]>
Commit | Line | Data |
---|---|---|
93a37866 | 1 | /* |
ed1e77d3 | 2 | * Copyright (C) 2011, 2014 Apple Inc. All rights reserved. |
93a37866 A |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #include "config.h" | |
27 | #include "DFGDominators.h" | |
28 | ||
29 | #if ENABLE(DFG_JIT) | |
30 | ||
ed1e77d3 A |
31 | #include "DFGBlockMapInlines.h" |
32 | #include "DFGBlockWorklist.h" | |
93a37866 | 33 | #include "DFGGraph.h" |
ed1e77d3 | 34 | #include "DFGNaiveDominators.h" |
81345200 | 35 | #include "JSCInlines.h" |
93a37866 A |
36 | |
37 | namespace JSC { namespace DFG { | |
38 | ||
39 | Dominators::Dominators() | |
93a37866 A |
40 | { |
41 | } | |
42 | ||
43 | Dominators::~Dominators() | |
44 | { | |
45 | } | |
46 | ||
ed1e77d3 A |
47 | namespace { |
48 | ||
49 | // This implements Lengauer and Tarjan's "A Fast Algorithm for Finding Dominators in a Flowgraph" | |
50 | // (TOPLAS 1979). It uses the "simple" implementation of LINK and EVAL, which yields an O(n log n) | |
51 | // solution. The full paper is linked below; this code attempts to closely follow the algorithm as | |
52 | // it is presented in the paper; in particular sections 3 and 4 as well as appendix B. | |
53 | // https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20fast%20algorithm%20for%20finding.pdf | |
54 | // | |
55 | // This code is very subtle. The Lengauer-Tarjan algorithm is incredibly deep to begin with. The | |
56 | // goal of this code is to follow the code in the paper, however our implementation must deviate | |
57 | // from the paper when it comes to recursion. The authors had used recursion to implement DFS, and | |
58 | // also to implement the "simple" EVAL. We convert both of those into worklist-based solutions. | |
59 | // Finally, once the algorithm gives us immediate dominators, we implement dominance tests by | |
60 | // walking the dominator tree and computing pre and post numbers. We then use the range inclusion | |
61 | // check trick that was first discovered by Paul F. Dietz in 1982 in "Maintaining order in a linked | |
62 | // list" (see http://dl.acm.org/citation.cfm?id=802184). | |
63 | ||
64 | class LengauerTarjan { | |
65 | public: | |
66 | LengauerTarjan(Graph& graph) | |
67 | : m_graph(graph) | |
68 | , m_data(graph) | |
69 | { | |
70 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { | |
71 | BasicBlock* block = m_graph.block(blockIndex); | |
72 | if (!block) | |
73 | continue; | |
74 | m_data[block].label = block; | |
75 | } | |
76 | } | |
93a37866 | 77 | |
ed1e77d3 A |
78 | void compute() |
79 | { | |
80 | computeDepthFirstPreNumbering(); // Step 1. | |
81 | computeSemiDominatorsAndImplicitImmediateDominators(); // Steps 2 and 3. | |
82 | computeExplicitImmediateDominators(); // Step 4. | |
83 | } | |
93a37866 | 84 | |
ed1e77d3 A |
85 | BasicBlock* immediateDominator(BasicBlock* block) |
86 | { | |
87 | return m_data[block].dom; | |
88 | } | |
89 | ||
90 | private: | |
91 | void computeDepthFirstPreNumbering() | |
92 | { | |
93 | // Use a block worklist that also tracks the index inside the successor list. This is | |
94 | // necessary for ensuring that we don't attempt to visit a successor until the previous | |
95 | // successors that we had visited are fully processed. This ends up being revealed in the | |
96 | // output of this method because the first time we see an edge to a block, we set the | |
97 | // block's parent. So, if we have: | |
98 | // | |
99 | // A -> B | |
100 | // A -> C | |
101 | // B -> C | |
102 | // | |
103 | // And we're processing A, then we want to ensure that if we see A->B first (and hence set | |
104 | // B's prenumber before we set C's) then we also end up setting C's parent to B by virtue | |
105 | // of not noticing A->C until we're done processing B. | |
106 | ||
107 | ExtendedBlockWorklist<unsigned> worklist; | |
108 | worklist.push(m_graph.block(0), 0); | |
109 | ||
110 | while (BlockWith<unsigned> item = worklist.pop()) { | |
111 | BasicBlock* block = item.block; | |
112 | unsigned successorIndex = item.data; | |
113 | ||
114 | // We initially push with successorIndex = 0 regardless of whether or not we have any | |
115 | // successors. This is so that we can assign our prenumber. Subsequently we get pushed | |
116 | // with higher successorIndex values, but only if they are in range. | |
117 | ASSERT(!successorIndex || successorIndex < block->numSuccessors()); | |
118 | ||
119 | if (!successorIndex) { | |
120 | m_data[block].semiNumber = m_blockByPreNumber.size(); | |
121 | m_blockByPreNumber.append(block); | |
122 | } | |
123 | ||
124 | if (successorIndex < block->numSuccessors()) { | |
125 | unsigned nextSuccessorIndex = successorIndex + 1; | |
126 | if (nextSuccessorIndex < block->numSuccessors()) | |
127 | worklist.forcePush(block, nextSuccessorIndex); | |
128 | ||
129 | BasicBlock* successorBlock = block->successor(successorIndex); | |
130 | if (worklist.push(successorBlock, 0)) | |
131 | m_data[successorBlock].parent = block; | |
132 | } | |
133 | } | |
134 | } | |
93a37866 | 135 | |
ed1e77d3 A |
136 | void computeSemiDominatorsAndImplicitImmediateDominators() |
137 | { | |
138 | for (unsigned currentPreNumber = m_blockByPreNumber.size(); currentPreNumber-- > 1;) { | |
139 | BasicBlock* block = m_blockByPreNumber[currentPreNumber]; | |
140 | BlockData& blockData = m_data[block]; | |
141 | ||
142 | // Step 2: | |
143 | for (BasicBlock* predecessorBlock : block->predecessors) { | |
144 | BasicBlock* intermediateBlock = eval(predecessorBlock); | |
145 | blockData.semiNumber = std::min( | |
146 | m_data[intermediateBlock].semiNumber, blockData.semiNumber); | |
147 | } | |
148 | unsigned bucketPreNumber = blockData.semiNumber; | |
149 | ASSERT(bucketPreNumber <= currentPreNumber); | |
150 | m_data[m_blockByPreNumber[bucketPreNumber]].bucket.append(block); | |
151 | link(blockData.parent, block); | |
152 | ||
153 | // Step 3: | |
154 | for (BasicBlock* semiDominee : m_data[blockData.parent].bucket) { | |
155 | BasicBlock* possibleDominator = eval(semiDominee); | |
156 | BlockData& semiDomineeData = m_data[semiDominee]; | |
157 | ASSERT(m_blockByPreNumber[semiDomineeData.semiNumber] == blockData.parent); | |
158 | BlockData& possibleDominatorData = m_data[possibleDominator]; | |
159 | if (possibleDominatorData.semiNumber < semiDomineeData.semiNumber) | |
160 | semiDomineeData.dom = possibleDominator; | |
161 | else | |
162 | semiDomineeData.dom = blockData.parent; | |
163 | } | |
164 | m_data[blockData.parent].bucket.clear(); | |
165 | } | |
166 | } | |
167 | ||
168 | void computeExplicitImmediateDominators() | |
169 | { | |
170 | for (unsigned currentPreNumber = 1; currentPreNumber < m_blockByPreNumber.size(); ++currentPreNumber) { | |
171 | BasicBlock* block = m_blockByPreNumber[currentPreNumber]; | |
172 | BlockData& blockData = m_data[block]; | |
173 | ||
174 | if (blockData.dom != m_blockByPreNumber[blockData.semiNumber]) | |
175 | blockData.dom = m_data[blockData.dom].dom; | |
176 | } | |
177 | } | |
178 | ||
179 | void link(BasicBlock* from, BasicBlock* to) | |
180 | { | |
181 | m_data[to].ancestor = from; | |
182 | } | |
183 | ||
184 | BasicBlock* eval(BasicBlock* block) | |
185 | { | |
186 | if (!m_data[block].ancestor) | |
187 | return block; | |
188 | ||
189 | compress(block); | |
190 | return m_data[block].label; | |
191 | } | |
192 | ||
193 | void compress(BasicBlock* initialBlock) | |
194 | { | |
195 | // This was meant to be a recursive function, but we don't like recursion because we don't | |
196 | // want to blow the stack. The original function will call compress() recursively on the | |
197 | // ancestor of anything that has an ancestor. So, we populate our worklist with the | |
198 | // recursive ancestors of initialBlock. Then we process the list starting from the block | |
199 | // that is furthest up the ancestor chain. | |
200 | ||
201 | BasicBlock* ancestor = m_data[initialBlock].ancestor; | |
202 | ASSERT(ancestor); | |
203 | if (!m_data[ancestor].ancestor) | |
204 | return; | |
205 | ||
206 | Vector<BasicBlock*, 16> stack; | |
207 | for (BasicBlock* block = initialBlock; block; block = m_data[block].ancestor) | |
208 | stack.append(block); | |
209 | ||
210 | // We only care about blocks that have an ancestor that has an ancestor. The last two | |
211 | // elements in the stack won't satisfy this property. | |
212 | ASSERT(stack.size() >= 2); | |
213 | ASSERT(!m_data[stack[stack.size() - 1]].ancestor); | |
214 | ASSERT(!m_data[m_data[stack[stack.size() - 2]].ancestor].ancestor); | |
215 | ||
216 | for (unsigned i = stack.size() - 2; i--;) { | |
217 | BasicBlock* block = stack[i]; | |
218 | BasicBlock*& labelOfBlock = m_data[block].label; | |
219 | BasicBlock*& ancestorOfBlock = m_data[block].ancestor; | |
220 | ASSERT(ancestorOfBlock); | |
221 | ASSERT(m_data[ancestorOfBlock].ancestor); | |
222 | ||
223 | BasicBlock* labelOfAncestorOfBlock = m_data[ancestorOfBlock].label; | |
224 | ||
225 | if (m_data[labelOfAncestorOfBlock].semiNumber < m_data[labelOfBlock].semiNumber) | |
226 | labelOfBlock = labelOfAncestorOfBlock; | |
227 | ancestorOfBlock = m_data[ancestorOfBlock].ancestor; | |
228 | } | |
93a37866 | 229 | } |
81345200 | 230 | |
ed1e77d3 A |
231 | struct BlockData { |
232 | BlockData() | |
233 | : parent(nullptr) | |
234 | , preNumber(UINT_MAX) | |
235 | , semiNumber(UINT_MAX) | |
236 | , ancestor(nullptr) | |
237 | , label(nullptr) | |
238 | , dom(nullptr) | |
239 | { | |
240 | } | |
241 | ||
242 | BasicBlock* parent; | |
243 | unsigned preNumber; | |
244 | unsigned semiNumber; | |
245 | BasicBlock* ancestor; | |
246 | BasicBlock* label; | |
247 | Vector<BasicBlock*> bucket; | |
248 | BasicBlock* dom; | |
249 | }; | |
250 | ||
251 | Graph& m_graph; | |
252 | BlockMap<BlockData> m_data; | |
253 | Vector<BasicBlock*> m_blockByPreNumber; | |
254 | }; | |
81345200 | 255 | |
ed1e77d3 A |
256 | struct ValidationContext { |
257 | ValidationContext(Graph& graph, Dominators& dominators) | |
258 | : graph(graph) | |
259 | , dominators(dominators) | |
260 | { | |
93a37866 A |
261 | } |
262 | ||
ed1e77d3 A |
263 | void reportError(BasicBlock* from, BasicBlock* to, const char* message) |
264 | { | |
265 | Error error; | |
266 | error.from = from; | |
267 | error.to = to; | |
268 | error.message = message; | |
269 | errors.append(error); | |
93a37866 | 270 | } |
ed1e77d3 A |
271 | |
272 | void handleErrors() | |
273 | { | |
274 | if (errors.isEmpty()) | |
275 | return; | |
276 | ||
277 | startCrashing(); | |
278 | dataLog("DFG DOMINATOR VALIDATION FAILED:\n"); | |
279 | dataLog("\n"); | |
280 | dataLog("For block domination relationships:\n"); | |
281 | for (unsigned i = 0; i < errors.size(); ++i) { | |
282 | dataLog( | |
283 | " ", pointerDump(errors[i].from), " -> ", pointerDump(errors[i].to), | |
284 | " (", errors[i].message, ")\n"); | |
285 | } | |
286 | dataLog("\n"); | |
287 | dataLog("Control flow graph:\n"); | |
288 | for (BlockIndex blockIndex = 0; blockIndex < graph.numBlocks(); ++blockIndex) { | |
289 | BasicBlock* block = graph.block(blockIndex); | |
290 | if (!block) | |
291 | continue; | |
292 | dataLog(" Block #", blockIndex, ": successors = ["); | |
293 | CommaPrinter comma; | |
294 | for (unsigned i = 0; i < block->numSuccessors(); ++i) | |
295 | dataLog(comma, *block->successor(i)); | |
296 | dataLog("], predecessors = ["); | |
297 | comma = CommaPrinter(); | |
298 | for (unsigned i = 0; i < block->predecessors.size(); ++i) | |
299 | dataLog(comma, *block->predecessors[i]); | |
300 | dataLog("]\n"); | |
301 | } | |
302 | dataLog("\n"); | |
303 | dataLog("Lengauer-Tarjan Dominators:\n"); | |
304 | dataLog(dominators); | |
305 | dataLog("\n"); | |
306 | dataLog("Naive Dominators:\n"); | |
307 | naiveDominators.dump(graph, WTF::dataFile()); | |
308 | dataLog("\n"); | |
309 | dataLog("Graph at time of failure:\n"); | |
310 | graph.dump(); | |
311 | dataLog("\n"); | |
312 | dataLog("DFG DOMINATOR VALIDATION FAILIED!\n"); | |
313 | CRASH(); | |
314 | } | |
315 | ||
316 | Graph& graph; | |
317 | Dominators& dominators; | |
318 | NaiveDominators naiveDominators; | |
319 | ||
320 | struct Error { | |
321 | BasicBlock* from; | |
322 | BasicBlock* to; | |
323 | const char* message; | |
324 | }; | |
325 | ||
326 | Vector<Error> errors; | |
327 | }; | |
328 | ||
329 | } // anonymous namespace | |
81345200 | 330 | |
ed1e77d3 A |
331 | void Dominators::compute(Graph& graph) |
332 | { | |
333 | LengauerTarjan lengauerTarjan(graph); | |
334 | lengauerTarjan.compute(); | |
81345200 | 335 | |
ed1e77d3 A |
336 | m_data = BlockMap<BlockData>(graph); |
337 | ||
338 | // From here we want to build a spanning tree with both upward and downward links and we want | |
339 | // to do a search over this tree to compute pre and post numbers that can be used for dominance | |
340 | // tests. | |
341 | ||
342 | for (BlockIndex blockIndex = graph.numBlocks(); blockIndex--;) { | |
343 | BasicBlock* block = graph.block(blockIndex); | |
344 | if (!block) | |
345 | continue; | |
346 | ||
347 | BasicBlock* idomBlock = lengauerTarjan.immediateDominator(block); | |
348 | m_data[block].idomParent = idomBlock; | |
349 | if (idomBlock) | |
350 | m_data[idomBlock].idomKids.append(block); | |
351 | } | |
352 | ||
353 | unsigned nextPreNumber = 0; | |
354 | unsigned nextPostNumber = 0; | |
355 | ||
356 | // Plain stack-based worklist because we are guaranteed to see each block exactly once anyway. | |
357 | Vector<BlockWithOrder> worklist; | |
358 | worklist.append(BlockWithOrder(graph.block(0), PreOrder)); | |
359 | while (!worklist.isEmpty()) { | |
360 | BlockWithOrder item = worklist.takeLast(); | |
361 | switch (item.order) { | |
362 | case PreOrder: | |
363 | m_data[item.block].preNumber = nextPreNumber++; | |
364 | worklist.append(BlockWithOrder(item.block, PostOrder)); | |
365 | for (BasicBlock* kid : m_data[item.block].idomKids) | |
366 | worklist.append(BlockWithOrder(kid, PreOrder)); | |
93a37866 | 367 | break; |
ed1e77d3 A |
368 | case PostOrder: |
369 | m_data[item.block].postNumber = nextPostNumber++; | |
370 | break; | |
371 | } | |
372 | } | |
373 | ||
374 | if (validationEnabled()) { | |
375 | // Check our dominator calculation: | |
376 | // 1) Check that our range-based ancestry test is the same as a naive ancestry test. | |
377 | // 2) Check that our notion of who dominates whom is identical to a naive (not | |
378 | // Lengauer-Tarjan) dominator calculation. | |
379 | ||
380 | ValidationContext context(graph, *this); | |
381 | context.naiveDominators.compute(graph); | |
382 | ||
383 | for (BlockIndex fromBlockIndex = graph.numBlocks(); fromBlockIndex--;) { | |
384 | BasicBlock* fromBlock = graph.block(fromBlockIndex); | |
385 | if (!fromBlock || m_data[fromBlock].preNumber == UINT_MAX) | |
386 | continue; | |
387 | for (BlockIndex toBlockIndex = graph.numBlocks(); toBlockIndex--;) { | |
388 | BasicBlock* toBlock = graph.block(toBlockIndex); | |
389 | if (!toBlock || m_data[toBlock].preNumber == UINT_MAX) | |
390 | continue; | |
391 | ||
392 | if (dominates(fromBlock, toBlock) != naiveDominates(fromBlock, toBlock)) | |
393 | context.reportError(fromBlock, toBlock, "Range-based domination check is broken"); | |
394 | if (dominates(fromBlock, toBlock) != context.naiveDominators.dominates(fromBlock, toBlock)) | |
395 | context.reportError(fromBlock, toBlock, "Lengauer-Tarjan domination is broken"); | |
396 | } | |
397 | } | |
398 | ||
399 | context.handleErrors(); | |
400 | } | |
401 | } | |
81345200 | 402 | |
ed1e77d3 A |
403 | BlockSet Dominators::strictDominatorsOf(BasicBlock* to) const |
404 | { | |
405 | BlockSet result; | |
406 | forAllStrictDominatorsOf(to, BlockAdder(result)); | |
407 | return result; | |
93a37866 A |
408 | } |
409 | ||
ed1e77d3 | 410 | BlockSet Dominators::dominatorsOf(BasicBlock* to) const |
93a37866 | 411 | { |
ed1e77d3 A |
412 | BlockSet result; |
413 | forAllDominatorsOf(to, BlockAdder(result)); | |
414 | return result; | |
415 | } | |
81345200 | 416 | |
ed1e77d3 A |
417 | BlockSet Dominators::blocksStrictlyDominatedBy(BasicBlock* from) const |
418 | { | |
419 | BlockSet result; | |
420 | forAllBlocksStrictlyDominatedBy(from, BlockAdder(result)); | |
421 | return result; | |
422 | } | |
81345200 | 423 | |
ed1e77d3 A |
424 | BlockSet Dominators::blocksDominatedBy(BasicBlock* from) const |
425 | { | |
426 | BlockSet result; | |
427 | forAllBlocksDominatedBy(from, BlockAdder(result)); | |
428 | return result; | |
429 | } | |
81345200 | 430 | |
ed1e77d3 A |
431 | BlockSet Dominators::dominanceFrontierOf(BasicBlock* from) const |
432 | { | |
433 | BlockSet result; | |
434 | forAllBlocksInDominanceFrontierOfImpl(from, BlockAdder(result)); | |
435 | return result; | |
436 | } | |
81345200 | 437 | |
ed1e77d3 A |
438 | BlockSet Dominators::iteratedDominanceFrontierOf(const BlockList& from) const |
439 | { | |
440 | BlockSet result; | |
441 | forAllBlocksInIteratedDominanceFrontierOfImpl(from, BlockAdder(result)); | |
442 | return result; | |
81345200 A |
443 | } |
444 | ||
ed1e77d3 | 445 | bool Dominators::naiveDominates(BasicBlock* from, BasicBlock* to) const |
81345200 | 446 | { |
ed1e77d3 A |
447 | for (BasicBlock* block = to; block; block = m_data[block].idomParent) { |
448 | if (block == from) | |
449 | return true; | |
450 | } | |
451 | return false; | |
452 | } | |
453 | ||
454 | void Dominators::dump(PrintStream& out) const | |
455 | { | |
456 | if (!isValid()) { | |
457 | out.print(" Not Valid.\n"); | |
458 | return; | |
459 | } | |
460 | ||
461 | for (BlockIndex blockIndex = 0; blockIndex < m_data.size(); ++blockIndex) { | |
462 | if (m_data[blockIndex].preNumber == UINT_MAX) | |
81345200 | 463 | continue; |
ed1e77d3 A |
464 | |
465 | out.print(" Block #", blockIndex, ": idom = ", pointerDump(m_data[blockIndex].idomParent), ", idomKids = ["); | |
466 | CommaPrinter comma; | |
467 | for (unsigned i = 0; i < m_data[blockIndex].idomKids.size(); ++i) | |
468 | out.print(comma, *m_data[blockIndex].idomKids[i]); | |
469 | out.print("], pre/post = ", m_data[blockIndex].preNumber, "/", m_data[blockIndex].postNumber, "\n"); | |
81345200 | 470 | } |
93a37866 A |
471 | } |
472 | ||
473 | } } // namespace JSC::DFG | |
474 | ||
475 | #endif // ENABLE(DFG_JIT) | |
476 |