]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (C) 2011, 2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #include "config.h" | |
27 | #include "DFGPredictionPropagationPhase.h" | |
28 | ||
29 | #if ENABLE(DFG_JIT) | |
30 | ||
31 | #include "DFGGraph.h" | |
32 | #include "DFGPhase.h" | |
33 | ||
34 | namespace JSC { namespace DFG { | |
35 | ||
36 | class PredictionPropagationPhase : public Phase { | |
37 | public: | |
38 | PredictionPropagationPhase(Graph& graph) | |
39 | : Phase(graph, "prediction propagation") | |
40 | { | |
41 | } | |
42 | ||
43 | void run() | |
44 | { | |
45 | #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) | |
46 | m_count = 0; | |
47 | #endif | |
48 | // 1) propagate predictions | |
49 | ||
50 | do { | |
51 | m_changed = false; | |
52 | ||
53 | // Forward propagation is near-optimal for both topologically-sorted and | |
54 | // DFS-sorted code. | |
55 | propagateForward(); | |
56 | if (!m_changed) | |
57 | break; | |
58 | ||
59 | // Backward propagation reduces the likelihood that pathological code will | |
60 | // cause slowness. Loops (especially nested ones) resemble backward flow. | |
61 | // This pass captures two cases: (1) it detects if the forward fixpoint | |
62 | // found a sound solution and (2) short-circuits backward flow. | |
63 | m_changed = false; | |
64 | propagateBackward(); | |
65 | } while (m_changed); | |
66 | ||
67 | // 2) repropagate predictions while doing double voting. | |
68 | ||
69 | do { | |
70 | m_changed = false; | |
71 | doRoundOfDoubleVoting(); | |
72 | propagateForward(); | |
73 | if (!m_changed) | |
74 | break; | |
75 | ||
76 | m_changed = false; | |
77 | doRoundOfDoubleVoting(); | |
78 | propagateBackward(); | |
79 | } while (m_changed); | |
80 | } | |
81 | ||
82 | private: | |
83 | bool setPrediction(PredictedType prediction) | |
84 | { | |
85 | ASSERT(m_graph[m_compileIndex].hasResult()); | |
86 | ||
87 | // setPrediction() is used when we know that there is no way that we can change | |
88 | // our minds about what the prediction is going to be. There is no semantic | |
89 | // difference between setPrediction() and mergePrediction() other than the | |
90 | // increased checking to validate this property. | |
91 | ASSERT(m_graph[m_compileIndex].prediction() == PredictNone || m_graph[m_compileIndex].prediction() == prediction); | |
92 | ||
93 | return m_graph[m_compileIndex].predict(prediction); | |
94 | } | |
95 | ||
96 | bool mergePrediction(PredictedType prediction) | |
97 | { | |
98 | ASSERT(m_graph[m_compileIndex].hasResult()); | |
99 | ||
100 | return m_graph[m_compileIndex].predict(prediction); | |
101 | } | |
102 | ||
103 | bool isNotNegZero(NodeIndex nodeIndex) | |
104 | { | |
105 | if (!m_graph.isNumberConstant(nodeIndex)) | |
106 | return false; | |
107 | double value = m_graph.valueOfNumberConstant(nodeIndex); | |
108 | return !value && 1.0 / value < 0.0; | |
109 | } | |
110 | ||
111 | bool isNotZero(NodeIndex nodeIndex) | |
112 | { | |
113 | if (!m_graph.isNumberConstant(nodeIndex)) | |
114 | return false; | |
115 | return !!m_graph.valueOfNumberConstant(nodeIndex); | |
116 | } | |
117 | ||
118 | void propagate(Node& node) | |
119 | { | |
120 | if (!node.shouldGenerate()) | |
121 | return; | |
122 | ||
123 | NodeType op = node.op(); | |
124 | NodeFlags flags = node.flags() & NodeBackPropMask; | |
125 | ||
126 | #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) | |
127 | dataLog(" %s @%u: %s ", Graph::opName(op), m_compileIndex, nodeFlagsAsString(flags)); | |
128 | #endif | |
129 | ||
130 | bool changed = false; | |
131 | ||
132 | switch (op) { | |
133 | case JSConstant: | |
134 | case WeakJSConstant: { | |
135 | changed |= setPrediction(predictionFromValue(m_graph.valueOfJSConstant(m_compileIndex))); | |
136 | break; | |
137 | } | |
138 | ||
139 | case GetLocal: { | |
140 | VariableAccessData* variableAccessData = node.variableAccessData(); | |
141 | PredictedType prediction = variableAccessData->prediction(); | |
142 | if (prediction) | |
143 | changed |= mergePrediction(prediction); | |
144 | ||
145 | changed |= variableAccessData->mergeFlags(flags); | |
146 | break; | |
147 | } | |
148 | ||
149 | case SetLocal: { | |
150 | VariableAccessData* variableAccessData = node.variableAccessData(); | |
151 | changed |= variableAccessData->predict(m_graph[node.child1()].prediction()); | |
152 | changed |= m_graph[node.child1()].mergeFlags(variableAccessData->flags()); | |
153 | break; | |
154 | } | |
155 | ||
156 | case Flush: { | |
157 | // Make sure that the analysis knows that flushed locals escape. | |
158 | VariableAccessData* variableAccessData = node.variableAccessData(); | |
159 | changed |= variableAccessData->mergeFlags(NodeUsedAsValue); | |
160 | break; | |
161 | } | |
162 | ||
163 | case BitAnd: | |
164 | case BitOr: | |
165 | case BitXor: | |
166 | case BitRShift: | |
167 | case BitLShift: | |
168 | case BitURShift: { | |
169 | changed |= setPrediction(PredictInt32); | |
170 | flags |= NodeUsedAsInt; | |
171 | flags &= ~(NodeUsedAsNumber | NodeNeedsNegZero); | |
172 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
173 | changed |= m_graph[node.child2()].mergeFlags(flags); | |
174 | break; | |
175 | } | |
176 | ||
177 | case ValueToInt32: { | |
178 | changed |= setPrediction(PredictInt32); | |
179 | flags |= NodeUsedAsInt; | |
180 | flags &= ~(NodeUsedAsNumber | NodeNeedsNegZero); | |
181 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
182 | break; | |
183 | } | |
184 | ||
185 | case ArrayPop: { | |
186 | changed |= mergePrediction(node.getHeapPrediction()); | |
187 | changed |= mergeDefaultFlags(node); | |
188 | break; | |
189 | } | |
190 | ||
191 | case ArrayPush: { | |
192 | changed |= mergePrediction(node.getHeapPrediction()); | |
193 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
194 | changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsValue); | |
195 | break; | |
196 | } | |
197 | ||
198 | case RegExpExec: | |
199 | case RegExpTest: { | |
200 | changed |= mergePrediction(node.getHeapPrediction()); | |
201 | changed |= mergeDefaultFlags(node); | |
202 | break; | |
203 | } | |
204 | ||
205 | case StringCharCodeAt: { | |
206 | changed |= mergePrediction(PredictInt32); | |
207 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
208 | changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); | |
209 | break; | |
210 | } | |
211 | ||
212 | case ArithMod: { | |
213 | PredictedType left = m_graph[node.child1()].prediction(); | |
214 | PredictedType right = m_graph[node.child2()].prediction(); | |
215 | ||
216 | if (left && right) { | |
217 | if (isInt32Prediction(mergePredictions(left, right)) | |
218 | && nodeCanSpeculateInteger(node.arithNodeFlags())) | |
219 | changed |= mergePrediction(PredictInt32); | |
220 | else | |
221 | changed |= mergePrediction(PredictDouble); | |
222 | } | |
223 | ||
224 | flags |= NodeUsedAsValue; | |
225 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
226 | changed |= m_graph[node.child2()].mergeFlags(flags); | |
227 | break; | |
228 | } | |
229 | ||
230 | case UInt32ToNumber: { | |
231 | if (nodeCanSpeculateInteger(node.arithNodeFlags())) | |
232 | changed |= mergePrediction(PredictInt32); | |
233 | else | |
234 | changed |= mergePrediction(PredictNumber); | |
235 | ||
236 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
237 | break; | |
238 | } | |
239 | ||
240 | case ValueAdd: { | |
241 | PredictedType left = m_graph[node.child1()].prediction(); | |
242 | PredictedType right = m_graph[node.child2()].prediction(); | |
243 | ||
244 | if (left && right) { | |
245 | if (isNumberPrediction(left) && isNumberPrediction(right)) { | |
246 | if (m_graph.addShouldSpeculateInteger(node)) | |
247 | changed |= mergePrediction(PredictInt32); | |
248 | else | |
249 | changed |= mergePrediction(PredictDouble); | |
250 | } else if (!(left & PredictNumber) || !(right & PredictNumber)) { | |
251 | // left or right is definitely something other than a number. | |
252 | changed |= mergePrediction(PredictString); | |
253 | } else | |
254 | changed |= mergePrediction(PredictString | PredictInt32 | PredictDouble); | |
255 | } | |
256 | ||
257 | if (isNotNegZero(node.child1().index()) || isNotNegZero(node.child2().index())) | |
258 | flags &= ~NodeNeedsNegZero; | |
259 | ||
260 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
261 | changed |= m_graph[node.child2()].mergeFlags(flags); | |
262 | break; | |
263 | } | |
264 | ||
265 | case ArithAdd: { | |
266 | PredictedType left = m_graph[node.child1()].prediction(); | |
267 | PredictedType right = m_graph[node.child2()].prediction(); | |
268 | ||
269 | if (left && right) { | |
270 | if (m_graph.addShouldSpeculateInteger(node)) | |
271 | changed |= mergePrediction(PredictInt32); | |
272 | else | |
273 | changed |= mergePrediction(PredictDouble); | |
274 | } | |
275 | ||
276 | if (isNotNegZero(node.child1().index()) || isNotNegZero(node.child2().index())) | |
277 | flags &= ~NodeNeedsNegZero; | |
278 | ||
279 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
280 | changed |= m_graph[node.child2()].mergeFlags(flags); | |
281 | break; | |
282 | } | |
283 | ||
284 | case ArithSub: { | |
285 | PredictedType left = m_graph[node.child1()].prediction(); | |
286 | PredictedType right = m_graph[node.child2()].prediction(); | |
287 | ||
288 | if (left && right) { | |
289 | if (m_graph.addShouldSpeculateInteger(node)) | |
290 | changed |= mergePrediction(PredictInt32); | |
291 | else | |
292 | changed |= mergePrediction(PredictDouble); | |
293 | } | |
294 | ||
295 | if (isNotZero(node.child1().index()) || isNotZero(node.child2().index())) | |
296 | flags &= ~NodeNeedsNegZero; | |
297 | ||
298 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
299 | changed |= m_graph[node.child2()].mergeFlags(flags); | |
300 | break; | |
301 | } | |
302 | ||
303 | case ArithNegate: | |
304 | if (m_graph[node.child1()].prediction()) { | |
305 | if (m_graph.negateShouldSpeculateInteger(node)) | |
306 | changed |= mergePrediction(PredictInt32); | |
307 | else | |
308 | changed |= mergePrediction(PredictDouble); | |
309 | } | |
310 | ||
311 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
312 | break; | |
313 | ||
314 | case ArithMin: | |
315 | case ArithMax: { | |
316 | PredictedType left = m_graph[node.child1()].prediction(); | |
317 | PredictedType right = m_graph[node.child2()].prediction(); | |
318 | ||
319 | if (left && right) { | |
320 | if (isInt32Prediction(mergePredictions(left, right)) | |
321 | && nodeCanSpeculateInteger(node.arithNodeFlags())) | |
322 | changed |= mergePrediction(PredictInt32); | |
323 | else | |
324 | changed |= mergePrediction(PredictDouble); | |
325 | } | |
326 | ||
327 | flags |= NodeUsedAsNumber; | |
328 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
329 | changed |= m_graph[node.child2()].mergeFlags(flags); | |
330 | break; | |
331 | } | |
332 | ||
333 | case ArithMul: | |
334 | case ArithDiv: { | |
335 | PredictedType left = m_graph[node.child1()].prediction(); | |
336 | PredictedType right = m_graph[node.child2()].prediction(); | |
337 | ||
338 | if (left && right) { | |
339 | if (isInt32Prediction(mergePredictions(left, right)) | |
340 | && nodeCanSpeculateInteger(node.arithNodeFlags())) | |
341 | changed |= mergePrediction(PredictInt32); | |
342 | else | |
343 | changed |= mergePrediction(PredictDouble); | |
344 | } | |
345 | ||
346 | // As soon as a multiply happens, we can easily end up in the part | |
347 | // of the double domain where the point at which you do truncation | |
348 | // can change the outcome. So, ArithMul always checks for overflow | |
349 | // no matter what, and always forces its inputs to check as well. | |
350 | ||
351 | flags |= NodeUsedAsNumber | NodeNeedsNegZero; | |
352 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
353 | changed |= m_graph[node.child2()].mergeFlags(flags); | |
354 | break; | |
355 | } | |
356 | ||
357 | case ArithSqrt: { | |
358 | changed |= setPrediction(PredictDouble); | |
359 | changed |= m_graph[node.child1()].mergeFlags(flags | NodeUsedAsValue); | |
360 | break; | |
361 | } | |
362 | ||
363 | case ArithAbs: { | |
364 | PredictedType child = m_graph[node.child1()].prediction(); | |
365 | if (nodeCanSpeculateInteger(node.arithNodeFlags())) | |
366 | changed |= mergePrediction(child); | |
367 | else | |
368 | changed |= setPrediction(PredictDouble); | |
369 | ||
370 | flags &= ~NodeNeedsNegZero; | |
371 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
372 | break; | |
373 | } | |
374 | ||
375 | case LogicalNot: | |
376 | case CompareLess: | |
377 | case CompareLessEq: | |
378 | case CompareGreater: | |
379 | case CompareGreaterEq: | |
380 | case CompareEq: | |
381 | case CompareStrictEq: | |
382 | case InstanceOf: | |
383 | case IsUndefined: | |
384 | case IsBoolean: | |
385 | case IsNumber: | |
386 | case IsString: | |
387 | case IsObject: | |
388 | case IsFunction: { | |
389 | changed |= setPrediction(PredictBoolean); | |
390 | changed |= mergeDefaultFlags(node); | |
391 | break; | |
392 | } | |
393 | ||
394 | case GetById: { | |
395 | changed |= mergePrediction(node.getHeapPrediction()); | |
396 | changed |= mergeDefaultFlags(node); | |
397 | break; | |
398 | } | |
399 | ||
400 | case GetByIdFlush: | |
401 | changed |= mergePrediction(node.getHeapPrediction()); | |
402 | changed |= mergeDefaultFlags(node); | |
403 | break; | |
404 | ||
405 | case GetByVal: { | |
406 | if (m_graph[node.child1()].shouldSpeculateFloat32Array() | |
407 | || m_graph[node.child1()].shouldSpeculateFloat64Array()) | |
408 | changed |= mergePrediction(PredictDouble); | |
409 | else | |
410 | changed |= mergePrediction(node.getHeapPrediction()); | |
411 | ||
412 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
413 | changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); | |
414 | break; | |
415 | } | |
416 | ||
417 | case GetPropertyStorage: | |
418 | case GetIndexedPropertyStorage: { | |
419 | changed |= setPrediction(PredictOther); | |
420 | changed |= mergeDefaultFlags(node); | |
421 | break; | |
422 | } | |
423 | ||
424 | case GetByOffset: { | |
425 | changed |= mergePrediction(node.getHeapPrediction()); | |
426 | changed |= mergeDefaultFlags(node); | |
427 | break; | |
428 | } | |
429 | ||
430 | case Call: | |
431 | case Construct: { | |
432 | changed |= mergePrediction(node.getHeapPrediction()); | |
433 | for (unsigned childIdx = node.firstChild(); | |
434 | childIdx < node.firstChild() + node.numChildren(); | |
435 | ++childIdx) { | |
436 | Edge edge = m_graph.m_varArgChildren[childIdx]; | |
437 | changed |= m_graph[edge].mergeFlags(NodeUsedAsValue); | |
438 | } | |
439 | break; | |
440 | } | |
441 | ||
442 | case ConvertThis: { | |
443 | PredictedType prediction = m_graph[node.child1()].prediction(); | |
444 | if (prediction) { | |
445 | if (prediction & ~PredictObjectMask) { | |
446 | prediction &= PredictObjectMask; | |
447 | prediction = mergePredictions(prediction, PredictObjectOther); | |
448 | } | |
449 | changed |= mergePrediction(prediction); | |
450 | } | |
451 | changed |= mergeDefaultFlags(node); | |
452 | break; | |
453 | } | |
454 | ||
455 | case GetGlobalVar: { | |
456 | changed |= mergePrediction(node.getHeapPrediction()); | |
457 | break; | |
458 | } | |
459 | ||
460 | case PutGlobalVar: { | |
461 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
462 | break; | |
463 | } | |
464 | ||
465 | case GetScopedVar: | |
466 | case Resolve: | |
467 | case ResolveBase: | |
468 | case ResolveBaseStrictPut: | |
469 | case ResolveGlobal: { | |
470 | PredictedType prediction = node.getHeapPrediction(); | |
471 | changed |= mergePrediction(prediction); | |
472 | break; | |
473 | } | |
474 | ||
475 | case GetScopeChain: { | |
476 | changed |= setPrediction(PredictCellOther); | |
477 | break; | |
478 | } | |
479 | ||
480 | case GetCallee: { | |
481 | changed |= setPrediction(PredictFunction); | |
482 | break; | |
483 | } | |
484 | ||
485 | case CreateThis: | |
486 | case NewObject: { | |
487 | changed |= setPrediction(PredictFinalObject); | |
488 | changed |= mergeDefaultFlags(node); | |
489 | break; | |
490 | } | |
491 | ||
492 | case NewArray: { | |
493 | changed |= setPrediction(PredictArray); | |
494 | for (unsigned childIdx = node.firstChild(); | |
495 | childIdx < node.firstChild() + node.numChildren(); | |
496 | ++childIdx) { | |
497 | Edge edge = m_graph.m_varArgChildren[childIdx]; | |
498 | changed |= m_graph[edge].mergeFlags(NodeUsedAsValue); | |
499 | } | |
500 | break; | |
501 | } | |
502 | ||
503 | case NewArrayBuffer: { | |
504 | changed |= setPrediction(PredictArray); | |
505 | break; | |
506 | } | |
507 | ||
508 | case NewRegexp: { | |
509 | changed |= setPrediction(PredictObjectOther); | |
510 | break; | |
511 | } | |
512 | ||
513 | case StringCharAt: { | |
514 | changed |= setPrediction(PredictString); | |
515 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
516 | changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); | |
517 | break; | |
518 | } | |
519 | ||
520 | case StrCat: { | |
521 | changed |= setPrediction(PredictString); | |
522 | for (unsigned childIdx = node.firstChild(); | |
523 | childIdx < node.firstChild() + node.numChildren(); | |
524 | ++childIdx) | |
525 | changed |= m_graph[m_graph.m_varArgChildren[childIdx]].mergeFlags(NodeUsedAsNumber); | |
526 | break; | |
527 | } | |
528 | ||
529 | case ToPrimitive: { | |
530 | PredictedType child = m_graph[node.child1()].prediction(); | |
531 | if (child) { | |
532 | if (isObjectPrediction(child)) { | |
533 | // I'd love to fold this case into the case below, but I can't, because | |
534 | // removing PredictObjectMask from something that only has an object | |
535 | // prediction and nothing else means we have an ill-formed PredictedType | |
536 | // (strong predict-none). This should be killed once we remove all traces | |
537 | // of static (aka weak) predictions. | |
538 | changed |= mergePrediction(PredictString); | |
539 | } else if (child & PredictObjectMask) { | |
540 | // Objects get turned into strings. So if the input has hints of objectness, | |
541 | // the output will have hinsts of stringiness. | |
542 | changed |= mergePrediction( | |
543 | mergePredictions(child & ~PredictObjectMask, PredictString)); | |
544 | } else | |
545 | changed |= mergePrediction(child); | |
546 | } | |
547 | changed |= m_graph[node.child1()].mergeFlags(flags); | |
548 | break; | |
549 | } | |
550 | ||
551 | case CreateActivation: { | |
552 | changed |= setPrediction(PredictObjectOther); | |
553 | break; | |
554 | } | |
555 | ||
556 | case NewFunction: | |
557 | case NewFunctionNoCheck: | |
558 | case NewFunctionExpression: { | |
559 | changed |= setPrediction(PredictFunction); | |
560 | break; | |
561 | } | |
562 | ||
563 | case PutByValAlias: | |
564 | case GetArrayLength: | |
565 | case GetInt8ArrayLength: | |
566 | case GetInt16ArrayLength: | |
567 | case GetInt32ArrayLength: | |
568 | case GetUint8ArrayLength: | |
569 | case GetUint8ClampedArrayLength: | |
570 | case GetUint16ArrayLength: | |
571 | case GetUint32ArrayLength: | |
572 | case GetFloat32ArrayLength: | |
573 | case GetFloat64ArrayLength: | |
574 | case GetStringLength: | |
575 | case Int32ToDouble: | |
576 | case DoubleAsInt32: { | |
577 | // This node should never be visible at this stage of compilation. It is | |
578 | // inserted by fixup(), which follows this phase. | |
579 | ASSERT_NOT_REACHED(); | |
580 | break; | |
581 | } | |
582 | ||
583 | case PutByVal: | |
584 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
585 | changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); | |
586 | changed |= m_graph[node.child3()].mergeFlags(NodeUsedAsValue); | |
587 | break; | |
588 | ||
589 | case PutScopedVar: | |
590 | case Return: | |
591 | case Throw: | |
592 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
593 | break; | |
594 | ||
595 | case PutById: | |
596 | case PutByIdDirect: | |
597 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
598 | changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsValue); | |
599 | break; | |
600 | ||
601 | case PutByOffset: | |
602 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
603 | changed |= m_graph[node.child3()].mergeFlags(NodeUsedAsValue); | |
604 | break; | |
605 | ||
606 | case Phi: | |
607 | break; | |
608 | ||
609 | #ifndef NDEBUG | |
610 | // These get ignored because they don't return anything. | |
611 | case DFG::Jump: | |
612 | case Branch: | |
613 | case Breakpoint: | |
614 | case CheckHasInstance: | |
615 | case ThrowReferenceError: | |
616 | case ForceOSRExit: | |
617 | case SetArgument: | |
618 | case CheckStructure: | |
619 | case CheckFunction: | |
620 | case PutStructure: | |
621 | case TearOffActivation: | |
622 | case CheckNumber: | |
623 | changed |= mergeDefaultFlags(node); | |
624 | break; | |
625 | ||
626 | // These gets ignored because it doesn't do anything. | |
627 | case Phantom: | |
628 | case InlineStart: | |
629 | case Nop: | |
630 | break; | |
631 | ||
632 | case LastNodeType: | |
633 | ASSERT_NOT_REACHED(); | |
634 | break; | |
635 | #else | |
636 | default: | |
637 | changed |= mergeDefaultFlags(node); | |
638 | break; | |
639 | #endif | |
640 | } | |
641 | ||
642 | #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) | |
643 | dataLog("%s\n", predictionToString(m_graph[m_compileIndex].prediction())); | |
644 | #endif | |
645 | ||
646 | m_changed |= changed; | |
647 | } | |
648 | ||
649 | bool mergeDefaultFlags(Node& node) | |
650 | { | |
651 | bool changed = false; | |
652 | if (node.flags() & NodeHasVarArgs) { | |
653 | for (unsigned childIdx = node.firstChild(); | |
654 | childIdx < node.firstChild() + node.numChildren(); | |
655 | childIdx++) | |
656 | changed |= m_graph[m_graph.m_varArgChildren[childIdx]].mergeFlags(NodeUsedAsValue); | |
657 | } else { | |
658 | if (!node.child1()) | |
659 | return changed; | |
660 | changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); | |
661 | if (!node.child2()) | |
662 | return changed; | |
663 | changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsValue); | |
664 | if (!node.child3()) | |
665 | return changed; | |
666 | changed |= m_graph[node.child3()].mergeFlags(NodeUsedAsValue); | |
667 | } | |
668 | return changed; | |
669 | } | |
670 | ||
671 | void propagateForward() | |
672 | { | |
673 | #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) | |
674 | dataLog("Propagating predictions forward [%u]\n", ++m_count); | |
675 | #endif | |
676 | for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex) | |
677 | propagate(m_graph[m_compileIndex]); | |
678 | } | |
679 | ||
680 | void propagateBackward() | |
681 | { | |
682 | #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) | |
683 | dataLog("Propagating predictions backward [%u]\n", ++m_count); | |
684 | #endif | |
685 | for (m_compileIndex = m_graph.size(); m_compileIndex-- > 0;) | |
686 | propagate(m_graph[m_compileIndex]); | |
687 | } | |
688 | ||
689 | void vote(Edge nodeUse, VariableAccessData::Ballot ballot) | |
690 | { | |
691 | switch (m_graph[nodeUse].op()) { | |
692 | case ValueToInt32: | |
693 | case UInt32ToNumber: | |
694 | nodeUse = m_graph[nodeUse].child1(); | |
695 | break; | |
696 | default: | |
697 | break; | |
698 | } | |
699 | ||
700 | if (m_graph[nodeUse].op() == GetLocal) | |
701 | m_graph[nodeUse].variableAccessData()->vote(ballot); | |
702 | } | |
703 | ||
704 | void vote(Node& node, VariableAccessData::Ballot ballot) | |
705 | { | |
706 | if (node.flags() & NodeHasVarArgs) { | |
707 | for (unsigned childIdx = node.firstChild(); | |
708 | childIdx < node.firstChild() + node.numChildren(); | |
709 | childIdx++) | |
710 | vote(m_graph.m_varArgChildren[childIdx], ballot); | |
711 | return; | |
712 | } | |
713 | ||
714 | if (!node.child1()) | |
715 | return; | |
716 | vote(node.child1(), ballot); | |
717 | if (!node.child2()) | |
718 | return; | |
719 | vote(node.child2(), ballot); | |
720 | if (!node.child3()) | |
721 | return; | |
722 | vote(node.child3(), ballot); | |
723 | } | |
724 | ||
725 | void doRoundOfDoubleVoting() | |
726 | { | |
727 | #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) | |
728 | dataLog("Voting on double uses of locals [%u]\n", m_count); | |
729 | #endif | |
730 | for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) | |
731 | m_graph.m_variableAccessData[i].find()->clearVotes(); | |
732 | for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex) { | |
733 | Node& node = m_graph[m_compileIndex]; | |
734 | switch (node.op()) { | |
735 | case ValueAdd: | |
736 | case ArithAdd: | |
737 | case ArithSub: { | |
738 | PredictedType left = m_graph[node.child1()].prediction(); | |
739 | PredictedType right = m_graph[node.child2()].prediction(); | |
740 | ||
741 | VariableAccessData::Ballot ballot; | |
742 | ||
743 | if (isNumberPrediction(left) && isNumberPrediction(right) | |
744 | && !m_graph.addShouldSpeculateInteger(node)) | |
745 | ballot = VariableAccessData::VoteDouble; | |
746 | else | |
747 | ballot = VariableAccessData::VoteValue; | |
748 | ||
749 | vote(node.child1(), ballot); | |
750 | vote(node.child2(), ballot); | |
751 | break; | |
752 | } | |
753 | ||
754 | case ArithMul: | |
755 | case ArithMin: | |
756 | case ArithMax: | |
757 | case ArithMod: | |
758 | case ArithDiv: { | |
759 | PredictedType left = m_graph[node.child1()].prediction(); | |
760 | PredictedType right = m_graph[node.child2()].prediction(); | |
761 | ||
762 | VariableAccessData::Ballot ballot; | |
763 | ||
764 | if (isNumberPrediction(left) && isNumberPrediction(right) | |
765 | && !(Node::shouldSpeculateInteger(m_graph[node.child1()], m_graph[node.child1()]) | |
766 | && node.canSpeculateInteger())) | |
767 | ballot = VariableAccessData::VoteDouble; | |
768 | else | |
769 | ballot = VariableAccessData::VoteValue; | |
770 | ||
771 | vote(node.child1(), ballot); | |
772 | vote(node.child2(), ballot); | |
773 | break; | |
774 | } | |
775 | ||
776 | case ArithAbs: | |
777 | VariableAccessData::Ballot ballot; | |
778 | if (!(m_graph[node.child1()].shouldSpeculateInteger() | |
779 | && node.canSpeculateInteger())) | |
780 | ballot = VariableAccessData::VoteDouble; | |
781 | else | |
782 | ballot = VariableAccessData::VoteValue; | |
783 | ||
784 | vote(node.child1(), ballot); | |
785 | break; | |
786 | ||
787 | case ArithSqrt: | |
788 | vote(node.child1(), VariableAccessData::VoteDouble); | |
789 | break; | |
790 | ||
791 | case SetLocal: { | |
792 | PredictedType prediction = m_graph[node.child1()].prediction(); | |
793 | if (isDoublePrediction(prediction)) | |
794 | node.variableAccessData()->vote(VariableAccessData::VoteDouble); | |
795 | else if (!isNumberPrediction(prediction) || isInt32Prediction(prediction)) | |
796 | node.variableAccessData()->vote(VariableAccessData::VoteValue); | |
797 | break; | |
798 | } | |
799 | ||
800 | default: | |
801 | vote(node, VariableAccessData::VoteValue); | |
802 | break; | |
803 | } | |
804 | } | |
805 | for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) { | |
806 | VariableAccessData* variableAccessData = &m_graph.m_variableAccessData[i]; | |
807 | if (!variableAccessData->isRoot()) | |
808 | continue; | |
809 | if (operandIsArgument(variableAccessData->local()) | |
810 | || m_graph.isCaptured(variableAccessData->local())) | |
811 | continue; | |
812 | m_changed |= variableAccessData->tallyVotesForShouldUseDoubleFormat(); | |
813 | } | |
814 | for (unsigned i = 0; i < m_graph.m_argumentPositions.size(); ++i) | |
815 | m_changed |= m_graph.m_argumentPositions[i].mergeArgumentAwareness(); | |
816 | for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) { | |
817 | VariableAccessData* variableAccessData = &m_graph.m_variableAccessData[i]; | |
818 | if (!variableAccessData->isRoot()) | |
819 | continue; | |
820 | if (operandIsArgument(variableAccessData->local()) | |
821 | || m_graph.isCaptured(variableAccessData->local())) | |
822 | continue; | |
823 | m_changed |= variableAccessData->makePredictionForDoubleFormat(); | |
824 | } | |
825 | } | |
826 | ||
827 | NodeIndex m_compileIndex; | |
828 | bool m_changed; | |
829 | ||
830 | #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) | |
831 | unsigned m_count; | |
832 | #endif | |
833 | }; | |
834 | ||
835 | void performPredictionPropagation(Graph& graph) | |
836 | { | |
837 | runPhase<PredictionPropagationPhase>(graph); | |
838 | } | |
839 | ||
840 | } } // namespace JSC::DFG | |
841 | ||
842 | #endif // ENABLE(DFG_JIT) | |
843 |