]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (C) 2008 Apple Inc. All rights reserved. | |
3 | * | |
4 | * Based on Abstract AVL Tree Template v1.5 by Walt Karas | |
5 | * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>. | |
6 | * | |
7 | * Redistribution and use in source and binary forms, with or without | |
8 | * modification, are permitted provided that the following conditions | |
9 | * are met: | |
10 | * | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of | |
17 | * its contributors may be used to endorse or promote products derived | |
18 | * from this software without specific prior written permission. | |
19 | * | |
20 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY | |
21 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
22 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
23 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY | |
24 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
25 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
26 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
27 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
28 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |
29 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
30 | */ | |
31 | ||
32 | #ifndef AVL_TREE_H_ | |
33 | #define AVL_TREE_H_ | |
34 | ||
35 | #include "Assertions.h" | |
36 | ||
37 | namespace WTF { | |
38 | ||
39 | // Here is the reference class for BSet. | |
40 | // | |
41 | // class BSet | |
42 | // { | |
43 | // public: | |
44 | // | |
45 | // class ANY_bitref | |
46 | // { | |
47 | // public: | |
48 | // operator bool (); | |
49 | // void operator = (bool b); | |
50 | // }; | |
51 | // | |
52 | // // Does not have to initialize bits. | |
53 | // BSet(); | |
54 | // | |
55 | // // Must return a valid value for index when 0 <= index < maxDepth | |
56 | // ANY_bitref operator [] (unsigned index); | |
57 | // | |
58 | // // Set all bits to 1. | |
59 | // void set(); | |
60 | // | |
61 | // // Set all bits to 0. | |
62 | // void reset(); | |
63 | // }; | |
64 | ||
65 | template<unsigned maxDepth> | |
66 | class AVLTreeDefaultBSet { | |
67 | public: | |
68 | bool& operator[](unsigned i) { ASSERT(i < maxDepth); return m_data[i]; } | |
69 | void set() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = true; } | |
70 | void reset() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = false; } | |
71 | ||
72 | private: | |
73 | bool m_data[maxDepth]; | |
74 | }; | |
75 | ||
76 | // How to determine maxDepth: | |
77 | // d Minimum number of nodes | |
78 | // 2 2 | |
79 | // 3 4 | |
80 | // 4 7 | |
81 | // 5 12 | |
82 | // 6 20 | |
83 | // 7 33 | |
84 | // 8 54 | |
85 | // 9 88 | |
86 | // 10 143 | |
87 | // 11 232 | |
88 | // 12 376 | |
89 | // 13 609 | |
90 | // 14 986 | |
91 | // 15 1,596 | |
92 | // 16 2,583 | |
93 | // 17 4,180 | |
94 | // 18 6,764 | |
95 | // 19 10,945 | |
96 | // 20 17,710 | |
97 | // 21 28,656 | |
98 | // 22 46,367 | |
99 | // 23 75,024 | |
100 | // 24 121,392 | |
101 | // 25 196,417 | |
102 | // 26 317,810 | |
103 | // 27 514,228 | |
104 | // 28 832,039 | |
105 | // 29 1,346,268 | |
106 | // 30 2,178,308 | |
107 | // 31 3,524,577 | |
108 | // 32 5,702,886 | |
109 | // 33 9,227,464 | |
110 | // 34 14,930,351 | |
111 | // 35 24,157,816 | |
112 | // 36 39,088,168 | |
113 | // 37 63,245,985 | |
114 | // 38 102,334,154 | |
115 | // 39 165,580,140 | |
116 | // 40 267,914,295 | |
117 | // 41 433,494,436 | |
118 | // 42 701,408,732 | |
119 | // 43 1,134,903,169 | |
120 | // 44 1,836,311,902 | |
121 | // 45 2,971,215,072 | |
122 | // | |
123 | // E.g., if, in a particular instantiation, the maximum number of nodes in a tree instance is 1,000,000, the maximum depth should be 28. | |
124 | // You pick 28 because MN(28) is 832,039, which is less than or equal to 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000. | |
125 | ||
126 | template <class Abstractor, unsigned maxDepth = 32, class BSet = AVLTreeDefaultBSet<maxDepth> > | |
127 | class AVLTree { | |
128 | public: | |
129 | ||
130 | typedef typename Abstractor::key key; | |
131 | typedef typename Abstractor::handle handle; | |
132 | typedef typename Abstractor::size size; | |
133 | ||
134 | enum SearchType { | |
135 | EQUAL = 1, | |
136 | LESS = 2, | |
137 | GREATER = 4, | |
138 | LESS_EQUAL = EQUAL | LESS, | |
139 | GREATER_EQUAL = EQUAL | GREATER | |
140 | }; | |
141 | ||
142 | ||
143 | Abstractor& abstractor() { return abs; } | |
144 | ||
145 | inline handle insert(handle h); | |
146 | ||
147 | inline handle search(key k, SearchType st = EQUAL); | |
148 | inline handle search_least(); | |
149 | inline handle search_greatest(); | |
150 | ||
151 | inline handle remove(key k); | |
152 | ||
153 | inline handle subst(handle new_node); | |
154 | ||
155 | void purge() { abs.root = null(); } | |
156 | ||
157 | bool is_empty() { return abs.root == null(); } | |
158 | ||
159 | AVLTree() { abs.root = null(); } | |
160 | ||
161 | class Iterator { | |
162 | public: | |
163 | ||
164 | // Initialize depth to invalid value, to indicate iterator is | |
165 | // invalid. (Depth is zero-base.) | |
166 | Iterator() { depth = ~0U; } | |
167 | ||
168 | void start_iter(AVLTree &tree, key k, SearchType st = EQUAL) | |
169 | { | |
170 | // Mask of high bit in an int. | |
171 | const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1); | |
172 | ||
173 | // Save the tree that we're going to iterate through in a | |
174 | // member variable. | |
175 | tree_ = &tree; | |
176 | ||
177 | int cmp, target_cmp; | |
178 | handle h = tree_->abs.root; | |
179 | unsigned d = 0; | |
180 | ||
181 | depth = ~0U; | |
182 | ||
183 | if (h == null()) | |
184 | // Tree is empty. | |
185 | return; | |
186 | ||
187 | if (st & LESS) | |
188 | // Key can be greater than key of starting node. | |
189 | target_cmp = 1; | |
190 | else if (st & GREATER) | |
191 | // Key can be less than key of starting node. | |
192 | target_cmp = -1; | |
193 | else | |
194 | // Key must be same as key of starting node. | |
195 | target_cmp = 0; | |
196 | ||
197 | for (;;) { | |
198 | cmp = cmp_k_n(k, h); | |
199 | if (cmp == 0) { | |
200 | if (st & EQUAL) { | |
201 | // Equal node was sought and found as starting node. | |
202 | depth = d; | |
203 | break; | |
204 | } | |
205 | cmp = -target_cmp; | |
206 | } else if (target_cmp != 0) { | |
207 | if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) { | |
208 | // cmp and target_cmp are both negative or both positive. | |
209 | depth = d; | |
210 | } | |
211 | } | |
212 | h = cmp < 0 ? get_lt(h) : get_gt(h); | |
213 | if (h == null()) | |
214 | break; | |
215 | branch[d] = cmp > 0; | |
216 | path_h[d++] = h; | |
217 | } | |
218 | } | |
219 | ||
220 | void start_iter_least(AVLTree &tree) | |
221 | { | |
222 | tree_ = &tree; | |
223 | ||
224 | handle h = tree_->abs.root; | |
225 | ||
226 | depth = ~0U; | |
227 | ||
228 | branch.reset(); | |
229 | ||
230 | while (h != null()) { | |
231 | if (depth != ~0U) | |
232 | path_h[depth] = h; | |
233 | depth++; | |
234 | h = get_lt(h); | |
235 | } | |
236 | } | |
237 | ||
238 | void start_iter_greatest(AVLTree &tree) | |
239 | { | |
240 | tree_ = &tree; | |
241 | ||
242 | handle h = tree_->abs.root; | |
243 | ||
244 | depth = ~0U; | |
245 | ||
246 | branch.set(); | |
247 | ||
248 | while (h != null()) { | |
249 | if (depth != ~0U) | |
250 | path_h[depth] = h; | |
251 | depth++; | |
252 | h = get_gt(h); | |
253 | } | |
254 | } | |
255 | ||
256 | handle operator*() | |
257 | { | |
258 | if (depth == ~0U) | |
259 | return null(); | |
260 | ||
261 | return depth == 0 ? tree_->abs.root : path_h[depth - 1]; | |
262 | } | |
263 | ||
264 | void operator++() | |
265 | { | |
266 | if (depth != ~0U) { | |
267 | handle h = get_gt(**this); | |
268 | if (h == null()) { | |
269 | do { | |
270 | if (depth == 0) { | |
271 | depth = ~0U; | |
272 | break; | |
273 | } | |
274 | depth--; | |
275 | } while (branch[depth]); | |
276 | } else { | |
277 | branch[depth] = true; | |
278 | path_h[depth++] = h; | |
279 | for (;;) { | |
280 | h = get_lt(h); | |
281 | if (h == null()) | |
282 | break; | |
283 | branch[depth] = false; | |
284 | path_h[depth++] = h; | |
285 | } | |
286 | } | |
287 | } | |
288 | } | |
289 | ||
290 | void operator--() | |
291 | { | |
292 | if (depth != ~0U) { | |
293 | handle h = get_lt(**this); | |
294 | if (h == null()) | |
295 | do { | |
296 | if (depth == 0) { | |
297 | depth = ~0U; | |
298 | break; | |
299 | } | |
300 | depth--; | |
301 | } while (!branch[depth]); | |
302 | else { | |
303 | branch[depth] = false; | |
304 | path_h[depth++] = h; | |
305 | for (;;) { | |
306 | h = get_gt(h); | |
307 | if (h == null()) | |
308 | break; | |
309 | branch[depth] = true; | |
310 | path_h[depth++] = h; | |
311 | } | |
312 | } | |
313 | } | |
314 | } | |
315 | ||
316 | void operator++(int) { ++(*this); } | |
317 | void operator--(int) { --(*this); } | |
318 | ||
319 | protected: | |
320 | ||
321 | // Tree being iterated over. | |
322 | AVLTree *tree_; | |
323 | ||
324 | // Records a path into the tree. If branch[n] is true, indicates | |
325 | // take greater branch from the nth node in the path, otherwise | |
326 | // take the less branch. branch[0] gives branch from root, and | |
327 | // so on. | |
328 | BSet branch; | |
329 | ||
330 | // Zero-based depth of path into tree. | |
331 | unsigned depth; | |
332 | ||
333 | // Handles of nodes in path from root to current node (returned by *). | |
334 | handle path_h[maxDepth - 1]; | |
335 | ||
336 | int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); } | |
337 | int cmp_n_n(handle h1, handle h2) { return tree_->abs.compare_node_node(h1, h2); } | |
338 | handle get_lt(handle h) { return tree_->abs.get_less(h); } | |
339 | handle get_gt(handle h) { return tree_->abs.get_greater(h); } | |
340 | handle null() { return tree_->abs.null(); } | |
341 | }; | |
342 | ||
343 | template<typename fwd_iter> | |
344 | bool build(fwd_iter p, size num_nodes) | |
345 | { | |
346 | if (num_nodes == 0) { | |
347 | abs.root = null(); | |
348 | return true; | |
349 | } | |
350 | ||
351 | // Gives path to subtree being built. If branch[N] is false, branch | |
352 | // less from the node at depth N, if true branch greater. | |
353 | BSet branch; | |
354 | ||
355 | // If rem[N] is true, then for the current subtree at depth N, it's | |
356 | // greater subtree has one more node than it's less subtree. | |
357 | BSet rem; | |
358 | ||
359 | // Depth of root node of current subtree. | |
360 | unsigned depth = 0; | |
361 | ||
362 | // Number of nodes in current subtree. | |
363 | size num_sub = num_nodes; | |
364 | ||
365 | // The algorithm relies on a stack of nodes whose less subtree has | |
366 | // been built, but whose right subtree has not yet been built. The | |
367 | // stack is implemented as linked list. The nodes are linked | |
368 | // together by having the "greater" handle of a node set to the | |
369 | // next node in the list. "less_parent" is the handle of the first | |
370 | // node in the list. | |
371 | handle less_parent = null(); | |
372 | ||
373 | // h is root of current subtree, child is one of its children. | |
374 | handle h, child; | |
375 | ||
376 | for (;;) { | |
377 | while (num_sub > 2) { | |
378 | // Subtract one for root of subtree. | |
379 | num_sub--; | |
380 | rem[depth] = !!(num_sub & 1); | |
381 | branch[depth++] = false; | |
382 | num_sub >>= 1; | |
383 | } | |
384 | ||
385 | if (num_sub == 2) { | |
386 | // Build a subtree with two nodes, slanting to greater. | |
387 | // I arbitrarily chose to always have the extra node in the | |
388 | // greater subtree when there is an odd number of nodes to | |
389 | // split between the two subtrees. | |
390 | ||
391 | h = *p; | |
392 | p++; | |
393 | child = *p; | |
394 | p++; | |
395 | set_lt(child, null()); | |
396 | set_gt(child, null()); | |
397 | set_bf(child, 0); | |
398 | set_gt(h, child); | |
399 | set_lt(h, null()); | |
400 | set_bf(h, 1); | |
401 | } else { // num_sub == 1 | |
402 | // Build a subtree with one node. | |
403 | ||
404 | h = *p; | |
405 | p++; | |
406 | set_lt(h, null()); | |
407 | set_gt(h, null()); | |
408 | set_bf(h, 0); | |
409 | } | |
410 | ||
411 | while (depth) { | |
412 | depth--; | |
413 | if (!branch[depth]) | |
414 | // We've completed a less subtree. | |
415 | break; | |
416 | ||
417 | // We've completed a greater subtree, so attach it to | |
418 | // its parent (that is less than it). We pop the parent | |
419 | // off the stack of less parents. | |
420 | child = h; | |
421 | h = less_parent; | |
422 | less_parent = get_gt(h); | |
423 | set_gt(h, child); | |
424 | // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1 | |
425 | num_sub <<= 1; | |
426 | num_sub += 1 - rem[depth]; | |
427 | if (num_sub & (num_sub - 1)) | |
428 | // num_sub is not a power of 2 | |
429 | set_bf(h, 0); | |
430 | else | |
431 | // num_sub is a power of 2 | |
432 | set_bf(h, 1); | |
433 | } | |
434 | ||
435 | if (num_sub == num_nodes) | |
436 | // We've completed the full tree. | |
437 | break; | |
438 | ||
439 | // The subtree we've completed is the less subtree of the | |
440 | // next node in the sequence. | |
441 | ||
442 | child = h; | |
443 | h = *p; | |
444 | p++; | |
445 | set_lt(h, child); | |
446 | ||
447 | // Put h into stack of less parents. | |
448 | set_gt(h, less_parent); | |
449 | less_parent = h; | |
450 | ||
451 | // Proceed to creating greater than subtree of h. | |
452 | branch[depth] = true; | |
453 | num_sub += rem[depth++]; | |
454 | ||
455 | } // end for (;;) | |
456 | ||
457 | abs.root = h; | |
458 | ||
459 | return true; | |
460 | } | |
461 | ||
462 | protected: | |
463 | ||
464 | friend class Iterator; | |
465 | ||
466 | // Create a class whose sole purpose is to take advantage of | |
467 | // the "empty member" optimization. | |
468 | struct abs_plus_root : public Abstractor { | |
469 | // The handle of the root element in the AVL tree. | |
470 | handle root; | |
471 | }; | |
472 | ||
473 | abs_plus_root abs; | |
474 | ||
475 | ||
476 | handle get_lt(handle h) { return abs.get_less(h); } | |
477 | void set_lt(handle h, handle lh) { abs.set_less(h, lh); } | |
478 | ||
479 | handle get_gt(handle h) { return abs.get_greater(h); } | |
480 | void set_gt(handle h, handle gh) { abs.set_greater(h, gh); } | |
481 | ||
482 | int get_bf(handle h) { return abs.get_balance_factor(h); } | |
483 | void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); } | |
484 | ||
485 | int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); } | |
486 | int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); } | |
487 | ||
488 | handle null() { return abs.null(); } | |
489 | ||
490 | private: | |
491 | ||
492 | // Balances subtree, returns handle of root node of subtree | |
493 | // after balancing. | |
494 | handle balance(handle bal_h) | |
495 | { | |
496 | handle deep_h; | |
497 | ||
498 | // Either the "greater than" or the "less than" subtree of | |
499 | // this node has to be 2 levels deeper (or else it wouldn't | |
500 | // need balancing). | |
501 | ||
502 | if (get_bf(bal_h) > 0) { | |
503 | // "Greater than" subtree is deeper. | |
504 | ||
505 | deep_h = get_gt(bal_h); | |
506 | ||
507 | if (get_bf(deep_h) < 0) { | |
508 | handle old_h = bal_h; | |
509 | bal_h = get_lt(deep_h); | |
510 | ||
511 | set_gt(old_h, get_lt(bal_h)); | |
512 | set_lt(deep_h, get_gt(bal_h)); | |
513 | set_lt(bal_h, old_h); | |
514 | set_gt(bal_h, deep_h); | |
515 | ||
516 | int bf = get_bf(bal_h); | |
517 | if (bf != 0) { | |
518 | if (bf > 0) { | |
519 | set_bf(old_h, -1); | |
520 | set_bf(deep_h, 0); | |
521 | } else { | |
522 | set_bf(deep_h, 1); | |
523 | set_bf(old_h, 0); | |
524 | } | |
525 | set_bf(bal_h, 0); | |
526 | } else { | |
527 | set_bf(old_h, 0); | |
528 | set_bf(deep_h, 0); | |
529 | } | |
530 | } else { | |
531 | set_gt(bal_h, get_lt(deep_h)); | |
532 | set_lt(deep_h, bal_h); | |
533 | if (get_bf(deep_h) == 0) { | |
534 | set_bf(deep_h, -1); | |
535 | set_bf(bal_h, 1); | |
536 | } else { | |
537 | set_bf(deep_h, 0); | |
538 | set_bf(bal_h, 0); | |
539 | } | |
540 | bal_h = deep_h; | |
541 | } | |
542 | } else { | |
543 | // "Less than" subtree is deeper. | |
544 | ||
545 | deep_h = get_lt(bal_h); | |
546 | ||
547 | if (get_bf(deep_h) > 0) { | |
548 | handle old_h = bal_h; | |
549 | bal_h = get_gt(deep_h); | |
550 | set_lt(old_h, get_gt(bal_h)); | |
551 | set_gt(deep_h, get_lt(bal_h)); | |
552 | set_gt(bal_h, old_h); | |
553 | set_lt(bal_h, deep_h); | |
554 | ||
555 | int bf = get_bf(bal_h); | |
556 | if (bf != 0) { | |
557 | if (bf < 0) { | |
558 | set_bf(old_h, 1); | |
559 | set_bf(deep_h, 0); | |
560 | } else { | |
561 | set_bf(deep_h, -1); | |
562 | set_bf(old_h, 0); | |
563 | } | |
564 | set_bf(bal_h, 0); | |
565 | } else { | |
566 | set_bf(old_h, 0); | |
567 | set_bf(deep_h, 0); | |
568 | } | |
569 | } else { | |
570 | set_lt(bal_h, get_gt(deep_h)); | |
571 | set_gt(deep_h, bal_h); | |
572 | if (get_bf(deep_h) == 0) { | |
573 | set_bf(deep_h, 1); | |
574 | set_bf(bal_h, -1); | |
575 | } else { | |
576 | set_bf(deep_h, 0); | |
577 | set_bf(bal_h, 0); | |
578 | } | |
579 | bal_h = deep_h; | |
580 | } | |
581 | } | |
582 | ||
583 | return bal_h; | |
584 | } | |
585 | ||
586 | }; | |
587 | ||
588 | template <class Abstractor, unsigned maxDepth, class BSet> | |
589 | inline typename AVLTree<Abstractor, maxDepth, BSet>::handle | |
590 | AVLTree<Abstractor, maxDepth, BSet>::insert(handle h) | |
591 | { | |
592 | set_lt(h, null()); | |
593 | set_gt(h, null()); | |
594 | set_bf(h, 0); | |
595 | ||
596 | if (abs.root == null()) | |
597 | abs.root = h; | |
598 | else { | |
599 | // Last unbalanced node encountered in search for insertion point. | |
600 | handle unbal = null(); | |
601 | // Parent of last unbalanced node. | |
602 | handle parent_unbal = null(); | |
603 | // Balance factor of last unbalanced node. | |
604 | int unbal_bf; | |
605 | ||
606 | // Zero-based depth in tree. | |
607 | unsigned depth = 0, unbal_depth = 0; | |
608 | ||
609 | // Records a path into the tree. If branch[n] is true, indicates | |
610 | // take greater branch from the nth node in the path, otherwise | |
611 | // take the less branch. branch[0] gives branch from root, and | |
612 | // so on. | |
613 | BSet branch; | |
614 | ||
615 | handle hh = abs.root; | |
616 | handle parent = null(); | |
617 | int cmp; | |
618 | ||
619 | do { | |
620 | if (get_bf(hh) != 0) { | |
621 | unbal = hh; | |
622 | parent_unbal = parent; | |
623 | unbal_depth = depth; | |
624 | } | |
625 | cmp = cmp_n_n(h, hh); | |
626 | if (cmp == 0) | |
627 | // Duplicate key. | |
628 | return hh; | |
629 | parent = hh; | |
630 | hh = cmp < 0 ? get_lt(hh) : get_gt(hh); | |
631 | branch[depth++] = cmp > 0; | |
632 | } while (hh != null()); | |
633 | ||
634 | // Add node to insert as leaf of tree. | |
635 | if (cmp < 0) | |
636 | set_lt(parent, h); | |
637 | else | |
638 | set_gt(parent, h); | |
639 | ||
640 | depth = unbal_depth; | |
641 | ||
642 | if (unbal == null()) | |
643 | hh = abs.root; | |
644 | else { | |
645 | cmp = branch[depth++] ? 1 : -1; | |
646 | unbal_bf = get_bf(unbal); | |
647 | if (cmp < 0) | |
648 | unbal_bf--; | |
649 | else // cmp > 0 | |
650 | unbal_bf++; | |
651 | hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal); | |
652 | if ((unbal_bf != -2) && (unbal_bf != 2)) { | |
653 | // No rebalancing of tree is necessary. | |
654 | set_bf(unbal, unbal_bf); | |
655 | unbal = null(); | |
656 | } | |
657 | } | |
658 | ||
659 | if (hh != null()) | |
660 | while (h != hh) { | |
661 | cmp = branch[depth++] ? 1 : -1; | |
662 | if (cmp < 0) { | |
663 | set_bf(hh, -1); | |
664 | hh = get_lt(hh); | |
665 | } else { // cmp > 0 | |
666 | set_bf(hh, 1); | |
667 | hh = get_gt(hh); | |
668 | } | |
669 | } | |
670 | ||
671 | if (unbal != null()) { | |
672 | unbal = balance(unbal); | |
673 | if (parent_unbal == null()) | |
674 | abs.root = unbal; | |
675 | else { | |
676 | depth = unbal_depth - 1; | |
677 | cmp = branch[depth] ? 1 : -1; | |
678 | if (cmp < 0) | |
679 | set_lt(parent_unbal, unbal); | |
680 | else // cmp > 0 | |
681 | set_gt(parent_unbal, unbal); | |
682 | } | |
683 | } | |
684 | } | |
685 | ||
686 | return h; | |
687 | } | |
688 | ||
689 | template <class Abstractor, unsigned maxDepth, class BSet> | |
690 | inline typename AVLTree<Abstractor, maxDepth, BSet>::handle | |
691 | AVLTree<Abstractor, maxDepth, BSet>::search(key k, typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) | |
692 | { | |
693 | const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1); | |
694 | ||
695 | int cmp, target_cmp; | |
696 | handle match_h = null(); | |
697 | handle h = abs.root; | |
698 | ||
699 | if (st & LESS) | |
700 | target_cmp = 1; | |
701 | else if (st & GREATER) | |
702 | target_cmp = -1; | |
703 | else | |
704 | target_cmp = 0; | |
705 | ||
706 | while (h != null()) { | |
707 | cmp = cmp_k_n(k, h); | |
708 | if (cmp == 0) { | |
709 | if (st & EQUAL) { | |
710 | match_h = h; | |
711 | break; | |
712 | } | |
713 | cmp = -target_cmp; | |
714 | } else if (target_cmp != 0) | |
715 | if (!((cmp ^ target_cmp) & MASK_HIGH_BIT)) | |
716 | // cmp and target_cmp are both positive or both negative. | |
717 | match_h = h; | |
718 | h = cmp < 0 ? get_lt(h) : get_gt(h); | |
719 | } | |
720 | ||
721 | return match_h; | |
722 | } | |
723 | ||
724 | template <class Abstractor, unsigned maxDepth, class BSet> | |
725 | inline typename AVLTree<Abstractor, maxDepth, BSet>::handle | |
726 | AVLTree<Abstractor, maxDepth, BSet>::search_least() | |
727 | { | |
728 | handle h = abs.root, parent = null(); | |
729 | ||
730 | while (h != null()) { | |
731 | parent = h; | |
732 | h = get_lt(h); | |
733 | } | |
734 | ||
735 | return parent; | |
736 | } | |
737 | ||
738 | template <class Abstractor, unsigned maxDepth, class BSet> | |
739 | inline typename AVLTree<Abstractor, maxDepth, BSet>::handle | |
740 | AVLTree<Abstractor, maxDepth, BSet>::search_greatest() | |
741 | { | |
742 | handle h = abs.root, parent = null(); | |
743 | ||
744 | while (h != null()) { | |
745 | parent = h; | |
746 | h = get_gt(h); | |
747 | } | |
748 | ||
749 | return parent; | |
750 | } | |
751 | ||
752 | template <class Abstractor, unsigned maxDepth, class BSet> | |
753 | inline typename AVLTree<Abstractor, maxDepth, BSet>::handle | |
754 | AVLTree<Abstractor, maxDepth, BSet>::remove(key k) | |
755 | { | |
756 | // Zero-based depth in tree. | |
757 | unsigned depth = 0, rm_depth; | |
758 | ||
759 | // Records a path into the tree. If branch[n] is true, indicates | |
760 | // take greater branch from the nth node in the path, otherwise | |
761 | // take the less branch. branch[0] gives branch from root, and | |
762 | // so on. | |
763 | BSet branch; | |
764 | ||
765 | handle h = abs.root; | |
766 | handle parent = null(), child; | |
767 | int cmp, cmp_shortened_sub_with_path = 0; | |
768 | ||
769 | for (;;) { | |
770 | if (h == null()) | |
771 | // No node in tree with given key. | |
772 | return null(); | |
773 | cmp = cmp_k_n(k, h); | |
774 | if (cmp == 0) | |
775 | // Found node to remove. | |
776 | break; | |
777 | parent = h; | |
778 | h = cmp < 0 ? get_lt(h) : get_gt(h); | |
779 | branch[depth++] = cmp > 0; | |
780 | cmp_shortened_sub_with_path = cmp; | |
781 | } | |
782 | handle rm = h; | |
783 | handle parent_rm = parent; | |
784 | rm_depth = depth; | |
785 | ||
786 | // If the node to remove is not a leaf node, we need to get a | |
787 | // leaf node, or a node with a single leaf as its child, to put | |
788 | // in the place of the node to remove. We will get the greatest | |
789 | // node in the less subtree (of the node to remove), or the least | |
790 | // node in the greater subtree. We take the leaf node from the | |
791 | // deeper subtree, if there is one. | |
792 | ||
793 | if (get_bf(h) < 0) { | |
794 | child = get_lt(h); | |
795 | branch[depth] = false; | |
796 | cmp = -1; | |
797 | } else { | |
798 | child = get_gt(h); | |
799 | branch[depth] = true; | |
800 | cmp = 1; | |
801 | } | |
802 | depth++; | |
803 | ||
804 | if (child != null()) { | |
805 | cmp = -cmp; | |
806 | do { | |
807 | parent = h; | |
808 | h = child; | |
809 | if (cmp < 0) { | |
810 | child = get_lt(h); | |
811 | branch[depth] = false; | |
812 | } else { | |
813 | child = get_gt(h); | |
814 | branch[depth] = true; | |
815 | } | |
816 | depth++; | |
817 | } while (child != null()); | |
818 | ||
819 | if (parent == rm) | |
820 | // Only went through do loop once. Deleted node will be replaced | |
821 | // in the tree structure by one of its immediate children. | |
822 | cmp_shortened_sub_with_path = -cmp; | |
823 | else | |
824 | cmp_shortened_sub_with_path = cmp; | |
825 | ||
826 | // Get the handle of the opposite child, which may not be null. | |
827 | child = cmp > 0 ? get_lt(h) : get_gt(h); | |
828 | } | |
829 | ||
830 | if (parent == null()) | |
831 | // There were only 1 or 2 nodes in this tree. | |
832 | abs.root = child; | |
833 | else if (cmp_shortened_sub_with_path < 0) | |
834 | set_lt(parent, child); | |
835 | else | |
836 | set_gt(parent, child); | |
837 | ||
838 | // "path" is the parent of the subtree being eliminated or reduced | |
839 | // from a depth of 2 to 1. If "path" is the node to be removed, we | |
840 | // set path to the node we're about to poke into the position of the | |
841 | // node to be removed. | |
842 | handle path = parent == rm ? h : parent; | |
843 | ||
844 | if (h != rm) { | |
845 | // Poke in the replacement for the node to be removed. | |
846 | set_lt(h, get_lt(rm)); | |
847 | set_gt(h, get_gt(rm)); | |
848 | set_bf(h, get_bf(rm)); | |
849 | if (parent_rm == null()) | |
850 | abs.root = h; | |
851 | else { | |
852 | depth = rm_depth - 1; | |
853 | if (branch[depth]) | |
854 | set_gt(parent_rm, h); | |
855 | else | |
856 | set_lt(parent_rm, h); | |
857 | } | |
858 | } | |
859 | ||
860 | if (path != null()) { | |
861 | // Create a temporary linked list from the parent of the path node | |
862 | // to the root node. | |
863 | h = abs.root; | |
864 | parent = null(); | |
865 | depth = 0; | |
866 | while (h != path) { | |
867 | if (branch[depth++]) { | |
868 | child = get_gt(h); | |
869 | set_gt(h, parent); | |
870 | } else { | |
871 | child = get_lt(h); | |
872 | set_lt(h, parent); | |
873 | } | |
874 | parent = h; | |
875 | h = child; | |
876 | } | |
877 | ||
878 | // Climb from the path node to the root node using the linked | |
879 | // list, restoring the tree structure and rebalancing as necessary. | |
880 | bool reduced_depth = true; | |
881 | int bf; | |
882 | cmp = cmp_shortened_sub_with_path; | |
883 | for (;;) { | |
884 | if (reduced_depth) { | |
885 | bf = get_bf(h); | |
886 | if (cmp < 0) | |
887 | bf++; | |
888 | else // cmp > 0 | |
889 | bf--; | |
890 | if ((bf == -2) || (bf == 2)) { | |
891 | h = balance(h); | |
892 | bf = get_bf(h); | |
893 | } else | |
894 | set_bf(h, bf); | |
895 | reduced_depth = (bf == 0); | |
896 | } | |
897 | if (parent == null()) | |
898 | break; | |
899 | child = h; | |
900 | h = parent; | |
901 | cmp = branch[--depth] ? 1 : -1; | |
902 | if (cmp < 0) { | |
903 | parent = get_lt(h); | |
904 | set_lt(h, child); | |
905 | } else { | |
906 | parent = get_gt(h); | |
907 | set_gt(h, child); | |
908 | } | |
909 | } | |
910 | abs.root = h; | |
911 | } | |
912 | ||
913 | return rm; | |
914 | } | |
915 | ||
916 | template <class Abstractor, unsigned maxDepth, class BSet> | |
917 | inline typename AVLTree<Abstractor, maxDepth, BSet>::handle | |
918 | AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node) | |
919 | { | |
920 | handle h = abs.root; | |
921 | handle parent = null(); | |
922 | int cmp, last_cmp; | |
923 | ||
924 | /* Search for node already in tree with same key. */ | |
925 | for (;;) { | |
926 | if (h == null()) | |
927 | /* No node in tree with same key as new node. */ | |
928 | return null(); | |
929 | cmp = cmp_n_n(new_node, h); | |
930 | if (cmp == 0) | |
931 | /* Found the node to substitute new one for. */ | |
932 | break; | |
933 | last_cmp = cmp; | |
934 | parent = h; | |
935 | h = cmp < 0 ? get_lt(h) : get_gt(h); | |
936 | } | |
937 | ||
938 | /* Copy tree housekeeping fields from node in tree to new node. */ | |
939 | set_lt(new_node, get_lt(h)); | |
940 | set_gt(new_node, get_gt(h)); | |
941 | set_bf(new_node, get_bf(h)); | |
942 | ||
943 | if (parent == null()) | |
944 | /* New node is also new root. */ | |
945 | abs.root = new_node; | |
946 | else { | |
947 | /* Make parent point to new node. */ | |
948 | if (last_cmp < 0) | |
949 | set_lt(parent, new_node); | |
950 | else | |
951 | set_gt(parent, new_node); | |
952 | } | |
953 | ||
954 | return h; | |
955 | } | |
956 | ||
957 | } | |
958 | ||
959 | #endif |