInVector. | |
654 | unsigned length = storage->length(); | |
655 | if (length < storage->vectorLength()) { | |
656 | storage->m_vector[length].set(exec->vm(), this, value); | |
657 | storage->setLength(length + 1); | |
658 | ++storage->m_numValuesInVector; | |
659 | return; | |
660 | } | |
661 | ||
662 | // Pushing to an array of invalid length (2^31-1) stores the property, but throws a range error. | |
663 | if (storage->length() > MAX_ARRAY_INDEX) { | |
664 | methodTable()->putByIndex(this, exec, storage->length(), value, true); | |
665 | // Per ES5.1 15.4.4.7 step 6 & 15.4.5.1 step 3.d. | |
666 | if (!exec->hadException()) | |
667 | throwError(exec, createRangeError(exec, "Invalid array length")); | |
668 | return; | |
669 | } | |
670 | ||
671 | // Handled the same as putIndex. | |
672 | putByIndexBeyondVectorLengthWithArrayStorage(exec, storage->length(), value, true, storage); | |
673 | break; | |
674 | } | |
675 | ||
676 | default: | |
677 | RELEASE_ASSERT_NOT_REACHED(); | |
678 | } | |
679 | } | |
680 | ||
681 | bool JSArray::shiftCountWithArrayStorage(unsigned startIndex, unsigned count, ArrayStorage* storage) | |
682 | { | |
683 | unsigned oldLength = storage->length(); | |
684 | RELEASE_ASSERT(count <= oldLength); | |
685 | ||
686 | // If the array contains holes or is otherwise in an abnormal state, | |
687 | // use the generic algorithm in ArrayPrototype. | |
688 | if (oldLength != storage->m_numValuesInVector || inSparseIndexingMode() || shouldUseSlowPut(structure()->indexingType())) | |
689 | return false; | |
690 | ||
691 | if (!oldLength) | |
692 | return true; | |
693 | ||
694 | unsigned length = oldLength - count; | |
695 | ||
696 | storage->m_numValuesInVector -= count; | |
697 | storage->setLength(length); | |
698 | ||
699 | unsigned vectorLength = storage->vectorLength(); | |
700 | if (!vectorLength) | |
701 | return true; | |
702 | ||
703 | if (startIndex >= vectorLength) | |
704 | return true; | |
705 | ||
706 | if (startIndex + count > vectorLength) | |
707 | count = vectorLength - startIndex; | |
708 | ||
709 | unsigned usedVectorLength = min(vectorLength, oldLength); | |
710 | ||
711 | vectorLength -= count; | |
712 | storage->setVectorLength(vectorLength); | |
713 | ||
714 | if (vectorLength) { | |
715 | if (startIndex < usedVectorLength - (startIndex + count)) { | |
716 | if (startIndex) { | |
717 | memmove( | |
718 | storage->m_vector + count, | |
719 | storage->m_vector, | |
720 | sizeof(JSValue) * startIndex); | |
721 | } | |
722 | m_butterfly = m_butterfly->shift(structure(), count); | |
723 | storage = m_butterfly->arrayStorage(); | |
724 | storage->m_indexBias += count; | |
725 | } else { | |
726 | memmove( | |
727 | storage->m_vector + startIndex, | |
728 | storage->m_vector + startIndex + count, | |
729 | sizeof(JSValue) * (usedVectorLength - (startIndex + count))); | |
730 | for (unsigned i = usedVectorLength - count; i < usedVectorLength; ++i) | |
731 | storage->m_vector[i].clear(); | |
732 | } | |
733 | } | |
734 | return true; | |
735 | } | |
736 | ||
737 | bool JSArray::shiftCountWithAnyIndexingType(ExecState* exec, unsigned startIndex, unsigned count) | |
738 | { | |
739 | RELEASE_ASSERT(count > 0); | |
740 | ||
741 | switch (structure()->indexingType()) { | |
742 | case ArrayClass: | |
743 | return true; | |
744 | ||
745 | case ArrayWithUndecided: | |
746 | // Don't handle this because it's confusing and it shouldn't come up. | |
747 | return false; | |
748 | ||
749 | case ArrayWithInt32: | |
750 | case ArrayWithContiguous: { | |
751 | unsigned oldLength = m_butterfly->publicLength(); | |
752 | RELEASE_ASSERT(count <= oldLength); | |
753 | ||
754 | // We may have to walk the entire array to do the shift. We're willing to do | |
755 | // so only if it's not horribly slow. | |
756 | if (oldLength - (startIndex + count) >= MIN_SPARSE_ARRAY_INDEX) | |
757 | return shiftCountWithArrayStorage(startIndex, count, ensureArrayStorage(exec->vm())); | |
758 | ||
759 | unsigned end = oldLength - count; | |
760 | for (unsigned i = startIndex; i < end; ++i) { | |
761 | // Storing to a hole is fine since we're still having a good time. But reading | |
762 | // from a hole is totally not fine, since we might have to read from the proto | |
763 | // chain. | |
764 | JSValue v = m_butterfly->contiguous()[i + count].get(); | |
765 | if (UNLIKELY(!v)) { | |
766 | // The purpose of this path is to ensure that we don't make the same | |
767 | // mistake in the future: shiftCountWithArrayStorage() can't do anything | |
768 | // about holes (at least for now), but it can detect them quickly. So | |
769 | // we convert to array storage and then allow the array storage path to | |
770 | // figure it out. | |
771 | return shiftCountWithArrayStorage(startIndex, count, ensureArrayStorage(exec->vm())); | |
772 | } | |
773 | // No need for a barrier since we're just moving data around in the same vector. | |
774 | // This is in line with our standing assumption that we won't have a deletion | |
775 | // barrier. | |
776 | m_butterfly->contiguous()[i].setWithoutWriteBarrier(v); | |
777 | } | |
778 | for (unsigned i = end; i < oldLength; ++i) | |
779 | m_butterfly->contiguous()[i].clear(); | |
780 | ||
781 | m_butterfly->setPublicLength(oldLength - count); | |
782 | return true; | |
783 | } | |
784 | ||
785 | case ArrayWithDouble: { | |
786 | unsigned oldLength = m_butterfly->publicLength(); | |
787 | RELEASE_ASSERT(count <= oldLength); | |
788 | ||
789 | // We may have to walk the entire array to do the shift. We're willing to do | |
790 | // so only if it's not horribly slow. | |
791 | if (oldLength - (startIndex + count) >= MIN_SPARSE_ARRAY_INDEX) | |
792 | return shiftCountWithArrayStorage(startIndex, count, ensureArrayStorage(exec->vm())); | |
793 | ||
794 | unsigned end = oldLength - count; | |
795 | for (unsigned i = startIndex; i < end; ++i) { | |
796 | // Storing to a hole is fine since we're still having a good time. But reading | |
797 | // from a hole is totally not fine, since we might have to read from the proto | |
798 | // chain. | |
799 | double v = m_butterfly->contiguousDouble()[i + count]; | |
800 | if (UNLIKELY(v != v)) { | |
801 | // The purpose of this path is to ensure that we don't make the same | |
802 | // mistake in the future: shiftCountWithArrayStorage() can't do anything | |
803 | // about holes (at least for now), but it can detect them quickly. So | |
804 | // we convert to array storage and then allow the array storage path to | |
805 | // figure it out. | |
806 | return shiftCountWithArrayStorage(startIndex, count, ensureArrayStorage(exec->vm())); | |
807 | } | |
808 | // No need for a barrier since we're just moving data around in the same vector. | |
809 | // This is in line with our standing assumption that we won't have a deletion | |
810 | // barrier. | |
811 | m_butterfly->contiguousDouble()[i] = v; | |
812 | } | |
813 | for (unsigned i = end; i < oldLength; ++i) | |
814 | m_butterfly->contiguousDouble()[i] = QNaN; | |
815 | ||
816 | m_butterfly->setPublicLength(oldLength - count); | |
817 | return true; | |
818 | } | |
819 | ||
820 | case ArrayWithArrayStorage: | |
821 | case ArrayWithSlowPutArrayStorage: | |
822 | return shiftCountWithArrayStorage(startIndex, count, arrayStorage()); | |
823 | ||
824 | default: | |
825 | CRASH(); | |
826 | return false; | |
827 | } | |
828 | } | |
829 | ||
830 | // Returns true if the unshift can be handled, false to fallback. | |
831 | bool JSArray::unshiftCountWithArrayStorage(ExecState* exec, unsigned startIndex, unsigned count, ArrayStorage* storage) | |
832 | { | |
833 | unsigned length = storage->length(); | |
834 | ||
835 | RELEASE_ASSERT(startIndex <= length); | |
836 | ||
837 | // If the array contains holes or is otherwise in an abnormal state, | |
838 | // use the generic algorithm in ArrayPrototype. | |
839 | if (length != storage->m_numValuesInVector || storage->inSparseMode() || shouldUseSlowPut(structure()->indexingType())) | |
840 | return false; | |
841 | ||
842 | bool moveFront = !startIndex || startIndex < length / 2; | |
843 | ||
844 | unsigned vectorLength = storage->vectorLength(); | |
845 | ||
846 | if (moveFront && storage->m_indexBias >= count) { | |
847 | m_butterfly = storage->butterfly()->unshift(structure(), count); | |
848 | storage = m_butterfly->arrayStorage(); | |
849 | storage->m_indexBias -= count; | |
850 | storage->setVectorLength(vectorLength + count); | |
851 | } else if (!moveFront && vectorLength - length >= count) | |
852 | storage = storage->butterfly()->arrayStorage(); | |
853 | else if (unshiftCountSlowCase(exec->vm(), moveFront, count)) | |
854 | storage = arrayStorage(); | |
855 | else { | |
856 | throwOutOfMemoryError(exec); | |
857 | return true; | |
858 | } | |
859 | ||
860 | WriteBarrier<Unknown>* vector = storage->m_vector; | |
861 | ||
862 | if (startIndex) { | |
863 | if (moveFront) | |
864 | memmove(vector, vector + count, startIndex * sizeof(JSValue)); | |
865 | else if (length - startIndex) | |
866 | memmove(vector + startIndex + count, vector + startIndex, (length - startIndex) * sizeof(JSValue)); | |
867 | } | |
868 | ||
869 | for (unsigned i = 0; i < count; i++) | |
870 | vector[i + startIndex].clear(); | |
871 | return true; | |
872 | } | |
873 | ||
874 | bool JSArray::unshiftCountWithAnyIndexingType(ExecState* exec, unsigned startIndex, unsigned count) | |
875 | { | |
876 | switch (structure()->indexingType()) { | |
877 | case ArrayClass: | |
878 | case ArrayWithUndecided: | |
879 | // We could handle this. But it shouldn't ever come up, so we won't. | |
880 | return false; | |
881 | ||
882 | case ArrayWithInt32: | |
883 | case ArrayWithContiguous: { | |
884 | unsigned oldLength = m_butterfly->publicLength(); | |
885 | ||
886 | // We may have to walk the entire array to do the unshift. We're willing to do so | |
887 | // only if it's not horribly slow. | |
888 | if (oldLength - startIndex >= MIN_SPARSE_ARRAY_INDEX) | |
889 | return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(exec->vm())); | |
890 | ||
891 | ensureLength(exec->vm(), oldLength + count); | |
892 | ||
893 | for (unsigned i = oldLength; i-- > startIndex;) { | |
894 | JSValue v = m_butterfly->contiguous()[i].get(); | |
895 | if (UNLIKELY(!v)) | |
896 | return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(exec->vm())); | |
897 | m_butterfly->contiguous()[i + count].setWithoutWriteBarrier(v); | |
898 | } | |
899 | ||
900 | // NOTE: we're leaving being garbage in the part of the array that we shifted out | |
901 | // of. This is fine because the caller is required to store over that area, and | |
902 | // in contiguous mode storing into a hole is guaranteed to behave exactly the same | |
903 | // as storing over an existing element. | |
904 | ||
905 | return true; | |
906 | } | |
907 | ||
908 | case ArrayWithDouble: { | |
909 | unsigned oldLength = m_butterfly->publicLength(); | |
910 | ||
911 | // We may have to walk the entire array to do the unshift. We're willing to do so | |
912 | // only if it's not horribly slow. | |
913 | if (oldLength - startIndex >= MIN_SPARSE_ARRAY_INDEX) | |
914 | return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(exec->vm())); | |
915 | ||
916 | ensureLength(exec->vm(), oldLength + count); | |
917 | ||
918 | for (unsigned i = oldLength; i-- > startIndex;) { | |
919 | double v = m_butterfly->contiguousDouble()[i]; | |
920 | if (UNLIKELY(v != v)) | |
921 | return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(exec->vm())); | |
922 | m_butterfly->contiguousDouble()[i + count] = v; | |
923 | } | |
924 | ||
925 | // NOTE: we're leaving being garbage in the part of the array that we shifted out | |
926 | // of. This is fine because the caller is required to store over that area, and | |
927 | // in contiguous mode storing into a hole is guaranteed to behave exactly the same | |
928 | // as storing over an existing element. | |
929 | ||
930 | return true; | |
931 | } | |
932 | ||
933 | case ArrayWithArrayStorage: | |
934 | case ArrayWithSlowPutArrayStorage: | |
935 | return unshiftCountWithArrayStorage(exec, startIndex, count, arrayStorage()); | |
936 | ||
937 | default: | |
938 | CRASH(); | |
939 | return false; | |
940 | } | |
941 | } | |
942 | ||
943 | static int compareNumbersForQSortWithInt32(const void* a, const void* b) | |
944 | { | |
945 | int32_t ia = static_cast<const JSValue*>(a)->asInt32(); | |
946 | int32_t ib = static_cast<const JSValue*>(b)->asInt32(); | |
947 | return ia - ib; | |
948 | } | |
949 | ||
950 | static int compareNumbersForQSortWithDouble(const void* a, const void* b) | |
951 | { | |
952 | double da = *static_cast<const double*>(a); | |
953 | double db = *static_cast<const double*>(b); | |
954 | return (da > db) - (da < db); | |
955 | } | |
956 | ||
957 | static int compareNumbersForQSort(const void* a, const void* b) | |
958 | { | |
959 | double da = static_cast<const JSValue*>(a)->asNumber(); | |
960 | double db = static_cast<const JSValue*>(b)->asNumber(); | |
961 | return (da > db) - (da < db); | |
962 | } | |
963 | ||
964 | static int compareByStringPairForQSort(const void* a, const void* b) | |
965 | { | |
966 | const ValueStringPair* va = static_cast<const ValueStringPair*>(a); | |
967 | const ValueStringPair* vb = static_cast<const ValueStringPair*>(b); | |
968 | return codePointCompare(va->second, vb->second); | |
969 | } | |
970 | ||
971 | template<IndexingType indexingType> | |
972 | void JSArray::sortNumericVector(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData) | |
973 | { | |
974 | ASSERT(indexingType == ArrayWithInt32 || indexingType == ArrayWithDouble || indexingType == ArrayWithContiguous || indexingType == ArrayWithArrayStorage); | |
975 | ||
976 | unsigned lengthNotIncludingUndefined; | |
977 | unsigned newRelevantLength; | |
978 | compactForSorting<indexingType>( | |
979 | lengthNotIncludingUndefined, | |
980 | newRelevantLength); | |
981 | ||
982 | ContiguousJSValues data = indexingData<indexingType>(); | |
983 | ||
984 | if (indexingType == ArrayWithArrayStorage && arrayStorage()->m_sparseMap.get()) { | |
985 | throwOutOfMemoryError(exec); | |
986 | return; | |
987 | } | |
988 | ||
989 | if (!lengthNotIncludingUndefined) | |
990 | return; | |
991 | ||
992 | bool allValuesAreNumbers = true; | |
993 | switch (indexingType) { | |
994 | case ArrayWithInt32: | |
995 | case ArrayWithDouble: | |
996 | break; | |
997 | ||
998 | default: | |
999 | for (size_t i = 0; i < newRelevantLength; ++i) { | |
1000 | if (!data[i].isNumber()) { | |
1001 | allValuesAreNumbers = false; | |
1002 | break; | |
1003 | } | |
1004 | } | |
1005 | break; | |
1006 | } | |
1007 | ||
1008 | if (!allValuesAreNumbers) | |
1009 | return sort(exec, compareFunction, callType, callData); | |
1010 | ||
1011 | // For numeric comparison, which is fast, qsort is faster than mergesort. We | |
1012 | // also don't require mergesort's stability, since there's no user visible | |
1013 | // side-effect from swapping the order of equal primitive values. | |
1014 | int (*compare)(const void*, const void*); | |
1015 | switch (indexingType) { | |
1016 | case ArrayWithInt32: | |
1017 | compare = compareNumbersForQSortWithInt32; | |
1018 | break; | |
1019 | ||
1020 | case ArrayWithDouble: | |
1021 | compare = compareNumbersForQSortWithDouble; | |
1022 | ASSERT(sizeof(WriteBarrier<Unknown>) == sizeof(double)); | |
1023 | break; | |
1024 | ||
1025 | default: | |
1026 | compare = compareNumbersForQSort; | |
1027 | break; | |
1028 | } | |
1029 | ASSERT(data.length() >= newRelevantLength); | |
1030 | qsort(data.data(), newRelevantLength, sizeof(WriteBarrier<Unknown>), compare); | |
1031 | return; | |
1032 | } | |
1033 | ||
1034 | void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData) | |
1035 | { | |
1036 | ASSERT(!inSparseIndexingMode()); | |
1037 | ||
1038 | switch (structure()->indexingType()) { | |
1039 | case ArrayClass: | |
1040 | return; | |
1041 | ||
1042 | case ArrayWithInt32: | |
1043 | sortNumericVector<ArrayWithInt32>(exec, compareFunction, callType, callData); | |
1044 | break; | |
1045 | ||
1046 | case ArrayWithDouble: | |
1047 | sortNumericVector<ArrayWithDouble>(exec, compareFunction, callType, callData); | |
1048 | break; | |
1049 | ||
1050 | case ArrayWithContiguous: | |
1051 | sortNumericVector<ArrayWithContiguous>(exec, compareFunction, callType, callData); | |
1052 | return; | |
1053 | ||
1054 | case ArrayWithArrayStorage: | |
1055 | sortNumericVector<ArrayWithArrayStorage>(exec, compareFunction, callType, callData); | |
1056 | return; | |
1057 | ||
1058 | default: | |
1059 | CRASH(); | |
1060 | return; | |
1061 | } | |
1062 | } | |
1063 | ||
1064 | template <IndexingType> struct ContiguousTypeAccessor { | |
1065 | typedef WriteBarrier<Unknown> Type; | |
1066 | static JSValue getAsValue(ContiguousData<Type> data, size_t i) { return data[i].get(); } | |
1067 | static void setWithValue(VM& vm, JSArray* thisValue, ContiguousData<Type> data, size_t i, JSValue value) | |
1068 | { | |
1069 | data[i].set(vm, thisValue, value); | |
1070 | } | |
1071 | static void replaceDataReference(ContiguousData<Type>* outData, ContiguousJSValues inData) | |
1072 | { | |
1073 | *outData = inData; | |
1074 | } | |
1075 | }; | |
1076 | ||
1077 | template <> struct ContiguousTypeAccessor<ArrayWithDouble> { | |
1078 | typedef double Type; | |
1079 | static JSValue getAsValue(ContiguousData<Type> data, size_t i) { ASSERT(data[i] == data[i]); return JSValue(JSValue::EncodeAsDouble, data[i]); } | |
1080 | static void setWithValue(VM&, JSArray*, ContiguousData<Type> data, size_t i, JSValue value) | |
1081 | { | |
1082 | data[i] = value.asNumber(); | |
1083 | } | |
1084 | static NO_RETURN_DUE_TO_CRASH void replaceDataReference(ContiguousData<Type>*, ContiguousJSValues) | |
1085 | { | |
1086 | RELEASE_ASSERT_WITH_MESSAGE(0, "Inconsistent indexing types during compact array sort."); | |
1087 | } | |
1088 | }; | |
1089 | ||
1090 | ||
1091 | template<IndexingType indexingType, typename StorageType> | |
1092 | void JSArray::sortCompactedVector(ExecState* exec, ContiguousData<StorageType> data, unsigned relevantLength) | |
1093 | { | |
1094 | if (!relevantLength) | |
1095 | return; | |
1096 | ||
1097 | VM& vm = exec->vm(); | |
1098 | ||
1099 | // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that. | |
1100 | // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary | |
1101 | // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return | |
1102 | // random or otherwise changing results, effectively making compare function inconsistent. | |
1103 | ||
1104 | Vector<ValueStringPair, 0, UnsafeVectorOverflow> values(relevantLength); | |
1105 | if (!values.begin()) { | |
1106 | throwOutOfMemoryError(exec); | |
1107 | return; | |
1108 | } | |
1109 | ||
1110 | Heap::heap(this)->pushTempSortVector(&values); | |
1111 | ||
1112 | bool isSortingPrimitiveValues = true; | |
1113 | ||
1114 | for (size_t i = 0; i < relevantLength; i++) { | |
1115 | JSValue value = ContiguousTypeAccessor<indexingType>::getAsValue(data, i); | |
1116 | ASSERT(indexingType != ArrayWithInt32 || value.isInt32()); | |
1117 | ASSERT(!value.isUndefined()); | |
1118 | values[i].first = value; | |
1119 | if (indexingType != ArrayWithDouble && indexingType != ArrayWithInt32) | |
1120 | isSortingPrimitiveValues = isSortingPrimitiveValues && value.isPrimitive(); | |
1121 | } | |
1122 | ||
1123 | // FIXME: The following loop continues to call toString on subsequent values even after | |
1124 | // a toString call raises an exception. | |
1125 | ||
1126 | for (size_t i = 0; i < relevantLength; i++) | |
1127 | values[i].second = values[i].first.toWTFStringInline(exec); | |
1128 | ||
1129 | if (exec->hadException()) { | |
1130 | Heap::heap(this)->popTempSortVector(&values); | |
1131 | return; | |
1132 | } | |
1133 | ||
1134 | // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather | |
1135 | // than O(N log N). | |
1136 | ||
1137 | #if HAVE(MERGESORT) | |
1138 | if (isSortingPrimitiveValues) | |
1139 | qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort); | |
1140 | else | |
1141 | mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort); | |
1142 | #else | |
1143 | // FIXME: The qsort library function is likely to not be a stable sort. | |
1144 | // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort. | |
1145 | qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort); | |
1146 | #endif | |
1147 | ||
1148 | // If the toString function changed the length of the array or vector storage, | |
1149 | // increase the length to handle the orignal number of actual values. | |
1150 | switch (indexingType) { | |
1151 | case ArrayWithInt32: | |
1152 | case ArrayWithDouble: | |
1153 | case ArrayWithContiguous: | |
1154 | ensureLength(vm, relevantLength); | |
1155 | break; | |
1156 | ||
1157 | case ArrayWithArrayStorage: | |
1158 | if (arrayStorage()->vectorLength() < relevantLength) { | |
1159 | increaseVectorLength(exec->vm(), relevantLength); | |
1160 | ContiguousTypeAccessor<indexingType>::replaceDataReference(&data, arrayStorage()->vector()); | |
1161 | } | |
1162 | if (arrayStorage()->length() < relevantLength) | |
1163 | arrayStorage()->setLength(relevantLength); | |
1164 | break; | |
1165 | ||
1166 | default: | |
1167 | CRASH(); | |
1168 | } | |
1169 | ||
1170 | for (size_t i = 0; i < relevantLength; i++) | |
1171 | ContiguousTypeAccessor<indexingType>::setWithValue(vm, this, data, i, values[i].first); | |
1172 | ||
1173 | Heap::heap(this)->popTempSortVector(&values); | |
1174 | } | |
1175 | ||
1176 | void JSArray::sort(ExecState* exec) | |
1177 | { | |
1178 | ASSERT(!inSparseIndexingMode()); | |
1179 | ||
1180 | switch (structure()->indexingType()) { | |
1181 | case ArrayClass: | |
1182 | case ArrayWithUndecided: | |
1183 | return; | |
1184 | ||
1185 | case ArrayWithInt32: { | |
1186 | unsigned lengthNotIncludingUndefined; | |
1187 | unsigned newRelevantLength; | |
1188 | compactForSorting<ArrayWithInt32>( | |
1189 | lengthNotIncludingUndefined, newRelevantLength); | |
1190 | ||
1191 | sortCompactedVector<ArrayWithInt32>( | |
1192 | exec, m_butterfly->contiguousInt32(), lengthNotIncludingUndefined); | |
1193 | return; | |
1194 | } | |
1195 | ||
1196 | case ArrayWithDouble: { | |
1197 | unsigned lengthNotIncludingUndefined; | |
1198 | unsigned newRelevantLength; | |
1199 | compactForSorting<ArrayWithDouble>( | |
1200 | lengthNotIncludingUndefined, newRelevantLength); | |
1201 | ||
1202 | sortCompactedVector<ArrayWithDouble>( | |
1203 | exec, m_butterfly->contiguousDouble(), lengthNotIncludingUndefined); | |
1204 | return; | |
1205 | } | |
1206 | ||
1207 | case ArrayWithContiguous: { | |
1208 | unsigned lengthNotIncludingUndefined; | |
1209 | unsigned newRelevantLength; | |
1210 | compactForSorting<ArrayWithContiguous>( | |
1211 | lengthNotIncludingUndefined, newRelevantLength); | |
1212 | ||
1213 | sortCompactedVector<ArrayWithContiguous>( | |
1214 | exec, m_butterfly->contiguous(), lengthNotIncludingUndefined); | |
1215 | return; | |
1216 | } | |
1217 | ||
1218 | case ArrayWithArrayStorage: { | |
1219 | unsigned lengthNotIncludingUndefined; | |
1220 | unsigned newRelevantLength; | |
1221 | compactForSorting<ArrayWithArrayStorage>( | |
1222 | lengthNotIncludingUndefined, newRelevantLength); | |
1223 | ArrayStorage* storage = m_butterfly->arrayStorage(); | |
1224 | ASSERT(!storage->m_sparseMap); | |
1225 | ||
1226 | sortCompactedVector<ArrayWithArrayStorage>(exec, storage->vector(), lengthNotIncludingUndefined); | |
1227 | return; | |
1228 | } | |
1229 | ||
1230 | default: | |
1231 | RELEASE_ASSERT_NOT_REACHED(); | |
1232 | } | |
1233 | } | |
1234 | ||
1235 | struct AVLTreeNodeForArrayCompare { | |
1236 | JSValue value; | |
1237 | ||
1238 | // Child pointers. The high bit of gt is robbed and used as the | |
1239 | // balance factor sign. The high bit of lt is robbed and used as | |
1240 | // the magnitude of the balance factor. | |
1241 | int32_t gt; | |
1242 | int32_t lt; | |
1243 | }; | |
1244 | ||
1245 | struct AVLTreeAbstractorForArrayCompare { | |
1246 | typedef int32_t handle; // Handle is an index into m_nodes vector. | |
1247 | typedef JSValue key; | |
1248 | typedef int32_t size; | |
1249 | ||
1250 | Vector<AVLTreeNodeForArrayCompare, 0, UnsafeVectorOverflow> m_nodes; | |
1251 | ExecState* m_exec; | |
1252 | JSValue m_compareFunction; | |
1253 | CallType m_compareCallType; | |
1254 | const CallData* m_compareCallData; | |
1255 | OwnPtr<CachedCall> m_cachedCall; | |
1256 | ||
1257 | handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; } | |
1258 | void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; } | |
1259 | handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; } | |
1260 | void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; } | |
1261 | ||
1262 | int get_balance_factor(handle h) | |
1263 | { | |
1264 | if (m_nodes[h].gt & 0x80000000) | |
1265 | return -1; | |
1266 | return static_cast<unsigned>(m_nodes[h].lt) >> 31; | |
1267 | } | |
1268 | ||
1269 | void set_balance_factor(handle h, int bf) | |
1270 | { | |
1271 | if (bf == 0) { | |
1272 | m_nodes[h].lt &= 0x7FFFFFFF; | |
1273 | m_nodes[h].gt &= 0x7FFFFFFF; | |
1274 | } else { | |
1275 | m_nodes[h].lt |= 0x80000000; | |
1276 | if (bf < 0) | |
1277 | m_nodes[h].gt |= 0x80000000; | |
1278 | else | |
1279 | m_nodes[h].gt &= 0x7FFFFFFF; | |
1280 | } | |
1281 | } | |
1282 | ||
1283 | int compare_key_key(key va, key vb) | |
1284 | { | |
1285 | ASSERT(!va.isUndefined()); | |
1286 | ASSERT(!vb.isUndefined()); | |
1287 | ||
1288 | if (m_exec->hadException()) | |
1289 | return 1; | |
1290 | ||
1291 | double compareResult; | |
1292 | if (m_cachedCall) { | |
1293 | m_cachedCall->setThis(jsUndefined()); | |
1294 | m_cachedCall->setArgument(0, va); | |
1295 | m_cachedCall->setArgument(1, vb); | |
1296 | compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec)); | |
1297 | } else { | |
1298 | MarkedArgumentBuffer arguments; | |
1299 | arguments.append(va); | |
1300 | arguments.append(vb); | |
1301 | compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, jsUndefined(), arguments).toNumber(m_exec); | |
1302 | } | |
1303 | return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent. | |
1304 | } | |
1305 | ||
1306 | int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); } | |
1307 | int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); } | |
1308 | ||
1309 | static handle null() { return 0x7FFFFFFF; } | |
1310 | }; | |
1311 | ||
1312 | template<IndexingType indexingType> | |
1313 | void JSArray::sortVector(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData) | |
1314 | { | |
1315 | ASSERT(!inSparseIndexingMode()); | |
1316 | ASSERT(indexingType == structure()->indexingType()); | |
1317 | ||
1318 | // FIXME: This ignores exceptions raised in the compare function or in toNumber. | |
1319 | ||
1320 | // The maximum tree depth is compiled in - but the caller is clearly up to no good | |
1321 | // if a larger array is passed. | |
1322 | ASSERT(m_butterfly->publicLength() <= static_cast<unsigned>(std::numeric_limits<int>::max())); | |
1323 | if (m_butterfly->publicLength() > static_cast<unsigned>(std::numeric_limits<int>::max())) | |
1324 | return; | |
1325 | ||
1326 | unsigned usedVectorLength = relevantLength<indexingType>(); | |
1327 | unsigned nodeCount = usedVectorLength; | |
1328 | ||
1329 | if (!nodeCount) | |
1330 | return; | |
1331 | ||
1332 | AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items | |
1333 | tree.abstractor().m_exec = exec; | |
1334 | tree.abstractor().m_compareFunction = compareFunction; | |
1335 | tree.abstractor().m_compareCallType = callType; | |
1336 | tree.abstractor().m_compareCallData = &callData; | |
1337 | tree.abstractor().m_nodes.grow(nodeCount); | |
1338 | ||
1339 | if (callType == CallTypeJS) | |
1340 | tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, jsCast<JSFunction*>(compareFunction), 2)); | |
1341 | ||
1342 | if (!tree.abstractor().m_nodes.begin()) { | |
1343 | throwOutOfMemoryError(exec); | |
1344 | return; | |
1345 | } | |
1346 | ||
1347 | // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified | |
1348 | // right out from under us while we're building the tree here. | |
1349 | ||
1350 | unsigned numDefined = 0; | |
1351 | unsigned numUndefined = 0; | |
1352 | ||
1353 | // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree. | |
1354 | for (; numDefined < usedVectorLength; ++numDefined) { | |
1355 | if (numDefined >= m_butterfly->vectorLength()) | |
1356 | break; | |
1357 | JSValue v = getHolyIndexQuickly(numDefined); | |
1358 | if (!v || v.isUndefined()) | |
1359 | break; | |
1360 | tree.abstractor().m_nodes[numDefined].value = v; | |
1361 | tree.insert(numDefined); | |
1362 | } | |
1363 | for (unsigned i = numDefined; i < usedVectorLength; ++i) { | |
1364 | if (i >= m_butterfly->vectorLength()) | |
1365 | break; | |
1366 | JSValue v = getHolyIndexQuickly(i); | |
1367 | if (v) { | |
1368 | if (v.isUndefined()) | |
1369 | ++numUndefined; | |
1370 | else { | |
1371 | tree.abstractor().m_nodes[numDefined].value = v; | |
1372 | tree.insert(numDefined); | |
1373 | ++numDefined; | |
1374 | } | |
1375 | } | |
1376 | } | |
1377 | ||
1378 | unsigned newUsedVectorLength = numDefined + numUndefined; | |
1379 | ||
1380 | // The array size may have changed. Figure out the new bounds. | |
1381 | unsigned newestUsedVectorLength = currentRelevantLength(); | |
1382 | ||
1383 | unsigned elementsToExtractThreshold = min(min(newestUsedVectorLength, numDefined), static_cast<unsigned>(tree.abstractor().m_nodes.size())); | |
1384 | unsigned undefinedElementsThreshold = min(newestUsedVectorLength, newUsedVectorLength); | |
1385 | unsigned clearElementsThreshold = min(newestUsedVectorLength, usedVectorLength); | |
1386 | ||
1387 | // Copy the values back into m_storage. | |
1388 | AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter; | |
1389 | iter.start_iter_least(tree); | |
1390 | VM& vm = exec->vm(); | |
1391 | for (unsigned i = 0; i < elementsToExtractThreshold; ++i) { | |
1392 | ASSERT(i < butterfly()->vectorLength()); | |
1393 | if (structure()->indexingType() == ArrayWithDouble) | |
1394 | butterfly()->contiguousDouble()[i] = tree.abstractor().m_nodes[*iter].value.asNumber(); | |
1395 | else | |
1396 | currentIndexingData()[i].set(vm, this, tree.abstractor().m_nodes[*iter].value); | |
1397 | ++iter; | |
1398 | } | |
1399 | // Put undefined values back in. | |
1400 | switch (structure()->indexingType()) { | |
1401 | case ArrayWithInt32: | |
1402 | case ArrayWithDouble: | |
1403 | ASSERT(elementsToExtractThreshold == undefinedElementsThreshold); | |
1404 | break; | |
1405 | ||
1406 | default: | |
1407 | for (unsigned i = elementsToExtractThreshold; i < undefinedElementsThreshold; ++i) { | |
1408 | ASSERT(i < butterfly()->vectorLength()); | |
1409 | currentIndexingData()[i].setUndefined(); | |
1410 | } | |
1411 | } | |
1412 | ||
1413 | // Ensure that unused values in the vector are zeroed out. | |
1414 | for (unsigned i = undefinedElementsThreshold; i < clearElementsThreshold; ++i) { | |
1415 | ASSERT(i < butterfly()->vectorLength()); | |
1416 | if (structure()->indexingType() == ArrayWithDouble) | |
1417 | butterfly()->contiguousDouble()[i] = QNaN; | |
1418 | else | |
1419 | currentIndexingData()[i].clear(); | |
1420 | } | |
1421 | ||
1422 | if (hasArrayStorage(structure()->indexingType())) | |
1423 | arrayStorage()->m_numValuesInVector = newUsedVectorLength; | |
1424 | } | |
1425 | ||
1426 | void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData) | |
1427 | { | |
1428 | ASSERT(!inSparseIndexingMode()); | |
1429 | ||
1430 | switch (structure()->indexingType()) { | |
1431 | case ArrayClass: | |
1432 | case ArrayWithUndecided: | |
1433 | return; | |
1434 | ||
1435 | case ArrayWithInt32: | |
1436 | sortVector<ArrayWithInt32>(exec, compareFunction, callType, callData); | |
1437 | return; | |
1438 | ||
1439 | case ArrayWithDouble: | |
1440 | sortVector<ArrayWithDouble>(exec, compareFunction, callType, callData); | |
1441 | return; | |
1442 | ||
1443 | case ArrayWithContiguous: | |
1444 | sortVector<ArrayWithContiguous>(exec, compareFunction, callType, callData); | |
1445 | return; | |
1446 | ||
1447 | case ArrayWithArrayStorage: | |
1448 | sortVector<ArrayWithArrayStorage>(exec, compareFunction, callType, callData); | |
1449 | return; | |
1450 | ||
1451 | default: | |
1452 | RELEASE_ASSERT_NOT_REACHED(); | |
1453 | } | |
1454 | } | |
1455 | ||
1456 | void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args) | |
1457 | { | |
1458 | unsigned i = 0; | |
1459 | unsigned vectorEnd; | |
1460 | WriteBarrier<Unknown>* vector; | |
1461 | ||
1462 | switch (structure()->indexingType()) { | |
1463 | case ArrayClass: | |
1464 | return; | |
1465 | ||
1466 | case ArrayWithUndecided: { | |
1467 | vector = 0; | |
1468 | vectorEnd = 0; | |
1469 | break; | |
1470 | } | |
1471 | ||
1472 | case ArrayWithInt32: | |
1473 | case ArrayWithContiguous: { | |
1474 | vectorEnd = m_butterfly->publicLength(); | |
1475 | vector = m_butterfly->contiguous().data(); | |
1476 | break; | |
1477 | } | |
1478 | ||
1479 | case ArrayWithDouble: { | |
1480 | vector = 0; | |
1481 | vectorEnd = 0; | |
1482 | for (; i < m_butterfly->publicLength(); ++i) { | |
1483 | double v = butterfly()->contiguousDouble()[i]; | |
1484 | if (v != v) | |
1485 | break; | |
1486 | args.append(JSValue(JSValue::EncodeAsDouble, v)); | |
1487 | } | |
1488 | break; | |
1489 | } | |
1490 | ||
1491 | case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: { | |
1492 | ArrayStorage* storage = m_butterfly->arrayStorage(); | |
1493 | ||
1494 | vector = storage->m_vector; | |
1495 | vectorEnd = min(storage->length(), storage->vectorLength()); | |
1496 | break; | |
1497 | } | |
1498 | ||
1499 | default: | |
1500 | CRASH(); | |
1501 | vector = 0; | |
1502 | vectorEnd = 0; | |
1503 | break; | |
1504 | } | |
1505 | ||
1506 | for (; i < vectorEnd; ++i) { | |
1507 | WriteBarrier<Unknown>& v = vector[i]; | |
1508 | if (!v) | |
1509 | break; | |
1510 | args.append(v.get()); | |
1511 | } | |
1512 | ||
1513 | for (; i < length(); ++i) | |
1514 | args.append(get(exec, i)); | |
1515 | } | |
1516 | ||
1517 | void JSArray::copyToArguments(ExecState* exec, CallFrame* callFrame, uint32_t length) | |
1518 | { | |
1519 | unsigned i = 0; | |
1520 | WriteBarrier<Unknown>* vector; | |
1521 | unsigned vectorEnd; | |
1522 | ||
1523 | ASSERT(length == this->length()); | |
1524 | switch (structure()->indexingType()) { | |
1525 | case ArrayClass: | |
1526 | return; | |
1527 | ||
1528 | case ArrayWithUndecided: { | |
1529 | vector = 0; | |
1530 | vectorEnd = 0; | |
1531 | break; | |
1532 | } | |
1533 | ||
1534 | case ArrayWithInt32: | |
1535 | case ArrayWithContiguous: { | |
1536 | vector = m_butterfly->contiguous().data(); | |
1537 | vectorEnd = m_butterfly->publicLength(); | |
1538 | break; | |
1539 | } | |
1540 | ||
1541 | case ArrayWithDouble: { | |
1542 | vector = 0; | |
1543 | vectorEnd = 0; | |
1544 | for (; i < m_butterfly->publicLength(); ++i) { | |
1545 | ASSERT(i < butterfly()->vectorLength()); | |
1546 | double v = m_butterfly->contiguousDouble()[i]; | |
1547 | if (v != v) | |
1548 | break; | |
1549 | callFrame->setArgument(i, JSValue(JSValue::EncodeAsDouble, v)); | |
1550 | } | |
1551 | break; | |
1552 | } | |
1553 | ||
1554 | case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: { | |
1555 | ArrayStorage* storage = m_butterfly->arrayStorage(); | |
1556 | vector = storage->m_vector; | |
1557 | vectorEnd = min(length, storage->vectorLength()); | |
1558 | break; | |
1559 | } | |
1560 | ||
1561 | default: | |
1562 | CRASH(); | |
1563 | vector = 0; | |
1564 | vectorEnd = 0; | |
1565 | break; | |
1566 | } | |
1567 | ||
1568 | for (; i < vectorEnd; ++i) { | |
1569 | WriteBarrier<Unknown>& v = vector[i]; | |
1570 | if (!v) | |
1571 | break; | |
1572 | callFrame->setArgument(i, v.get()); | |
1573 | } | |
1574 | ||
1575 | for (; i < length; ++i) | |
1576 | callFrame->setArgument(i, get(exec, i)); | |
1577 | } | |
1578 | ||
1579 | template<IndexingType indexingType> | |
1580 | void JSArray::compactForSorting(unsigned& numDefined, unsigned& newRelevantLength) | |
1581 | { | |
1582 | ASSERT(!inSparseIndexingMode()); | |
1583 | ASSERT(indexingType == structure()->indexingType()); | |
1584 | ||
1585 | unsigned myRelevantLength = relevantLength<indexingType>(); | |
1586 | ||
1587 | numDefined = 0; | |
1588 | unsigned numUndefined = 0; | |
1589 | ||
1590 | for (; numDefined < myRelevantLength; ++numDefined) { | |
1591 | ASSERT(numDefined < m_butterfly->vectorLength()); | |
1592 | if (indexingType == ArrayWithInt32) { | |
1593 | JSValue v = m_butterfly->contiguousInt32()[numDefined].get(); | |
1594 | if (!v) | |
1595 | break; | |
1596 | ASSERT(v.isInt32()); | |
1597 | continue; | |
1598 | } | |
1599 | if (indexingType == ArrayWithDouble) { | |
1600 | double v = m_butterfly->contiguousDouble()[numDefined]; | |
1601 | if (v != v) | |
1602 | break; | |
1603 | continue; | |
1604 | } | |
1605 | JSValue v = indexingData<indexingType>()[numDefined].get(); | |
1606 | if (!v || v.isUndefined()) | |
1607 | break; | |
1608 | } | |
1609 | ||
1610 | for (unsigned i = numDefined; i < myRelevantLength; ++i) { | |
1611 | ASSERT(i < m_butterfly->vectorLength()); | |
1612 | if (indexingType == ArrayWithInt32) { | |
1613 | JSValue v = m_butterfly->contiguousInt32()[i].get(); | |
1614 | if (!v) | |
1615 | continue; | |
1616 | ASSERT(v.isInt32()); | |
1617 | ASSERT(numDefined < m_butterfly->vectorLength()); | |
1618 | m_butterfly->contiguousInt32()[numDefined++].setWithoutWriteBarrier(v); | |
1619 | continue; | |
1620 | } | |
1621 | if (indexingType == ArrayWithDouble) { | |
1622 | double v = m_butterfly->contiguousDouble()[i]; | |
1623 | if (v != v) | |
1624 | continue; | |
1625 | ASSERT(numDefined < m_butterfly->vectorLength()); | |
1626 | m_butterfly->contiguousDouble()[numDefined++] = v; | |
1627 | continue; | |
1628 | } | |
1629 | JSValue v = indexingData<indexingType>()[i].get(); | |
1630 | if (v) { | |
1631 | if (v.isUndefined()) | |
1632 | ++numUndefined; | |
1633 | else { | |
1634 | ASSERT(numDefined < m_butterfly->vectorLength()); | |
1635 | indexingData<indexingType>()[numDefined++].setWithoutWriteBarrier(v); | |
1636 | } | |
1637 | } | |
1638 | } | |
1639 | ||
1640 | newRelevantLength = numDefined + numUndefined; | |
1641 | ||
1642 | if (hasArrayStorage(indexingType)) | |
1643 | RELEASE_ASSERT(!arrayStorage()->m_sparseMap); | |
1644 | ||
1645 | switch (indexingType) { | |
1646 | case ArrayWithInt32: | |
1647 | case ArrayWithDouble: | |
1648 | RELEASE_ASSERT(numDefined == newRelevantLength); | |
1649 | break; | |
1650 | ||
1651 | default: | |
1652 | for (unsigned i = numDefined; i < newRelevantLength; ++i) { | |
1653 | ASSERT(i < m_butterfly->vectorLength()); | |
1654 | indexingData<indexingType>()[i].setUndefined(); | |
1655 | } | |
1656 | break; | |
1657 | } | |
1658 | for (unsigned i = newRelevantLength; i < myRelevantLength; ++i) { | |
1659 | ASSERT(i < m_butterfly->vectorLength()); | |
1660 | if (indexingType == ArrayWithDouble) | |
1661 | m_butterfly->contiguousDouble()[i] = QNaN; | |
1662 | else | |
1663 | indexingData<indexingType>()[i].clear(); | |
1664 | } | |
1665 | ||
1666 | if (hasArrayStorage(indexingType)) | |
1667 | arrayStorage()->m_numValuesInVector = newRelevantLength; | |
1668 | } | |
1669 | ||
1670 | } // namespace JSC |